

"Role of Imaging techniques in endocarditis and vascular infections"

Pr Xavier Duval

Bichat Claude Bernard university hospital

Paris, France

xavier.duval@aphp.fr

"Role of Imaging techniques in endocarditis and vascular infections"

Endocarditis

Vascular infections

"Role of Imaging techniques in endocarditis and vascular infections"

Endocarditis

Vascular infections

Diagnosis Therapeutic Prognosis Therapeutic FU

Infective Endocarditis

- IE incidence France: stable 25 /10⁶ ind/year relatively uncommon : 1 300 cases/year
- Elderly 70 % > 50 years old
 Surgery 50 %
 Mortality 20 %
- Role of cardiac imaging clearly identified in surgical decision-making

Case History

- 62-year old man
- Bentall intervention in 2005 for severe AR on a bicuspid aortic valve + aortic aneurysm
- Hospitalized
 - persisting fever for 3 weeks
 - amoxicillin treatment for one week
 - normal clinical examination
 - INR = 2
- WBC 13 500 leuco / ml, CRP 185 mg/l
- Negative blood cultures

TTE / TEE

- no evidence of abscess
- no regurgitation
- aortic valve: mobile mass 8 mm (thrombus ?, vegetation ?)
- no prosthesis dysfunction

Cerebral MRI

Summary

- Major Duke criteria : vegetation ?
- Minor Duke criteria
 - Valve prosthesis
 - Fever
 - + 2 small recent asymptomatic strokes
- After cerebral MRI possible IE \rightarrow definite IE

Radionuclide Labelled Leucocytes

Cardiac echo

Cardiac echography

- Diagnostic of infectious anatomic lesions
- Consequences of these lesions on
 - Valve function
 - \circ Cardiac chambers
 - Pulmonary artery pressures

Endocardial Involvement

• Major Duke criteria:

- New regurgitation murmur (ESC 2015 classification)
- Echocardiography
 - Vegetation (presence, size, mobility)
 - Abscess (frequency PVE>>NVE; Aortic position >> Mitral)
 - New dehiscence on a prosthetic valve

Improved sensitivity of TEE vs. TTE

- Native value $70\% \rightarrow >90\%$
- Prosthetic value $50\% \rightarrow >90\%$
- The diagnostic value of TEE should be interpreted according to patient characteristics and the probability of endocarditis

Anatomic and echo definitions

	Surgery / Necropsy	Echocardiography
Vegetation	Infected mass attached to an endocardial structure or an implanted intracardiac material	Oscillating or non oscillating intracardiac mass or other endocardial structures or non implanted intracardiac material
Abscess	Perivalvular cavity with necrosis and purulent material not communicating with the cardiovascular lumen	Thickened non-hogeneous perivalvular area with echodense or echolucent appearance
Pseudoaneurysm	Perivalvular cavity communicating with the cardiovascular lumen	Pulsatile perivalvular echo-free space with colour-Doppler flow detected
Perforation	Interruption of endocardial tissue continuity	Interruption of endocardial tissue continuity traversed by colour Doppler flow
Fistula	Communication between 2 neighbouring cavities through a perforation	Colour-Doppler communication between 2 neighbouring cavities through a perforation
Valve aneurysm	Saccular outpouching of valvular tissue	Saccular bulging of valvular tissue
Dehiscence of a prosthetic valve	Dehiscence of the prosthesis	Paravalvular regurgitation identified by TTE/TTE with or without rocking motion of the prosthesis

Eur Heart J 2015

An isolated periprosthetic regurgitation has a low positive predictive value for the diagnosis of IE

Echo and Cardiac chambers

- Even in case of severe regurgitation
 - Acute regurgitations in IE \rightarrow limited or absent left ventricular enlargement
 - Severe acute regurgitations \rightarrow rapid increase
 - In filling pressures
 - In systolic pulmonary artery pressures (Doppler analysis of tricuspid regurgitant flow)

Echo and embolic risk assessment

Three distinct predictors :

- Microorganism: S. aureus
- IE location: Mitral valve IE
- Vegetation length > 10 mm

Dickermann SA and ICE Investigators. Am Heart J. 2007

Thuny F et al. Eur Heart J. 2007

Snygg-Martin U et al. Clin Inf Dis 2008

C - PREVENTION OF EMBOLISM			
Aortic or mitral IE with large vegetations (> 10 mm) following one or more embolic episodes despite appropriate antibiotic therapy	Urgent	I.	В
Aortic or mitral IE with large vegetations > 10 mm) and other predictors of complicated course (heart failure, persistent infection, abscess)	Urgent	I	С
Isolated very large vegetation: (> 15 mm)	Urgent	llb	с

Valvular surgery_ 2015 ESC indications

П	3. Prevention of embolism				
	Aortic or mitral NVE or PVE with persistent vegetations >10 mm after one or more embolic episode despite appropriate antibiotic therapy	Urgent	I	в	9,58,72, 113,222
	Aortic or mitral NVE with vegetations > 10 mm associated with severe valve stenosis or regurgitation, and low operative risk	Urgent	lla	в	9
	Aortic or mitral NVE or PVE with isolated very large vegetations (>30 mm)	Urgent	lla	В	113
r	Aortic or mitral NVE or PVE with isolated large vegetation. (>15 mm) and no other indication for surgery ^e	Urgent	IIb	с	

Discrepancies TTE / TEE

105 with suspected endocarditis (TTE and TEE)

- 10 patients / Intermediate probability with TTE
 7 reclassified at high probability after TEE
- False positives with TTE
 - 8 patients
 - non-specific valvular thickening

• Increased diagnostic value with TEE if:

- Intermediate probability after TTE
- Sub-optimal imaging with TTE
- Heart valve prosthesis

 \rightarrow no contribution of TEE if low probability

Prosthetic Endocarditis

Limitations of Echocardiography

- **Shadowing** : attenuation of ultrasound by prosthetic material \rightarrow false -
- Image artifacts
- Aortic prostheses
 - Posterior part poorly visualised in TTE
 - Anterior part poorly visualised in TEE
- Other artifacts (sutures ..)

OEsophage Cœur Estomac

 \succ Importance of high resolution (TEE)

 \rightarrow false -, false +

Eur Heart J 2015

Diagnosis Follow-up

Imaging techniques

Echocardiography

Table 10Role of echocardiography in infectiveendocarditis

Re	ecommendations	Class ^a	Level ^b	Ref. ^c
Α.	Diagnosis			
•	TTE is recommended as the first-line imaging modality in suspected IE.	I	в	64,65
•	TOE is recommended in all patients with clinical suspicion of IE and a negative or non-diagnostic TTE.	ſ	в	64, 68–71
•	TOE is recommended in patients with clinical suspicion of IE, when a prosthetic heart valve or an intracardiac device is present.		в	64,71
•	Repeat TTE and /or TOE within 5–7 days is recommended in case of initially negative examination when clinical suspicion of IE remains high.	1	e	
•	Echocardiography should be considered in <i>Staphylococcus</i> <i>aureus</i> bacteraemia.	lla	в	66,67

•	TOE should be considered in patients with suspected IE, even in cases with positive TTE, except in isolated right-sided native valve IE with good quality TTE examination and unequivocal echocardiographic findings.	lla	с			
В.	B. Follow-up under medical therapy					
	Repeat TTE and/or TOE are recommended as soon as a new complication of IE is suspected (new murmur, embolism, persisting fever, HF, abscess, atrioventricular block).	T	B	64,72		
Re	commendations	Class ^a	Level ^b	Ref. ^c		
	Repeat TTE and/or TOE should be considered during follow-up of uncomplicated IE, in order to detect new silent complications and monitor vegetation size. The timing and mode (TTE or TOE) of repeat examination depend on the initial findings, type of microorganism, and initial response to therapy.	lla	в	64,72		
C.	C. Intraoperative echocardiography					
	ind aoperative centoear alographi					
•	Intraoperative echocardiography is recommended in all cases of IE requiring surgery.	T	в	64,73		
• D.	Intraoperative echocardiography is recommended in all cases of IE requiring surgery. Following completion of therapy	I	B	64,73		

HF = heart failure; IE = infective endocarditis; TOE = transoesophageal echocardiography; TTE = transthoracic echocardiography. ^aClass of recommendation. ^bLevel of evidence.

Cardiac multislice computed tomography (MSCT)

Cardiac multislice computed tomography MSCT

- Mainly used to diagnose perivalvular lesions
 - abscesses, fistulae and pseudoaneurysms
- May complete TEE to assess
 - the topography and extension of abscesses, fistulae and pseudoaneurysms.
- Sensitivity and specificity of MSCT:
 - > 95% as compared with surgical findings

Cardiac multislice computed tomography MSCT

- Aortic prosthetic tubes:
 - Superior to TTE and TEE to diagnose abscesses and/or pseudoaneurysms around.
- Coronary MSCT
 - To assess coronary anatomy
 - Mainly considered in pts at low risk of coronary artery disease, due to its high negative predictive value.

Comparison With Transesophageal Echocardiography and Intraoperative Findings

Gudrun M. Feuchtner, MD, PD,* Paul Stolzmann, MD,§ Wolfgang Dichtl, MD, PHD, PD,† Thomas Schertler, MD,§ Johannes Bonatti, MD, FECTS,‡ Hans Scheffel, MD,§ Silvana Mueller, MD,† André Plass, MD,|| Ludwig Mueller, MD,‡ Thomas Bartel, MD, PD,† Florian Wolf, MD,¶ Hatem Alkadhi, MD, PD§

Innsbruck and Vienna, Austria; and Zurich, Switzerland

37 patients consécutifs suspects cliniquement d'El

TEE et 64 coupes TDM

29 pts avec El certaines

Comparaison ETO:

Sensibilité: 97%, spécificité: 88%, VPP: 97%, VPN 88% Concordance interobservateur: 0.84

Comparison With Transesophageal Echocardiography and Intraoperative Findings

Gudrun M. Feuchtner, MD, PD,* Paul Stolzmann, MD,§ Wolfgang Dichtl, MD, PHD, PD,† Thomas Schertler, MD,§ Johannes Bonatti, MD, FECTS,‡ Hans Scheffel, MD,§ Silvana Mueller, MD,† André Plass, MD, Ludwig Mueller, MD,‡ Thomas Bartel, MD, PD,† Florian Wolf, MD,¶ Hatem Alkadhi, MD, PD§

Innsbruck and Vienna, Austria; and Zurich, Switzerland

37 patients consécutifs suspects cliniquement d'El

TEE et 64 coupes TDM

29 pts avec El certaines

Comparaison ETO:

Sensibilité: 97%, spécificité: 88%, VPP: 97%, VPN 88% Concordance interobservateurs: 0.84

Comparaison chirurgie:

Végétation: Sensibilité: 96%, spécificité: 97%, VPP: 97%, VPN 97% Abcès: Sensibilité: 100%, spécificité: 100%, VPP: 100%, VPN 100%

Mobilité végétation correctement évaluée Ne diagnostique pas les perforations Meilleure évaluation de l'étendue des abcès périvalvulaires JACC 2009 ;53:436-444

Comparison With Transesophageal Echocardiography and Intraoperative Findings

Végétation mobile

Abcès

ETO: Abcès

Moins bonne visualisation de l'abcès à l'ETO

Comparison With Transesophageal Echocardiography and Intraoperative Findings

Nuclear Imaging [18F]FDG PET/CT

Nuclear Imaging [18F]FDG PET/CT

• ¹⁸F-FDG PET/CT:

- Reveal glucose consuming cells : tumoral, inflammation...
- widely used in oncology for staging and evaluation of treatment response
- Introduced more recently for imaging of infection
- Gram positive bacteremia: cost-effective method for detection of metastatic infection
- High physiological cardiac and cerebral ¹⁸F-FDG uptake: unsuitable for detecting cardiac and cerebral infectious lesions ?

Nuclear Imaging [18F]FDG PET/CT

- Suppression of Cardiac ¹⁸F-FDG uptake
 - Carbohydrate-restricted diet
 - Patient fasts for at least 12 hours
- Improvement of images using correction for attenuation
- Semi-quantitative analysis of the intensity of FDG uptake
 - maximal standardized uptake value (SUV_{max})
 - valve-to-background ratio: valve SUV_{max} /atrial blood SUV_{max}

¹⁸FDG PET/CT

- 1. High sensitivity
- 2. Absolute quantification

Nguyen et al., Am J Physiol 1990

"True" whole-body acquisition

Brain imaging

Trans Arterial Valve Implantation

Mycotic aneurysms

Portal of entry

- ➢ Recurrent chills, fever, and positive blood cultures (*E. faecalis*)
- Suspicion of aortic prosthetic valve infection

Diagnostic of valvular involvement

Diagnostic of valvular involvement

Patients with definite IE

	Clinical situations	Total Nb pts Prosthetic V/ PM/native V	Definite El / total	sensitivity	specificity	PPV False +	NPV False -
Van Riet 2010 *	Definite IE	25 pts 10/0/15	all	(3/25)	NA	NA	NA
Kestler M 2014	Definite IE	47pts 15/11/24	all (9.5% (4/47) 4/15 PVE (27%)	NA	NA	NA

0/24 (0%) native valve

* NO carbohydrate-restricted diet

Diagnostic of valvular involvement

Patients with suspected IE

	Clinical situations	Total Nb pts Prosthetic V/ PM/native V	Definite El / total	sensitivity	specificity	PPV False +	NPV False -
Kouijzer 2013 *	Gram + bacteremia	72 pts 6/561	18/72	39% (7/18)	93%	64% 36%	82% 18%
Saby 2013	Prosthetic valve AND Fever or crp > 10 mg, or bacteremia or + serology or echo pos	72pts 72'0/0	30/72	73% (22/30)	80%	85% 15%	67% 33%

* NO carbohydrate-restricted diet

SUVmax value to improve PET diagnosis performance

Results of the Prosthetic Valve SUV_{max} and Prosthetic Valve-to-Background SUV_{max} Ratio According to the Final Diagnosis

The SUV_{max} was significantly higher in patients with *definite* PVE in comparison with the 2 other groups (A), whereas the prosthetic valve-to-background SUV_{max} ratio was not significantly higher (B). *p < 0.05. Abbreviations as in Figures 1 and 2.

L. Saby JACC 2013

False positive results in patients with valvular prosthesis

Subject of concern ?

¹⁸F-FDG uptake pattern in non-infected prosthetic heart valves

- Bichat Hospital PET/CT database (Jan-Dec 2013)
- Inclusion criteria:
 - Prosthetic heart valve
 - biological and/or mechanical
 - aortic and/or mitral positions
- Exclusion criteria:
 - Infection (bacteremia)
 - Antibiotic regimen: 2 weeks before / 6 weeks after PET/CT

Characterization of ¹⁸F-Fluorodeoxyglucose Uptake Pattern in Noninfected Prosthetic Heart Valves

Cédric Mathieu, MD; Nidaa Mikaïl, MD; Khadija Benali, MD; Bernard Iung, MD; Xavier Duval, MD, PhD; Patrick Nataf, MD; Guillaume Jondeau, MD, PhD; Fabien Hyafil, MD, PhD; Dominique Le Guludec, MD, PhD; François Rouzet, MD, PhD

Circ Cardiovasc Imaging. 2017

Figure 1. Study flow chart. PHV indicates prosthetic heart valve.

Figure 2. Examples of ¹⁸F-FDG perivalvular uptake in noninfected patients.

Results: patients & valves

Patients

- 51 patients with 54 prosthetic valves
- Sex: male 29 (57%)
- Age: mean 66±15 years [range: 25 85]
- Cardiac valve type
 - biological (n=32) mechanical (n=22) prosthesis
- Indication
 - Oncology (n=26); Inflammatory syndrome (n=15); Vasculitis (n=10)
- Time interval between valve implantation and PET/CT
 - Median: 2.7 years [9 days 25 years]
 - <2 months: 12 patients</p>

Absence of uptake on the PV

• Non infected prosthesis

c Mechanical valves

Perivalvular uptake in No-IE patients

- Visual analysis of perivalvular uptake
 - Uptake:
 - AC: n=50 /54 (93%), Homogeneous in all
- Quantitative analysis (SUV-V)
 - Mechanical: 4.4±1.5
 - Biological: 3.4±0.9 (p=0.01)

SUV: standardized uptake value

Perivalvular uptake

Uptake according to the indications

- Visual analysis of perivalvular uptake
 - Uptake:
 - AC: n=50 /54 (93%), Homogeneous in all
- Quantitative analysis
 (SUV-V)
 - Mechanical: 4.4±1.5
 - Biological: 3.4±0.9 (p=0.01)

SUV: standardized uptake value

Perivalvular uptake in pts with valvular prosthesis IE versus NON-IE

L. Saby JACC 2013

Perivalvular uptake in NON-IE patients

According to time from implantation

Absence of uptake on the PV

• Non infected prosthesis

Absence of uptake on the PV

CLINICAL PERSPECTIVE

to assess the diagnostic utility of FDG positron emission tomography/computed tomography. The present study shows that noninfected prosthetic heart valves often display a homogeneous FDG uptake. This pattern is present even years after valve implantation and should not be considered, per se, as a marker of prosthetic material infection. In addition, the intensity of the FDG uptake did not decrease according to time from valve surgery and seemed to be greater in patients with a history of vasculitis.

Incremental value of iodure CT scan

Improving the Diagnosis of Infective Endocarditis in Prosthetic Valves and Intracardiac Devices With ¹⁸F-Fluordeoxyglucose Positron Emission Tomography/ Computed Tomography Angiography Initial Results at an Infective Endocarditis Referral Center

María N. Pizzi, MD; Albert Roque, MD; Nuria Fernández-Hidalgo, MD, PhD;

Figure 1. Flowchart of patient progress through the study. CT indicates computed tomography; CTA, computed tomography angiography; HR, heart rate; IE, infective endocarditis; NECT, nonenhanced computed tomography; and PET, ¹⁸F-fluorodeoxyglucose positron emission tomography.

Diagnosis of peripheral complications

Diagnosis of peripheral complications

Patients with definite IE

	Clinical situations	Total Nb pts ProstheticV/ PM/native V	Definite El / total	Peripheral localisations	sensitivity	specificity	PPV False +	NPV False -
Van Riet 2010 **	Definite IE	25 pts 10/0/15	25/25	11/25 (44%) 58% silent	100%	91%	91% 9%	
Kestler M 2014	Definite IE	47pts 15/11/24	47/47	31/47 66%)	100%	80%	90% 10%	100% 0%

Cf Article Asmar 2014 Pizi Circulation 2015 detection of 14 cases (15%) of peripheral emboli, 10 of which asymptomatic

Kestler M: Cases/controls study; peripheral localisations detected in **57.4%** of cases (TEP) vs **18%** in control (without TEP) p=0.0001

Diagnosis of peripheral complications

	Patients with suspected IE							
	Clinical situations	Total Nb pts ProstheticV/ PM/native V	Definite El / total	Peripheral localisations	sensitivity	specificity	PPV False +	NPV False -
Vos 2010 **	Gram pos bacteremia *	115 pts	21/115	11/21 (50%) 50% silent	?	?	?	?
Saby 2013	Prosthetic valve AND Fever or crp > 10 mg, or bacteremia or positive serology or echo pos	72 pts 72/0/0	30/72	8/30 (25%)	?			
Bonfiglioli 2013	Clinical suspicion	71 pts 38/0/33	29/71	17/29 (?) 74%		94%		

*Pts with at least one risk factor for complicated bacteremia (community

acquisition, signs of infection more than 48 h before initiation of appropriate treatment, fever more than 72 h after initiation of appropriate treatment, and positive blood cultures more than 48 h after initiation of appropriate treatment

Impact on Duke classification

Positron Emission Tomography/Computed Tomography for Diagnosis of Prosthetic Valve Endocarditis

Increased Valvular ¹⁸F-Fluorodeoxyglucose Uptake as a Novel Major Criterion

Ludivine Saby, MD,* Olivia Laas, MD,† Gilbert Habib, MD,* Serge Cammilleri, MD, PHD,† Julien Mancini, MD, PHD,‡ Laetitia Tessonnier, MD,† Jean-Paul Casalta, MD,§ Frederique Gouriet, MD, PHD,§ Alberto Riberi, MD,|| Jean-Francois Avierinos, MD,* Frederic Collart, MD,|| Olivier Mundler, MD, PHD,† Didier Raoult, MD, PHD,§ Franck Thuny, MD, PHD*§¶

Marseille, France

Of the 91 patients with suspicion of prosthetic valve endocarditis (PVE), 72 were included and classified according to the final diagnosis determined using the modified Duke criteria established after a 3-month follow-up. PET/CT = positi emission tomography/computed tomography.

Values are n (% of each final diagnosis). Abbreviations as in Tables 1 and 2.

Positron Emission Tomography/Computed Tomography for Diagnosis of Prosthetic Valve Endocarditis

Increased Valvular ¹⁸F-Fluorodeoxyglucose Uptake as a Novel Major Criterion

Ludivine Saby, MD,* Olivia Laas, MD,† Gilbert Habib, MD,* Serge Cammilleri, MD, PHD,† Julien Mancini, MD, PHD,‡ Laetitia Tessonnier, MD,† Jean-Paul Casalta, MD,§ Frederique Gouriet, MD, PHD,§ Alberto Riberi, MD,|| Jean-Francois Avierinos, MD,* Frederic Collart, MD,|| Olivier Mundler, MD, PHD,† Didier Raoult, MD, PHD,§ Franck Thuny, MD, PHD*§¶

Marseille, France

Duke classification upgraded due to	1
- cardiac uptake in 7/8	
- peripheric uptake in 1/8	j

Table 5 Admi Imple	Diagnostic Value of the Modified Duke Criteria at Admission With (Duke-PET/CT) and Without the Implementation of the PET/CT Results							
Final Diagnosis								
	Definite PVE	Possible PVE	Rejected PVE					
Duke								
Definite PVE	21 (70)	21 (70) 0 (0)						
Possible PVE	8 (27)	22 (100)	10 (50)					
Rejected PVE	1(3)	0 (0)	10 (50)					
Duke-PET/CT								
Definite PVE	29 (97)	10 (45)	2 (10)					
Possible PVE	1(3)	12 (55)	10 (50)					
Rejected PVE	0	0	8 (40)					

Values are n (% of each final diagnosis).

Abbreviations as in Tables 1 and 2.

30 definite IE

Positron Emission Tomography/Computed Tomography for Diagnosis of Prosthetic Valve Endocarditis

Increased Valvular ¹⁸F-Fluorodeoxyglucose Uptake as a Novel Major Criterion

Ludivine Saby, MD,* Olivia Laas, MD,† Gilbert Habib, MD,* Serge Cammilleri, MD, PHD,† Julien Mancini, MD, PHD,‡ Laetitia Tessonnier, MD,† Jean-Paul Casalta, MD,§ Frederique Gouriet, MD, PHD,§ Alberto Riberi, MD,|| Jean-Francois Avierinos, MD,* Frederic Collart, MD,|| Olivier Mundler, MD, PHD,† Didier Raoult, MD, PHD,§ Franck Thuny, MD, PHD*§¶

Marseille, France

Duke classification upgraded due to	1
- cardiac uptake in 7/8	
- peripheric uptake in 1/8	j

Table 5 Admi Imple	Diagnostic Value of the Modified Duke Criteria at Admission With (Duke-PET/CT) and Without the Implementation of the PET/CT Results							
Final Diagnosis								
	Definite PVE	Possible PVE	Rejected PVE					
Duke								
Definite PVE	21 (70)	21 (70) 0 (0)						
Possible PVE	8 (27)	22 (100)	10 (50)					
Rejected PVE	1(3)	0 (0)	10 (50)					
Duke-PET/CT								
Definite PVE	29 (97)	10 (45)	2 (10)					
Possible PVE	1(3)	12 (55)	10 (50)					
Rejected PVE	0	0	8 (40)					

Values are n (% of each final diagnosis).

Abbreviations as in Tables 1 and 2.

30 definite IE

Interobserver variability

Subject of concern ?

Interobserver variability

- Harmonization strategy conducted before a multicenter protocol on PET
- 17 clinical cases of IE suspected pts (PET images)
- Read by 8 nuclear medicine specialists originating in 8 different hospitals
- Interpretation: IE probable; doubtful, excluded

Interobserver variability

- Harmonization strategy conducted before a multicenter protocol on PET
- 17 clinical cases of IE suspected pts (PET images)
- Read by 8 nuclear medicine specialists originating in 8 different hospitals
- Interpretation: IE probable; doubtful, excluded
- Agreement among the 8 readers:
 - 3/17 clinical cases: total agreement
 - 14/17 clinical cases: disagreement
 - Minor (excluded versus doubtful or doubtful versus definite) n=4
 - Major (at least 2 readers with extreme disagreement (excluded versus definite) n=10

TEPvENDO

140 patients with high suspicion of IE

- 70 prosthetic valve patients
- 70 native valve patients

TEPvENDO

140 patients with high suspicion of IE

70 prosthetic valve patients70 native valve patients	Prosthetic valve pts (n=70)	Native valve pts (n=70)
Classified definite IE before PET/CT	34	46
Abnormal cardiac uptake	47 (67.2%)	17 (24.3%)
C. uptake considered related to IE	42.9%	15.7 %
Extracardiac uptake	44.3%	51.4%
Duke classification modifications	24.3%	5.7%
NRI	20%	4.3%,
Therapeutic plans modification	21.4%	31.4%

Taken together, patients who benefited from PET/CT had more frequently

- negative echocardiography or perinanular complication (p<0.001)
- and/or possible IE at inclusion (p=0.037).

The nature of the cardiac valve was not a determinant of the benefit.

CIED infection diagnosis

CIED: cardiovascular intra cardiac electronic device
42 pts suspected of CIED infection

CIED: cardiovascular intra cardiac electronic device

42 pts suspected of CIED infection

	Group A Suspected CIED inf ^{ion} N=42
Confirmed infection	35 (83%)
18F-FDG PET/CT uptake	32/42 1 false pos 3 false neg
SUVmax	4.4 ± 1.6
ETOveg ^{tion}	12/42

CIED: cardiovascular intra cardiac electronic device

Sarrazin JF et al. JACC 2012

42 pts suspected of CIED infection

	Group A Suspected CIED inf ^{ion} N=42	Group B Controls 6 Weeks post implantation N=12	
Confirmed infection	35 (83%)	0	
18F-FDG PET/CT uptake	32/42 1 false pos 3 false neg	No or mild uptake	
SUVmax	4.4 ± 1.6	1.2 ± 1.4	
ETOveg ^{tion}	12/42	0	
CIED: cardiovascular intra cardiac electronic device		sensitivity	specificity
			0.007

42 pts suspected of CIED infection

	Group A Suspected CIED inf ^{ion} N=42	Group B Controls 6 Weeks p implantatio	ost on N=12	Group C Controls > 6 M ^{ths} post implantation N=12	
Confirmed infection	35 (83%)	0		0	<0.001
18F-FDG	32/42	No or mild	uptake	0	
PET/CT	1 false pos				
uptake	3 false neg				
SUVmax	4.4 ± 1.6	1.2 ± 1.4		0	<0.001
ETOveg ^{tion}	12/42	0		0	
CIED: cardiovascular intra cardiac electronic device		sensitivitv	specificitv		
		88 %	86 %		

PET - NAC

27 pts suspected of CIED infection

CIED: cardiovascular intra cardiac electronic device

27 pts suspected of CIED infection

	Group A CIED infection N=11	Group B No CIED infection N=16
18F-FDG PET/CT uptake	7/11 4 false neg	3/16 2 false pos
ETO vegetation	?	

sensitivity	specificity	PPV	NPV
63%	86%	77%	76%

CIED: cardiovascular intra cardiac electronic device

Graziosi M et al. Eur J Nucl Med Mol Imaging 2014

Nuclear Imaging Labelled leukocytes

Radiolabelled leukocytes: methods

Added Value of ^{99m}Tc-HMPAO–Labeled Leukocyte SPECT/ CT in the Characterization and Management of Patients with Infectious Endocarditis

- 131 pts with suspected IE (prosthetic IE)
- Final Diagnosis of El 51/131 (39%) patients Sensitivity : 90% Specificity : 100%

Erba PA et al, J Nucl Med 2012

Results of ^{99m}Tc-HMPAO-WBC Scintigraphy in the 51 Patients with Final Diagnosis of IE, Stratified According to Duke Criteria

Positive results			2	
Duke criterion	Cardiac only	Cardiac and extracardiac	Extracardiac only	Negative results
Definite IE ($n = 24$)	9	11*	0	4
Possible IE ($n = 25$)	13	11 [†]	1*	0
Rejected IE $(n = 2)$	1	1*	0	0

*Septic embolism consequent to IE.

[†]Eight patients with septic embolism, 1 with vasculitis, and 2 false-positive scans due to vertebral crush and metastasis from prostate cancer.

Labelled leukocytes and infective endocarditis

- 42 pts with suspected prosthetic IE (valve prosthesis / aortic tube / patch)
- Non-conclusive TTE/TEE in all cases
- 14 (33%) positive uptake (intense in 9, mild in 5)

No recurrent endocarditis after a median follow-up of 14 months (n = 4)

(Hyafil et al. Eur Heart J Cardiovasc Imaging 2013;34:1597-606)

Nuclear Imaging [18F]FDG PET/CT versus Labelled leukocytes

FDG PET vs. WBC SPECT

- Single-centre prospective study (Bichat Hospital, Paris)
- **39 patients** (males: 22), aged 62±17 years
- Suspected of **prosthetic valve endocarditis** (PVE)
- Time between FDG PET and WBC SPECT: 7±7 days
- Diagnosis after \geq 3-months follow-up (Duke-Li):
 - Definite, n=14 (36%)
 - Possible, n=3
 - Rejected, n=21

Rouzet F et al, J Nucl Med 2014

FDG PET vs. WBC SPECT

	Final diagnosis after ≥3 mo follow-up			
	Definite (n=14)	Possible (n=4)	Rejected (n=21)	
FDG PET +	13 (93)	1	6	
FDG PET -	1	2	15 (71)	
WBC SPECT +	9 (64)	0	0	
WBC SPECT -	5	3	22 (100)	

- FDG PET false positive <2 months after valve implantation (n=6)
- WBC SPECT false negative (n=5): Coxiella (n=2), Candida (n=1), no abscess (n=2)

FDG PET: Higher sensitivity WBC SPECT: Higher specificity

Perspectives: FDG PET

Remains to be determined

- Cost-effectiveness
- Diagnostic value, impact on patients' management and outcomes in multicentre trials

Perspectives: FDG PET

Remains to be determined

- Cost-effectiveness
- Diagnostic value, impact on patients' management and outcomes in multicentre trials
- NCT01916005 F. Thuny, Marseille, France

Diagnostic Value of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Prosthetic Valve Endocarditis.

• **TEPvENDO** - X. Duval, Bichat, Paris, France

Diagnostic and therapeutic impact of FDG PET at the acute phase of infective endocarditis (8 centres).

Perspectives: new imaging agents

Leukocytes labelled with positron emitters (PET)

- Requires a long half-life isotope (⁶⁴Cupper = 12.7 hours)
- Bhargava et al. NMB 2009

^{99m}Tc-Annexin A5

- Target: vegetations (phosphatidylserine expressed by activated platelets)
- No physiological uptake in heart and brain

AnnIE

Sponsor: Inserm Proof-of-concept study Patients suspected of IE Kick off: 2015

> Rouzet et al., Circulation 2008 Benali et al., Mol Imaging 2014

SPECT/CT à la ^{99m}Tc-Annexine (Etude AnnIE) Endocardite streptococcique sur bioprothèse aortique

Symptomatic neurological complications

- 9 to 40 % according to series
- associated with poor prognosis

Detection of asymptomatic cerebral lesions

- Help to establish IE diagnosis
- Better assessment of
 - Embolic risk
 - Surgery indications
 - IE prognosis (short and long term prognosis)
- Initiation of specific treatment of cerebral com^{tions}
- Improvement of IE prognosis ?

Which cerebral complications could be detected ?

Vascular

- Ischemic events
 - Stroke
 - Transient ischemic attack (TIA)
 - Silent embolism
- Hemorrhagic events
 - H. stroke
 - Microbleeds
 - Sub arachnoidal H
- Aneurysms

Infectious

- Meningitis
- Abscess

Which imaging to detect cerebral complications ?

Cerebral

- CT scan
- CT scan with angiography
- MRI
- MRI with angiography
- Conventional 4 vessel angiography

Findings of systematic cerebral imaging studies

Findings of systematic cerebral imaging studies

- CT scanner

Neurological complications incidence Systematic cerebral CT

Thuny F et al. Eur Heart J. 2007

Findings of systematic cerebral imaging studies

- CT scanner
- CT scanner with angiography

Systematic cerebral CT with angiography

81 consecutive definite IE patients;

Systematic Cerebral CT with angiography

Systematic cerebral CT with angiography

81 consecutive definite IE patients;

Systematic Cerebral CT with angiography

Findings of systematic cerebral imaging studies

- CT scanner
- CT scanner with angiography
- MRI with angiography

Annals of Internal Medicine

ARTICLE

Effects of Early Cerebral Magnetic Resonance Imaging on Clinical Decisions in Infective Endocarditis, the IMAGE study

Xavier Duval, Bernard lung, Isabelle Klein, Eric Brochet, Gabriel Thabut, Florence Arnoult, Laurent Lepage, Jean Pierre Laissy, Michel Wolff and Catherine Leport and the IMAGE study group.

Annals of Internal Medicine

ARTICLE

Effects of Early Cerebral Magnetic Resonance Imaging on Clinical Decisions in Infective Endocarditis, the IMAGE study

Xavier Duval, Bernard lung, Isabelle Klein, Eric Brochet, Gabriel Thabut, Florence Arnoult, Laurent Lepage, Jean Pierre Laissy, Michel Wolff and Catherine Leport and the IMAGE study group.

Annals of Internal Medicine

ARTICLE

Effects of Early Cerebral Magnetic Resonance Imaging on Clinical Decisions in Infective Endocarditis, the IMAGE study

Xavier Duval, Bernard lung, Isabelle Klein, Eric Brochet, Gabriel Thabut, Florence Arnoult, Laurent Lepage, Jean Pierre Laissy, Michel Wolff and Catherine Leport and the IMAGE study group.

Findings of systematic cerebral imaging studies

- CT scanner
- CT scanner with angiography
- MRI with angiography
- Conventional 4 vessel angiography

Conventional cerebral angiography

- No prospective studies with systematic angiography
- Retrospective study of 168 pts who underwent cerebral angiography:
 - 15/168 pts (8.9%) had mycotic aneurysms;
 - 93.3% (14/15) of those had CNS hemorrhage
 - 66.7% (10/15) had acute ischemic findings
- Retrospective study of 151 pts who underwent cerebral angiography before surgery:
 - 7/151 (4.6%) had mycotic aneurysm
 - absence of intracranial bleed on MRI: (NPV) of 0.98

Symptomatic and Asymptomatic Neurologic Events

Prospective Series with Systematic Imaging

	n	Imaging	Symptomatic Events (%)	Asymptomatic Embolism (%)
Thuny et al.	453	СТ	22	4
Meshaal et al	81	CT + angio	43	21
Snygg-Martin et al.	49	MRI	35	30
Cooper et al.	40	MRI	32	48
Duval et al.	130	MRI	12	47

Thuny et al. Eur Heart J 2007;28:1155-61 / Snygg-Martin et al. Clin Infect Dis 2008;47:23-30 Cooper et al. Circulation 2009;120:585-91 / Duval et al. Ann Intern Med 2010;152:497-504 Meshaal et al Plos one 2015

Diagnostic impact of detected lesions

ESC modified diagnostic criteria

Major criteria	
 I. Blood cultues positive for IE Typical microorganisms consistent with IE from 2 separate blood cultures: Viridans streptococci, Streptococcus gallolyticus (Streptococcus bovis), HACEK group, Staphylococcus aureus; or Community-acquired enterococci, in the absence of a primary focus; or Microorganisms consistent with IE from persistently positive blood cultures: ≥2 positive blood cultures of blood samples drawn >12 h apart; or All of 3 or a majority of ≥4 separate cultures of blood (with first and last samples drawn ≥1 h apart); or Single positive blood culture for Coxiella burnetii or phase I IgG antibody titre >1:800 	 2. Imaging positive for IE a. Echocardiogram positive for IE: Vegetation; Abscess, pseudoaneurysm, intracardiac fistula; Valvular perforation or aneurysm; New partial dehiscence of prosthetic valve. b. Abnormal activity around the site of prosthetic valve implantation detected by ¹⁸F-FDG PET/CT (only if the prosthesis was implanted for >3 months) or radiolabelled leukocytes SPECT/CT. c. Definite paravalvular lesions by cardiac CT.

Minor criteria

- 1. Predisposition such as predisposing heart condition, or injection drug use.
- 2. Fever defined as temperature >38°C.
- Vascular phenomena <u>(including those detected by imaging only)</u> major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway's lesions.

spots, and rheumatoid factor.

5. Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE.

Diagnotic impact of detected lesions

- May account for a minor criteria arterial emboli, mycotic aneurysm, intracranial haemorrhage
- Only assessed for MRI in the IMAGE study

Annals of Internal Medicine

ARTICLE

Effects of Early Cerebral Magnetic Resonance Imaging on Clinical Decisions in Infective Endocarditis, the IMAGE study

Impact of cerebral lesion detection on IE diagnosis • 32% Modified-Duke classification upgraded in IE diagnosis rejected (n = 11) Discharge diagnosis: Fever and mitral ruptured chordae tendineae: 4 Figure 1. Study flow diagram. Fever related to extracardiac infectious diseases in patients with known Patients with IE admitted to previous valvular Bichat-Claude Bernard Hospital insufficiency: 3 (n = 274)Stroke with fever: 1 Traumatic aortic Excluded (n = 124) regurgitation: 1 Urgent surgery: 47 Pulmonary embolism after Pacemaker: 23 Previous MRI: 18 dental extraction: 1 Claustrophobia: 13 Isolated S. sanguinis blood Informed consent culture: 1 unobtainable: 12 Declined participation: 10 Aged <18 y: 1 Duke classification established (n = 130) Included (n = 150) No MRI performed (n = 9)Claustrophobia: 2 Before MRI After MRI* At discharge, regardless of Urgent surgery: 2 Definite IE: 77 Definite IE: 91 (101) **MRI** results Other: 5 Possible IE: 50 Possible IE: 39 (29) Definite IE: 105 Possible IE: 25 Excluded IE: 3 Excluded IE: U Received MRI (n = 141) Excluded IE: 0

Prognostic impact of asymptomatic cerebral lesions

Risk factors for Symptomatic cerebral emboli

- Vegetation length > 10 mm
- Staphylococcus aureus IE
- Mitral valve
- History of emboli ...,

Risk factors for Symptomatic cerebral emboli

- Vegetation length > 10 mm
- Staphylococcus aureus IE; mitral valve
- History of emboli ...,

Risk factors for Asymptomatic cerebral emboli detected by MRI

Lesion Characteristic	All Pati (n = 13	ients 30), <i>n</i> (%	5)
Ischemic lesion		68 (52)	
Large systematized ischemic lesion*		33 (25)	
Small ischemic lesion		60 (46)	

Determinants of asymptomatic ischemic lesions

Ň		OR	IC 95%	р
	- Vegetation length	1.1 per mm	1.03-1.16	p=0.003
	- Staph aureus IE	2.65	1.01-6.96	p=0.05

Duval X, Annals Intern Med 2010 152(8):497-504 / lung B, Stroke 2013; 44(11):3056-62

Risk factors for Symptomatic cerebral emboli

- Vegetation length > 10 mm
- Staphylococcus aureus IE, mitral valve
- History of emboli ...,

Risk factors for Asymptomatic cerebral emboli detected by MRI

lesions according to vegetation length.

Duval X, Annals Intern Med 2010 152(8):497-504 / lung B, Stroke 2013; 44(11):3056-62

Risk factors for Symptomatic cerebral emboli

– Vegetation length > 10 mm

Same risk factors for symptomatic and asymptomatic emboli Ischemic spot may be a risk factor for symptomatic emboli ? Currently no arguments presented in the literature

Duval X, Annals Intern Med 2010 152(8):497-504 lung B, Stroke 2013; 44(11):3056-62 Figure 3. Distribution of territorial and small cerebral ischemic lesions according to vegetation length.

Impact of ischemic spot on short-term prognosis ?

Difficult to assess as their discovery may have induced a modification of IE treatment

Cerebral ischemic spot and IE Long-term prognosis ?

Cerebral ischemic spot and IE Long-term prognosis

Outside the IE context

 Cerebral ischemic spots associated with lower cognition and higher odds of dementia

Microinfarct Pathology, Dementia, and Cognitive Systems

Zoe Arvanitakis, MD, MS; Sue E. Leurgans, PhD; Lisa L. Barnes, PhD;

David A. Bennett, MD; Julie A. Schneider, MD, MS

Methods—Four hundred twenty-five subjects enrolled in the Religious Orders Study underwent annual clinical evaluations, including 19 neuropsychological tests and assessment for dementia, and brain autopsy (39% men; mean age at death, 87; Mini-Mental State Examination score, 21). Neuropathologic examination documented the presence, number, and location of chronic microinfarcts on 6-µm hematoxylin–eosin-stained sections from cortical and subcortical regions. Multiple regression analyses adjusted for age at death, sex, education, macroscopic infarcts, Alzheimer disease pathology, and Lewy bodies.

Conclusions—Microinfarcts are common, and persons with multiple cortical microinfarcts have higher odds of dementia Microinfarcts are also associated with lower cognition, specifically perceptual speed and semantic and episodic memory. (Stroke. 2011;42:722-727.)

Cerebral ischemic spot and IE Long-term prognosis

Outside the IE context

 Cerebral ischemic spots associated with lower cognition and higher odds of dementia

Microinfarct Pathology, Dementia, and Cognitive Systems

Zoe Arvanitakis, MD, MS; Sue E. Leurgans, PhD; Lisa L. Barnes, PhD;

David A. Bennett, MD; Julie A. Schneider, MD, MS

Methods—Four hundred twenty-five subjects enrolled in the Religious Orders Study underwent annual clinical evaluations, including 19 neuropsychological tests and assessment for dementia, and brain autopsy (39% men; mean age at death, 87; Mini-Mental State Examination score, 21). Neuropathologic examination documented the presence, number, and location of chronic microinfarcts on 6-µm hematoxylin–eosin-stained sections from cortical and subcortical regions. Multiple regression analyses adjusted for age at death, sex, education, macroscopic infarcts, Alzheimer disease pathology, and Lewy bodies.

Conclusions—Microinfarcts are common, and persons with multiple cortical microinfarcts have higher odds of dementia Microinfarcts are also associated with lower cognition, specifically perceptual speed and semantic and episodic memory. (Stroke. 2011;42:722-727.)

Impact unknown in IE patients

Microbleeds and IE ?

Cerebral microbleeds Case-control study

OR increase with the increase in the number of microbleeds suggesting a causal relationship

Klein I Stroke 2009

Cerebral microbleed risk factors

Risk factors for microbleeds

- not reported in the literature
- in the IMAGE study

Lesion Characteristic	All Patients (n = 130), n (%)
Hemorrhagic lesion	79 (61)
Intraparenchymal hemorrhagic lesion	10 (8)
Microhemorrhage	74 (58)
Subarachnoidal hemorrhage	11 (8)

Determinants of microhemorrages

	OR	IC 95%	р
Prosthetic valve	8.01 per mm	2.58-24.90	P<0.001
Anticoagulation therapy			p=0.67

Microbleeds: 86.8% of pts with prosthetic IE vs 47.6% with native valve IE (*P*<0.001)

Microbleed and ischemic lesions: distinct mecanisms

Duval X, Annals Intern Med 2010 152(8):497-504 / Jung B, Stroke 2013; 44(11):3056-62

Cerebral microbleeds and IE short-term prognosis

- In individuals without endocarditis
 - Associated with cerebral hemorrhagic risk

In IE patients

	Determinants of im	pending ICH	
Japanese study		OR	IC 95%
 – 26 patients with cerebral MRI 		40.0	
– Cerebral microbleeds: 54%	Preceding ICH	40.0	2.5–2,870
– Intracerebral hemorrhage occurred in 8	CMB ≥ 1	34.0	1.3-17000
patients within 3 months (31%)	CMB ≥ 2	42.1	
 Number of microbleeds associated with ICH 	CMB ≥ 3	70.1	

Cerebral microbleeds and IE Longterm prognosis

Outside the IE context, associated with

- Dementia
- Cognitive decline
- Chronic cerebrovascular diseases
- Subarachnoidal hemorrhages

Long-term impact Unknown in IE patients

Lei C; J Neurol Neurosurg Psychiatry. 2013

Cerebral asymptomatic lesions and long-term prognosis

Clinical and MRI follow-up of the IMAGE cohort is ongoing

- Evolution of cerebral lesions diagnosed during the acute phase
- Consequences on neurologic and cognitive status

Therapeutic impact of asymptomatic cerebral lesions

Annals of Internal Medicine

Effects of Early Cerebral Magnetic Resonance Imaging on Clinical Decisions in Infective Endocarditis, the IMAGE study

In 29/130 pts (22%): experts modified IE treatment plans based on MRI results

n= 6 – Modification of anticoagulation level Modification of antibiotics n= 5 n=18 Modification of surgery plan Surgery date postponed 6 Surgery date advanced 6 Type of valvular prosthesis Reasons for surgery 2 Cancellation of surgery 2 Indication for surgery Embolisation of aneurysm n = 4

However, it is not clear whether silent neurological complications are associated with a poor prognosis

81 consecutive definite IE patients;

Systematic Cerebral CT with angiography

Modification of treatment in 21 pts with ICMA (25.6%) (more than one change in 11 pts)

- **15 pts** : invasive treatment of ICMA (13 endovasc) No procedure-related complication
- Anticoagulation stopped in 3 pts with prosthetic v
- Modification of the cardiac surgery type in 17 pts
- Regression of ICMA in 3/11 not treated pts

2015 ESC Guidelines for the management of infective endocarditis

The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC)

Imaging techniques in IE

Diagnosis

Diagnosis

Imaging techniques

Nuclear imaging

ESC modified diagnostic criteria

Major criteria		
 I. Blood cultues a. Typical microorg cultures: Viridans strep bovis), HACEK Community-ac focus; or b. Microorganisms cultures: ≥2 positive blo All of 3 or a m and last sample 	positive for IE ganisms consistent with IE from 2 separate blood tococci, Streptococcus gallolyticus (Streptococcus group, Staphylococcus aureus; or equired enterococci, in the absence of a primary consistent with IE from persistently positive blood od cultures of blood samples drawn >12 h apart; or najority of ≥4 separate cultures of blood (with first es drawn ≥1 h apart); or	 2. Imaging positive for IE a. Echocardiogram positive for IE: Vegetation; Abscess, pseudoaneurysm, intracardiac fistula; Valvular perforation or aneurysm; New partial dehiscence of prosthetic valve. b. Abnormal activity around the site of prosthetic valve implantation detected by ¹⁸F-FDG PET/CT (only if the prosthesis was implanted for >3 months) or radiolabelled leukocytes SPECT/CT. c. Definite paravalvular lesions by cardiac CT.
c. Single positive b antibody titre >1	lood culture for Coxiella burnetii or phase I IgG :800	

Minor criteria

- 1. Predisposition such as predisposing heart condition, or injection drug use.
- 2. Fever defined as temperature >38°C.
- Vascular phenomena <u>(including those detected by imaging only)</u> major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway's lesions.

spots, and rheumatoid factor.

5. Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE.

ESC modified diagnostic criteria

Major criteria		
 I. Blood cultures posit a. Typical microorganism cultures: Viridans streptocod bovis), HACEK grou Community-acquire focus; or b. Microorganisms consi cultures: ≥2 positive blood cu All of 3 or a majorit 	tive for IE ms consistent with IE from 2 separate blood <i>acci, Streptococcus gallolyticus (Streptococcus aup, Staphylococcus aureus;</i> or ed enterococci, in the absence of a primary sistent with IE from persistently positive blood cultures of blood samples drawn >12 h apart; or rity of \geq 4 separate cultures of blood (with first	 2. Imaging positive for IE a. Echocardiogram positive for IE: Vegetation; Abscess, pseudoaneurysm, intracardiac fistula; Valvular perforation or aneurysm; New partial dehiscence of prosthetic valve. b. Abnormal activity around the site of prosthetic valve implantation detected by ¹⁸F-FDG PET/CT (only if the prosthesis was implanted for >3 months) or radiolabelled leukocytes SPECT/CT. c. Definite paravalvular lesions by cardiac CT.
c. Single positive blood antibody titre >1:800	l culture for Coxiella burnetii or phase I IgG	

More study is needed to define the utility of ¹⁸F-fluorodeoxyglucose positron emission tomography/CT in the diagnosis and management of IE.

Nuclear imaging in suspected PVGs infection

Diagnostic value of FDG PET/CT in PVGs infection

Mutiple small sample studies

TABLE 1. Summary of merature data regarding the use of 1-1DG FET maging requested in suspected vascular grant meetion.											
Study	Year	Study Design	Number of patient's	Imaging modality	Interpretation criteria	TP ¹	TN ²	FP ³	FN ⁴	Sens [*] %	Spec** %
Fukuchi et al. [10]	2005	prospective	33	PET	Semiquantitative ^a	10	14	8	1	91	64
Keidar et al. [13]	2007	prospective	39	PET/CT	Visual	14	22	2	1	93	91
Lauwers et al. [14]	2008	case series	4	PET	Visual	3	0	1	0		—
Spacek et al. [15]	2009	prospective	76	PET/CT	Semiquantitative ^b	54	31	10	1	78.2	92.7
Bruggink et al. [16]	2010	retrospective	25	PET and PET/CT	Semiquantitative ^c	15	10	0	0	93 [†]	70^{\dagger}
Tokuda et al. [17]	2013	retrospective	9	PET/CT	Semiquantitative ^d	4	5	0	0	-	-

TABLE 1. Summary of literature data regarding the use of ¹⁸E EDC DET imaging requested in suspected vascular graft infection

➢ Good sensitivity, variable specificity

FDG Uptake in Non-infected Prosthetic Vascular Grafts

Incidence, Patterns, and Changes over Time

16 years after implant of aortobifemoral Dacron graft

3 years after insertion of femorofemoral Gore-Tex graft

Keidar Z et al, J Nucl Med 2014

Diagnostic value of FDG PET/CT in PVGs infection

Differential FDG-PET Uptake Patterns in Uninfected and Infected PVGs

□ Uninfected Infected grafts grafts

Berger P et al, Eur J Vasc Endovasc Surg 2015

Diagnostic value of FDG PET/CT in PVGs infection

FDG uptake patterns in uninfected PVGs largely overlap with those of infected PVGs

Berger P et al, Eur J Vasc Endovasc Surg 2015

Diagnostic value of WBC SPECT/CT in PVGs infection

Selected studies using ^{99m}Tc-WBCs SPECT

- Liberatore et al. J Nucl Med 1998: 129 pts
 Sensitivity 100%, specificity 92% et accuracy 97%
- Fiorani et al J Vasc Surg 1993: 37 pts
 - Sensitivity 100%, specificity 94% et PPV 90% ar
- Insall et al. Br J Surg 1990. 17 pts, 8 infected pts.
 - 8 true positive, 1 false positive, no false negativ
- Prats et al. J Nucl Med 1994: 36 pts, 20 infected pts
 - Sensitivity 100%, specificity 100%

Imaging modalities in PVG infections

Imaging Modality	Advantages	Disadvantages		
Ultrasound	No radiation exposure. No contrast-nephrotoxicity Easy and quick to perform	Interference with several artifacts Less differentiating ability compared to other modalities		
		and interobserver variability		
ст	High specificity, relative high sensitivity, fast acquisition procedure Availability in most centres, less invasive	Decreased sensitivity in low-grade infections Interference with normal postoperative findings in first 6 weeks after surgery		
	Possibility for needle aspiration for microbiological analysis			
MRI	Inree-dimensional reconstruction	Metal artifacts		
	Could differentiate in small perigraft fluid collections or surrounding inflammatory changes	Diagnostic value for vascular graft infection less investigated compared to other modalities		
	Less invasive and allows tissue characterization			
FDG PET	Comparable sensitivity and specificity rates to CT At least comparable sensitivity and specificity rates to CT Can be fused with CT imaging (or PET-CT)	Time-invasive investigation Less exact anatomical localization		
	Higher diagnostic rates compared to other modalities in case of low-grade vascular graft infections			
SPECT	Specificity	Lower resolution and sensitivity compared to FDG		
		Modified from Brugaink		

Table 1 Advantages vs. Disadvantages for Different Imaging Modalities in Diagnosing Vascular Prosthetic Graft Infection

V--- 0----- 0044

al. Semin

Conclusions (I)

- The diagnosis of IE and VG relies on the conjunction of different criteria which all have limitations.
- Imaging plays a key role in the diagnosis of endocardial involvement and vascular phenomena.
- Indications and pitfalls of echocardiography are well addressed in guidelines.
- Radionuclide imaging (PET/CT, labeled leucocytes) has an incremental diagnostic value in difficult cases (PVE > NV, Vascular graft Infection).
- Impacts on diagnosis and on therapeutic choice may be different according to IE patients (NV/PV)

Conclusions (II)

- Systematic imaging reveals a high incidence of asymptomatic embolic events during acute endocarditis.
- The detection of silent cerebral embolism using cerebral MRI has an impact on diagnosis and therapeutic management.
- Need for further analyses of:
 - Usefulness of systematic multimodality imaging
 - Diagnosis, therapeutic choice, follow-up, prognosis
 - Prognostic assessment of asymptomatic embolism
 - Indications for radionuclide imaging
- Imaging indications must be discussed on an individual basis by a multidisciplinary team

Acknowlegments

- Dr F. Rouzet, Nuclear imaging Bichat, Paris
- Pr B. lung, Cardiology, Bichat, Paris
- Dr I. Klein, Radiology, Bichat, Paris
Chirurgie valvulaire _ Indications 2015

 Table 22
 Indications and timing of surgery in left-sided valve infective endocarditis (native valve endocarditis and prosthetic valve endocarditis)

Indications for surgery	Timing ^a	Class ^b	Level ^c	Ref. ^d
1. Heart failure				
Aortic or mitral NVE or PVE with severe acute regurgitation, obstruction or fistula causing refractory pulmonary oedema or cardiogenic shock	Emergency	L	в	111,115, 213,216
Aortic or mitral NVE or PVE with severe regurgitation or obstruction causing symptoms of HF or echocardiographic signs of poor haemodynamic tolerance	Urgent	Т	В	37,115, 209,216, 220,221
2. Uncontrolled infection	2. Uncontrolled infection			
Locally uncontrolled infection (abscess, false aneurysm, fistula, enlarging vegetation)	Urgent	I.	в	37,209, 216
Infection caused by fungi or multiresistant organisms	Urgent/ elective	I	с	
Persisting positive blood cultures despite appropriate antibiotic therapy and adequate control of septic metastatic foci	Urgent	lla	в	123
PVE caused by staphylococci or non-HACEK gram-negative bacteria	Urgent/ elective	lla	C	
3. Prevention of embolism				
Aortic or mitral NVE or PVE with persistent vegetations > 10 mm after one or more embolic episode despite appropriate antibiotic therapy	Urgent	I	в	9,58,72, 113,222
Aortic or mitral NVE with vegetations > 10 mm, associated with severe valve stenosis or regurgitation, and low operative risk	Urgent	lla	в	9
Aortic or mitral NVE or PVE with isolated very large vegetations (>30 mm)	Urgent	lla	В	113
Aortic or mitral NVE or PVE with isolated large vegetations (>15 mm) and no other indication for surgery ^e	Urgent	IIb	с	

Chirurgie valvulaire _ Indications 2015

 Table 22
 Indications and timing of surgery in left-sided valve infective endocarditis (native valve endocarditis and prosthetic valve endocarditis)

Indications for surger	/	Timing ^a	Class ^b	Level ^c	Ref. ^d
1. Heart failure					
Aortic or mitral NVE or P pulmonary oedema or ca	VE with severe acute regurgitation, obstruction or fistula causing refractory rdiogenic shock	Emergency	1	в	111,115, 213,216
Aortic or mitral NVE or echocardiographic signs o	PVE with severe regurgitation or obstruction causing symptoms of HF or of poor haemodynamic tolerance	Urgent	1	в	37,115, 209,216, 220,221

Valvular surgery_ 2015 ESC Indications

 Table 22
 Indications and timing of surgery in left-sided valve infective endocarditis (native valve endocarditis and prosthetic valve endocarditis)

Indications for surgery	Timing ^a	Class ^b	Level ^c	Ref. ^d
1. Heart failure				
Aortic or mitral NVE or PVE with severe acute regurgitation, obstruction or fistula causing refractory pulmonary oedema or cardiogenic shock	Emergency	1	В	111,115, 213,216
Aortic or mitral NVE or PVE with severe regurgitation or obstruction causing symptoms of HF or echocardiographic signs of poor haemodynamic tolerance	Urgent		в	37,115, 209,216, 220,221

2. Uncontrolled infection				
Locally uncontrolled infection (abscess, false aneurysm, fistula, enlarging vegetation)	Urgent	н	В	37,209 216
Infection caused by fungi or multiresistant organisms	Urgent/ elective	1	с	
Persisting positive blood cultures despite appropriate antibiotic therapy and adequate control of septic metastatic foci	Urgent	lla	В	123
PVE caused by staphylococci or non-HACEK gram-negative bacteria	Urgent/ elective	lla	С	

Indications for surgery for Heart failure or Uncontrolled infection **NOT MODIFIED**