DES-C "Pathologie Infectieuse et Tropicale" Résistance aux anti-infectieux

Traitement des infections à Entérobactéries Productrices de Carbapénémase

Aurélien Dinh Service de Maladies infectieuses HU Raymond Poincaré, Garches

* données au 31 décembre 2016

Mois

Episodes sans lien rapporté avec l'étranger

Episodes avec lien avec un pays étranger

RICAI 2017

Ambler Classification of β-lactamases

Ambler Class	Α	B	С	D
Active Site	Serine	Metallo (zinc-binding thiol)	Serine	Serine
Enzyme Type	TEM, SHV, CTX-M, KPC	NMD-1, IMP, VIM	AmpC, CMY	OXA
Host Organisms	Enterobacteriaceae and Non-fermenters	Enterobacteriaceae and Non-fermenters	Enterobacter spp. Citrobater spp.	Enterobacteriaceae and Non-fermenters
Substrates	Ampicillin; cephalotin; penicillins; 3 rd gen cephalosporins; Extended- spectrum cephalosporins; carbapenems	All β-lactams	Cephamycins; 3 rd -generation cephalosporins	Cloxacillin; Extended-spectrum cephalosporins; carbapenems

KPC-2 is the most prevalent class A carbapenemase in the world and can hydrolyze the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam.

■ OXA-48-like ■ NDM ■ KPC ■ VIM ■ IMI ■ IMP ■ GES

RICAI 2017

Évolution, par région, du nombre d'épisodes impliquant des Entérobactéries Productrices de Carbapénémases (EPC) en France signalés entre 2004 et 2015 (N=2385 épisodes)

Région

Nombre total d'épisodes

Origine géographique des OXA-48 en France (N=778 cas)

Origine géographique des NDM en France (N=191 cas)

Origine géographique des KPC en France (N=87 cas)

Options thérapeutiques

- Peu d'options thérapeutiques
- Molécules de "deuxième ligne" :
 - polymyxines, tigécycline, fosfomycine, et (parfois) aminoglycosides
- Certaines souches sensibles à :
 - minocycline, doxycycline, chloramphenicol, trimethoprime-sulfamethoxazole, et témocilline
- Nouveaux inhibiteurs β-lactamase :
 - Avibactam : inhibe KPC + OXA-48
 - Vaborbactam : inhibe KPC
 - Pas d'efficacité sur les MBLs

Une décision complexe

Traitement « individualisé » Fonction de la sévérité +++

Forte dose

Limites des études

- KPC sur-représentées
- Bactériémies ++++
- Gravité variable
- Immunodépression, comorbidités variables ++++
- ATB : molécules et posologies variables
- Tests microbiologiques hétérogènes
- Pas d'essai randomisé

Faut-il une association ?

• En théorie (*in vitro*) : Fonction de la molecule

- Eviter monothérapie >> efficacité moindre (synergie) et émergence de R rapide +++ avec :
 - polymyxines,
 - tigécycline,
 - fosfomycine

Systematic Review and Meta-Analysis of *In Vitro* Synergy of Polymyxins and Carbapenems

Oren Zusman,^a Tomer Avni,^a Leonard Leibovici,^a Amos Adler,^b Lena Friberg,^c Theodouli Stergiopoulou,^d Yehuda Carmeli,^b Mical Paul^e

- Revue systématique + méta-analyse
- Etude synergie (*in vitro*) de polymyxine + carbapénème pour BGN
- Définition de synergie : reduction > 2 log UFC
- 39 études
- Synergie :
 - Acinetobacter baumannii : 77% (95% Cl, 64 to 87%)
 - *Klebsiella pneumoniae* : 44% (95% Cl, 30 to 59%)
 - Pseudomonas aeruginosa : 50% (95% Cl, 30 to 69%)
- Taux de synergie : Courbes de bactéricidie >> échiquier et Etests
- Association >> moins de R à la colistine (R carbapénème ?)

	Synergy			
Bacterium and carbapenem	Rate	95% CI		
A. baumannii				
Imipenem	56	35–74		
Meropenem	86	75–93		
Doripenem	88	70–96		
K. pneumoniae				
Imipenem	41	23–62		
Meropenem	34	13–64		
Doripenem	63	39-82		
Ertapenem	11	3–29		
P. aeruginosa				
Imipenem	60	18–91		
Meropenem	24	15–38		
Doripenem	62	38-81		

Systematic Review and Meta-Analysis of In Vitro Synergy of Polymyxins and Carbapenems

Oren Zusman,^a Tomer Avni,^a Leonard Leibovici,^a Amos Adler,^b Lena Friberg,^c Theodouli Stergiopoulou,^d Yehuda Carmeli,^b Mical Paule

Synergie contre 50% des isolats résistants aux carbapénèmes (95% CI = 30 to 69%)

Group by	Study name	Statistics for each study				Event rate ar	nd 95 % Cl	
Bacteria		Event rate	Lower limit	Upper limit	p-Value			
A. baumannii	Burgess ICAAC2008	0.917	0.378	0.995	0.105		-+-	
	Liang 2011	0.900	0.326	0.994	0.140			
	Pankey 2009	0.944	0.495	0.997	0.052		- F	
	Pankuch 2008 (3)	0.900	0.326	0.994	0.140			
	Pankuch 2008 (4)	0.833	0.194	0.990	0.299			──■─┤
	Pankuch 2008 (5)	0.972	0.678	0.998	0.013			
	Pankuch 2008 (6)	0.929	0.755	0.982	0.000			
	Pankuch 2010 (1)	0.917	0.378	0.995	0.105		-	
	Pankuch 2010 (3)	0.929	0.423	0.996	0.081		-	
	Pankuch 2010 (4)	0.964	0.616	0.998	0.022			
	Peck 2012 (1) + Rodriguez 2010 (2)	0.667	0.154	0.957	0.571			
	Peck 2012 (2)	0.900	0.526	0.994	0.140			
	Pongpech 2010 (2) Revolued ECCMID 2011 (1) + Replaceb 2010 (2)	0.000	0.530	0.934	1.000			
	Poudyal ECCMID 2011 (1) + Pankuch 2010 (2)	0.000	0.059	0.941	0.000		-	
	Podvjal ECCMID 2011 (2) Rodviguoz 2010 (1)	0.033	0.194	0.550	0.299			_
	Rodriguez 2010 (1) Rodriguez 2010 (2)	0.273	0.090	0.000	0.147			
	Shang 2011	0.107	0.010	0.000	0.233		-	
	Shields 2010 (3)	0.770	0.333	0.914	0.027			-
	Sonirala 2010 (3)	0.517	0.070	0.555	0.103	I _	_	
	Scientes-Olern ICAAC2010	0.230	0.005	0.023	0.170		-	
	Steed ECCMID2010	0.075	0.200	0.000	0.100			
	Tripodi 2007	0.070	0.400	0.000	0.000			
	Yoon 2003	0.500	0.000	0.470	1 000	. г.	<u>+</u>	
A haumannii	1001 2000	0.000	0.638	0.868	0.000		— т	
K pneumoniae	Bratu 2005	0.625	0.377	0.821	0.323		_	
ra producendo	Deris2012 (1) +Deris 2012 (2)	0.833	0.194	0.990	0.299			
	Jernigan 2012 (1) +Deris 2012 (3)	0.333	0.043	0.846	0.571			
	Jernigan 2012 (2)	0.600	0.297	0.842	0.530			
	Pankey 2011 (1)	0.636	0.339	0.857	0.372			
	Pankey 2011 (3)	0.500	0.059	0.941	1.000	<u> </u>	ė	
	Souli 2009 (1)	0.154	0.039	0.451	0.027		— —T	
	Souli 2009 (2)	0.500	0.260	0.740	1.000		_	— I
	Souli 2009 (3)	0.083	0.005	0.622	0.105	⊢⊞		-
	Souli 2009 (4)	0.500	0.225	0.775	1.000			
	Souli ECCMID2010 (1)	0.111	0.015	0.500	0.050			
	Souli ECCMID2010 (2)	0.200	0.027	0.691	0.215			_
	Souli ECCMID2010 (3)	0.100	0.014	0.467	0.037			
	Souli ECCMID2010 (4) + Morosini ECCMID 2011	0.833	0.194	0.990	0.299			
	Lee 2013 (1)	0.900	0.326	0.994	0.140			
K. pneumoniae		0.441	0.304	0.588	0.434			-
P. aeruginosa	Bergen 2011 (1)	0.125	0.007	0.734	0.198	⊢∎		_
	Bergen 2011 (2)	0.833	0.194	0.990	0.299			
	Bergen 2011 (3) + Cirioni 2007 (1)	0.833	0.194	0.990	0.299		_	
	Chan 1987 (2)	0.227	0.098	0.444	0.016			
	Landman 2005	0.955	0.552	0.997	0.035		_	
	Pankuch 2008 (1) + Mohamed ICAAC2011 (1)	0.143	0.020	0.581	0.097			·
	Pankuch 2008 (2) + Mohamed ICAAC2011 (2) + Rynn 1999	0.255	0.151	0.398	0.001			_
	Pankuch 2010 (6)	0.800	0.309	0.973	0.215			
	Pankuch 2010 (7) +Bergen 2011 (5)	0.700	0.473	0.859	0.082		_ <u>+</u> +	
	Teo ICAAC2011	0.375	0.179	0.623	0.323			
D	He 2012	0.833	0.194	0.990	0.299			
P. aeruginosa		0.497	0.304	0.692	0.980			
Overall		0.580	0.484	0.670	0.103	1	I State	
						0.00	0.50	1.0

1.00

Association pour bactériémies ?

.....

Design, no. of sites	Included infections	Carbapenemase(s)	Mortality definition	No. of deaths/no. of patients treated with MT (%)	No. of deaths/no. of patients treated with CT (%)	CT protective or not; adjusted OR (95% CI) for mortality with CT ^b
Retrospective, 1 site (Turkey)	BSI due to CRE	Mostly K. pneumoniae OXA-48	28-day	2/5 (40)	16/31 (51.5)	MV analysis not performed
Prospective, 9 sites (Italy)	BSI due to ERT ^r K. pneumoniae (BSI subanalysis)	Mostly KPC	In-hospital	4/9 (44.4)	11/25 (44)	CT not protective (OR not provided)
Retrospective, 2 sites (Greece)	BSI due to CR K. pneumoniae	Mostly KPC, some VIM	28-day	32/72 (44.4)	28/103 (27.2)	CT protective; 0.48 (0.28–0.81)
Retrospective, 3 sites (Brazil)	Infections due to KPC-producing <i>K. pneumoniae</i> (BSI subanalysis)	КРС	30-day	15/34 (44.1)	24/44 (54.4)	CT not protective (OR not provided)
Retrospective, 2 sites (USA)	BSI due to CR K. pneumoniae	Most (probably) KPC	30-day	18/68 (26.4)	28/73 (38.3)	CT not protective; with BL, 1.8 (0.6–5.6); without BL, 1.1 (0.3–3.6)
Retrospective, 16 sites (worldwide)	BSI due to CPE	74% KPC	30-day	85/208 (40.9)	47/135 (34.8)	CT protective only in high-risk patients; 0.54 (0.32–0.89)
Prospective, 1 site (Spain)	BSI due to KPC-producing <i>K. pneumoniae</i> , COL ^r	KPC	30-day	14/32 (43.8)	18/72 (25)	CT protective in septic shock
Retrospective, 1 site (India)	Children, BSI due to CRE; includes inactive drugs	66% K. pneumoniae, 72% NDM	30-day	Not specified	Not specified	Crude OR = 0.23 (0.05–1.0); MV analysis not performed
Retrospective, 1 site (Spain)	BSI due to OXA-48 producers	OXA-48	30-day	2/7 (28.5)	13/27 (48.1)	MV analysis not performed
Retrospective, 1 site (Greece) ^c	BSI due to CS and CR K. pneumoniae in ICU	Mostly KPC	30-day	18/57 (31.5)	7/38 (18.4)	CT protective; 0.23 (0.07–0.75); also with shock
Retrospective, 2 sites (USA)	BSI due to KPC-producing K. pneumoniae; includes inactive drugs	КРС	28-day	11/19 (57.8)	2/15 (13.3)	CT protective; 0.07 (0.009–0.71)
Retrospective, 8 sites (USA)	BSI due to CRE	Mostly KPC	30-day	21/55 (38.1)	22/43 (51.1)	CT not protective (OR not provided)
Retrospective, 4 sites (Greece)	BSI due to CR <i>K. pneumoniae</i> , neutropenic patients	Mostly KPC	14-day	5/10 (50)	11/30 (36.6)	CT protective; 0.25 (0.07–0.81)
Prospective, 13 sites (Italy)	BSI due to CR <i>K. pneumoniae</i> , hematological patients	Not identified	21-day	69/77 (89.6)	40/72 (55.5)	CT protective; 0.52 (0.35–0.77)
Retrospective, 3 sites (Italy)	BSI due to KPC-producing K. pneumoniae	КРС	30-day	25/46 (54.3)	27/71 (34.1)	CT with COL plus TIG-MER protective; 0.11 (0.02–0.60)
Retrospective, 5 sites $(Italy)^d$	Infections due to KPC-producing <i>K. pneumoniae</i> (BSI subanalysis)	КРС	30-day	80/156 (51.3)	93/291 (32)	MV analysis not performed for BSI
Retrospective, 11 sites (South America)	BSI due to CRE	Mostly KPC	28-day	5/8 (62.5)	17/29 (58.6)	MV analysis not performed
Retrospective, 1 site (Greece)	BSI due to KPC-producing K. pneumoniae	КРС	Infection related	7/15 (46)	0/20 (0)	CT not included in MV

Association pour autres types d'infection ?

Design, no. of sites	Included infections	Carbapenemase(s)	Mortality definition	No. of deaths/no. of patients treated with MT (%)	No. of deaths/no. of patients treated with CT (%)	CT protective or not; adjusted OR (95% CI) for mortality with CT ^b
Prospective, 9 sites (Italy)	Infections due to ERT ^r K. pneumoniae	Mostly KPC	In-hospital	8/37 (21.6)	17/54 (31.4)	CT not protective (OR
Retrospective, 3 sites (Brazil)	Infections due to KPC-producing <i>K. pneumoniae</i>	КРС	30-day	21/57 (36.8)	32/61 (52.4)	CT not protective (OR not provided)
Retrospective, 5 sites (Italy) ^c	Infections due to KPC-producing K. pneumoniae	КРС	30-day	118/307 (38.4)	107/354 (30.2)	CT protective; 0.52 (0.35–0.77)
Retrospective, 17 sites (Taiwan)	ICU infections due to CR K. pneumoniae/E. coli	Mostly AmpC/ESBL plus porin loss	30-day	7/23 (30.4)	5/10 (50)	CT not protective (OR not provided)
Prospective, 1 site (Brazil)	Infections due to CRE	Mostly KPC	Infection related	6/29 (20.6); for UTI, 6/28 (21.4)	38/78 (38.7); for UTI, 6/23 (26)	CT not protective (OR not provided)
Retrospective, 1 site (Colombia)	Children, CR K. pneumoniae infections	Not studied	Not specified	2/19 (10.5)	9/22 (40.9)	MV analysis not
Retrospective, 1 site (Brazil)	HAI due to KPC-producing <i>K. pneumoniae,</i> cancer patients	КРС	30-day	8/22 (36.6)	21/38 (55.2)	CT not protective (OR not provided)
Prospective, 1 site (Greece)	CR K. pneumoniae infections, ICU	KPC	Infection related	Not specified	Not specified	CT not protective (OR
Retrospective, 1 site (South Africa)	Infections due to OXA-48 producers	OXA-48	In-hospital	2/6 (33.3)	5/13 (38.4)	MV analysis not
2 sites (Brazil)	VAP due to CRE	Not specified	30-day	40/66 (60.6)	6/17 (35.2)	CT not protective (OR not provided)

Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial

Mical Paul, George L Daikos, Emanuele Durante-Mangoni, Dafna Yahav, Yehuda Carmeli, Yael Dishon Benattar, Anna Skiada, Roberto Andini, Noa Eliakim-Raz, Amir Nutman, Oren Zusman, Anastasia Antoniadou, Pia Clara Pafundi, Amos Adler, Yaakov Dickstein, Ioannis Pavleas, Rosa Zampino, Vered Daitch, Roni Bitterman, Hiba Zayyad, Fidi Koppel, Inbar Levi, Tanya Babich, Lena E Friberg, Johan W Mouton, Ursula Theuretzbacher, Leonard Leibovici

•

۲

۲

۲

•

•

100 Colistin RCT de upériorité dans 6 hôpitaux (Israël, Colistin plus meropenem Grèce, Italie) : 406 patients + Colistin censored Colistin plus meropenem censored 80 Bactériémie, PAVM, HAP, IU à EPC Colistine vs colistine + meropénème (2gx3/j) Cumulative survival (%) 60-Evaluation à J14 Pneumonie et bactériémie +++ (87%) Acinetobacter baumannii (77%) 40. Pas de différence y compris en cas d'infection sévère à AB 20 Plus d'El si association Log-rank p=0.66 Diarrhées 27% vs 16% patients 0. 8 12 16 28 20 24 0 Insuffisance rénale 30% vs 20% patients Time after randomisation (days) Number at risk Colistin 138 118 197 175 149 132 124 111 136 118 116 174 153 127 Colistin-meropenem 207 144

Lancet Infect Dis 2018

Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study

Belén Gutiérrez-Gutiérrez*, Elena Salamanca*, Marina de Cueto, Po-Ren Hsueh, Pierluigi Viale, José Ramón Paño-Pardo, Mario Venditti, Mario Tumbarello, George Daikos, Rafael Cantón, Yohei Doi, Felipe Francisco Tuon, Ilias Karaiskos, Elena Pérez-Nadales, Mitchell J Schwaber, Özlem Kurt Azap, Maria Souli, Emmanuel Roilides, Spyros Pournaras, Murat Akova, Federico Pérez, Joaquín Bermejo, Antonio Oliver, Manel Almela, Warren Lowman, Benito Almirante, Robert A Bonomo, Yehuda Carmeli, David L Paterson, Alvaro Pascual, Jesús Rodríguez-Baño, and the REIPI/ESGBIS/INCREMENT Investigators†

- Cohorte rétrospective (score de propension) sur Bactériémies monomicrobienne à EPC
- 26 hôpitaux (10 pays)
- Exclusion : décès <24h, ATB efficace >48h, infection récidivantes
- Comparaison mortalité à J30 des patients ayant reçu au moins 1 molécule efficace *in vitro vs* plusieurs molécules
- Score INCREMENT de mortalité (contrôle des biais), modèle de Cox
- ATB adaptée (< 5 j) associée à moindre mortalité vs ATB non adaptée : 38.5% de décès vs 60.6% (p<0.0001)
- Pas de différence de mortalité globale entre association d'ATB et monothérapie (35% vs 41%; p=0.28)

	Appropriate therapy (n=343)	Inappropriate therapy (n=94)	p value
Age (years)	66 (55·5–76·0)	66 (50–77)	0.76
Male sex	197 (57%)	58 (62%)	0.46
Enterobacteriaceae			0.27
Klebsiella pneumoniae	291 (85%)	84 (89%)	
Other	52 (15%)	10 (11%)	
Enterobacter cloacae	24 (7%)	4 (4%)	
Escherichia coli	14 (4%)	3 (3%)	
Enterobacter aerogenes	10 (3%)	3 (3%)	
Citrobacter spp	3 (1%)	0	
Serratia marcescens	1 (<1%)	0	
Type of carbapenemase			0.64
OXA-48	57 (17%)	12 (13%)	
КРС	253 (74%)	76 (81%)	
Metallo-β-lactamases	33 (10%)	6 (6%)	
VIM	30 (9%)	6 (6%)	
Other	3 (1%)	0	

Lancet Infect Dis 2017

Définitions

- Haut risque :
 - Choc septique
 - Ou, pour bactériémie, un score de mortalité INCREMENT ≥ 8 points
 - Sepsis sévère ou choc septique à l'hospitalisation : 5 points
 - Score de Pitt ≥ 6 : 4 points
 - Score de Charlson $\ge 2:3$ points
 - Infection autre qu'urinaire ou biliaire : 3 points
- Risque faible : Score de mortalité INCREMENT < 8 points

Score de Pitt

Criterion	Points
Fever (oral temperature)	
≤35°C or ≥40°C	2
35.1–36.0°C or 39.0–39.9°C	1
36.1–38.9°C	0
Hypotension	2
Acute hypotensive event with drop in	
systolic blood pressure $>$ 30 mm Hg and	
diastolic blood pressure $>$ 20 mm Hg	
or	
Requirement for intravenous vasopressor agents	
or	
Systolic blood pressure $<$ 90 mm Hg	
Mechanical ventilation	2
Cardiac arrest	4
Mental status	
Alert	0
Disoriented	1
Stuporous	2
Comatose	4

* All criteria are graded within 48 hours before or on the day of first positive blood culture. The highest point score during that time is recorded.

D. Paterson et al. Ann. of Intern Med 2004

Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study

Belén Gutiérrez-Gutiérrez*, Elena Salamanca*, Marina de Cueto, Po-Ren Hsueh, Pierluigi Viale, José Ramón Paño-Pardo, Mario Venditti, Mario Tumbarello, George Daikos, Rafael Cantón, Yohei Doi, Felipe Francisco Tuon, Ilias Karaiskos, Elena Pérez-Nadales, Mitchell J Schwaber, Özlem Kurt Azap, Maria Souli, Emmanuel Roilides, Spyros Pournaras, Murat Akova, Federico Pérez, Joaquín Bermejo, Antonio Oliver, Manel Almela, Warren Lowman, Benito Almirante, Robert A Bonomo, Yehuda Carmeli, David L Paterson, Alvaro Pascual, Jesús Rodríguez-Baño, and the REIPI/ESGBIS/INCREMENT Investigators†

	All patients (n=343)	Low-mortality score (0–7; n=177)	High-mortality score (8–15; n=166)
Monotherapy			
Any	85/208 (41%)	21/105 (20%)	64/103 (62%)
Colistin	40/74 (54%)	12/32 (38%)	28/42 (67%)
Meropenem or imipenem	16/43 (37%)	5/25 (20%)	11/18 (61%)
Other active β-lactams	3/19 (16%)	2/17 (12%)	1/2 (50%)
Cefepime	1/13 (8%)	0/11	1/2 (50%)
Aztreonam	1/4 (25%)	1/4 (25%)	0/0
Ceftazadime	1/2	1/2	0/0
Tigecycline	14/37 (38%)	0/15	14/22 (64%)
Aminoglycosides	11/27 (41%)	1/9 (11%)	10/18 (56%)
Others	1/8 (13%)	1/7 (14%)	0/1
Cloramphenicol	1/1 (100%)	1/1 (100%)	0/0
Ciprofloxacin	0/4	0/3	0/1
Fosfomycin	0/1	0/1	0/0
Levofloxacin	0/2	0/2	0/0
Combination therapy*†			
Any	47/135 (35%)	17/72 (24%)	30/63 (48%)
Tigecycline included	29/82 (35%)	10/45 (22%)	19/37 (51%)
Colistin included	28/74 (38%)	11/36 (31%)	17/38 (45%)
Aminoglycosides included	19/56 (34%)	4/27 (15%)	15/29 (52%)
Carbapenem included	14/37 (38%)	4/19 (21%)	10/18 (56%)
Fosfomycin included	3/9 (33%)	1/4 (25%)	2/5 (40%)
Others	6/17 (35%)	3/11 (27%)	3/6 (50%)

Lancet Infect Dis 2017

Carbapénèmes

- Certaines EPC sensibles aux carbapénèmes :
 - Seuil CLSI :
 - ≤1 mg/L pour méropénem, imipénem, et doripénem
 - ≤ 0.5 mg/L pour ertapénem
 - Seuil EUCAST :
 - ≤ 2 mg/L pour imipénem and méropénem
 - ≤ 1 mg/L pour doripénem
 - ≤ 0.5 mg/L pour ertapénem

Use of Monte Carlo Simulation to Design an Optimized Pharmacodynamic Dosing Strategy for Meropenem

> Joseph L. Kuti, PharmD, Prachi K. Dandekar, PharmD, Charles H. Nightingale, PhD, and David P. Nicolau, PharmD

- Modèle stochastique
- PTA cible : 80% pour isolats avec CMI 8 mg/L si administration de méropénem à 2g toutes les 8 h en perfusion prolongée

Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems?

G. L. Daikos¹ and A. Markogiannakis²

FIG. 2. Simulated target attainment probabilities for 50% time above the MIC (50% T > MIC) of three different regiments of meropenem. TI, traditional 30-min infusion; PI, prolonged 3-h infusion. Adapted from [36].

First author (year of publication)	Study design	No. of patients	Carbapenemase (no. of isolates)	Treatment (no. of patients)	Outcome (no. of successes/ no. of failures)
Villegis (2004) Lomaestro (2006) Wei (2007) Daly (2007) Mendes (2008) Endimani (2008) Marschall (2009) Mathers (2009) Benenson (2009)	Case reports	0	крс (II) IMP (I)	Carbapenem (4) Carbapenem combined with another agent (1) Other treatment (6)	576
Yan (2001)	Case series	16	IMP (16)	Carbapenem (3) Other treatment (13)	97
Lee (2004)	Case series	3	MP(3)	Carbaxenem (3)	3/0
Bradford (2004)	Case series	4	KPC (4)	Carbapenen combined with another therapy (3) Other treatment (1)	3/1
Bratu (2005)	Retrospective	58	KPC (29)	No precise information on treatment (58)	9/20
Daikos (2007)	Retrospective	28	VIM (28)	Carbapenern (II)	9/19
U				Carbapenem combined with another agent (13) Other treatment (4)	
Souli (2008)	Case series	17	VIM (17)	Carbapenem combined with another agent (9) Other treatment (8)	14/3
Weisenberg (2009)	Case series	21	KPC (21)	Carbapenern (11) Carbapenern combined with another agent (1)	8/13
Maltezou (2010)	Case series	22	KPC (22)	Carbapenen combined with another agent (I) Other transmer (I3)	1 (/3
				No information on treatment (8)	
Endimanî (2009)	Case series	7	КРС (7)	Carbapenem combined with another agent (1) Other treatment (1)	4/3
	_	_		No information on treatment (5)	
Nadkami (2009)	Case series	6	KPC (6)	Other treatment	2/4
Daikos (2009)	Prospective observational	67	VIM (67)	Carbapenem (14) Carbapenem combined with another agent (12)	16/51
Souli (2010)	Case series	18	KPC (18)	Other treatment (41) Carbapenem (1) Carbapenem combined with another agent (11)	107
Moubudī (2010)	Case control	37	VIM (18) KPC (19)	Other treatment (6) Other treatment (37)	21/16

- Revue 22 articles
- Efficacité imipénem ou méropénem en fonction de CMI
- Guérison :
 - 69% pour isolats avec CMI à 4 mg/L
 (32 patients)
 - 29% pour isolats avec CMI ≤ 8 mg/L
 (7 patients)

Daikos G CMI 2011

Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant *Klebsiella pneumoniae* bloodstream infection

Maddalena Giannella ^{a,*}, Enrico Maria Trecarichi ^b, Daniele Roberto Giacobbe ^c, Francesco Giuseppe De Rosa ^d, Matteo Bassetti ^e, Alessandro Bartoloni ^f, Michele Bartoletti ^a, Angela Raffaella Losito ^b, Valerio del Bono ^c, Silvia Corcione ^d, Sara Tedeschi ^a, Francesca Raffaelli ^b, Carolina Saffioti ^c, Teresa Spanu ^g, Gian Maria Rossolini ^h, Anna Marchese ⁱ, Simone Ambretti ^j, Roberto Cauda ^b, Claudio Viscoli ^c, Russell Edward Lewis ^a, Pierluigi Viale ^a, Mario Tumbarello ^b on behalf of Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva (ISGRI-SITA)

- Analyse post hoc cohorte italienne (6 ans)
- Patients BSI EPC (Kl pn)
- Traités en association
- Evaluation impact forte dose de carbapénèmes (mortalité à J14)
- Facteurs protecteurs :
 - Admission en chirurgie (HR 0.44, P = 0.005)
 - Forte dose de carbapénèmes (HR 0.69, P = 0.05)
- Méropénem à forte dose indépendamment associée à moindre mortalité, même chez patients avec CMI ≥ 16 mg/L

A: MIC ≤8 mg/L

Fig. 1. Cox regression analysis of survival stratified for carbapenem MIC. **CMT:** combination with meropenem treatment: 0 no, 1 yes. Panel A and Panel B show cumulative survival at 14 days from CR-KP BSI onset for patients who did or did not receive carbapenem combination therapy, it was adjusted for all the covariates included in the Cox regression model and the propensity score. The model was further stratified according to the meropenem MIC $\leq 8 \text{ mg/L}$ (Panel A), MIC $\geq 16 \text{ mg/L}$ (Panel B), the overall aHR for the variable carbapenem combination therapy (CMT) was: 0.63, 95%CI 0.41–0.96, P = 0.03.

Double carbapénèmes

- KPC ont affinité pour ertapénem > autre carbapénèmes
- Hypothèse : restitution de sensibilité aux carbapénèmes en cas d'utilisation d'ertapénem
- Données *in vitro* favorables (pour certaines souches, jusqu'à CMI ≤ 128 mg/L)

Concentrations	Bactericidal activity at 24 h, $n (\%)^{a} (n = 33)$	Synergistic activity at 24 h, $n (\%)^{b} (n = 33)$	$\Delta Log_{10} cfu/mL^c$	AUBC, mean \pm SD
0.5 imes MIC MEM	0 (0)	NA	2.04	154.4 <u>+</u> 12.9
0.5 imes MIC ETP	0 (0)	NA	2.49	161.3±22.01
$1 \times \text{MIC MEM}$	2 (6)	NA	2.20	134.5±40.1
$1 \times \text{MIC ETP}$	0 (0)	NA	2.61	140.4 <u>+</u> 23.9
$2 \times MIC MEM$	0 (0)	NA	2.04	126.4 <u>+</u> 5.4
0.5 imes MIC MEM + $0.5 imes$ MIC ETP	5 (15.1)	5 (15.1)	1.43	101.2 <u>+</u> 29.5
0.5 imes MIC MEM + 1 imes MIC ETP	13 (39.3)	20 (60.6)	-1.36 ^d	79.82 <u>+</u> 30.8
$1 \times \text{MIC MEM} + 1 \times \text{MIC ETP}$	27 (81.8)	30 (90.9)	-3.56 ^d	54.9±26.1 ^e
$2 \times MIC MEM + 1 \times MIC ETP$	33 (100)	33 (100)	-4.98 ^d	44.2 <u>+</u> 15.3 ^e
Growth control	NA	NA	NA	197.8 ± 10.02

Table 2. Quantitative evaluation of meropenem + ertapenem interaction and mean AUBC for 33 CR-Kp strains by killing studies

Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing *Klebsiella pneumoniae* infections: a two-center, matched case-control study

Gennaro De Pascale^{1,6*}, Gennaro Martucci², Luca Montini¹, Giovanna Panarello², Salvatore Lucio Cutuli¹, Daniele Di Carlo³, Valentina Di Gravio¹, Roberta Di Stefano⁴, Guido Capitanio², Maria Sole Vallecoccia¹, Piera Polidori⁴, Teresa Spanu⁵, Antonio Arcadipane² and Massimo Antonelli¹

CrossMark

- Etude cas témoins observationnelle
- Patients avec infection documentée à EPC (KI pn)
- Comparaison double carbapénème vs TTT au choix
- Certaines souches résistantes à la colistine
- Problème écologique ?

Colistine

- Polymyxines : polypeptides cationiques
 - Seuls polymyxine B et polymyxin E (colistine) utilisés en clinique
- Efficaces contre Entérobactéries
- Sauf *Proteus* spp., *Serratia* spp., *Morganella* spp., et *Providencia* spp.
- Pierre angulaire des traitements d'infections dûes aux EPC

Detection and treatment options for *Klebsiella pneumoniae* carbapenemases (KPCs): an emerging cause of multidrug-resistant infection

Elizabeth B. Hirsch^{1,2} and Vincent H. Tam^{1,2*}

"A total of 15 papers involving 55 unique patient cases were reviewed. While the total number of patients is relatively small, some useful insights could still be gathered to guide clinicians in the management of KPC infections.

Tigecycline and the aminoglycosides were associated with positive outcomes in the majority of cases.

Clinical success rates were low when the polymyxins were used as monotherapy (14%), but were much higher when they were used in combination (73%)"

Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis

Oren Zusman¹*, Sergey Altunin^{2,3}†, Fidi Koppel², Yael Dishon Benattar^{2,4}, Habip Gedik⁵ and Mical Paul^{2,3}

Monothérapie versus association avec carbapénèmes : Mortalité globale

Author, year	Bacteria	Infection	Mono events/total	Comb events/tota	l	Weight	OR (95% CI)
					1		
Batirel, 2014	mix	mix	26/71	7/19		26.78%	2.14 (0.93, 4.88)
Chuang, 2014	mix	mix	17/61	4/12	⊢	15.57%	1.14 (0.39, 3.38)
Crusio, 2014	KP	BSI	11/22	7/23	⊢	5.74%	1.70 (0.29, 10.17)
Daikos, 2014	KP	BSI	12/22	5/21	F1	6.22%	1.60 (0.29, 8.90)
Petrosillo, 2014	KP	BSI	6/26	4/9	⊢ ⊢	12.21%	1.64 (0.48, 5.59)
Rigatto, 2015	AB	mix	12/46	2/9	·	20.39%	2.09 (0.81, 5.39)
Yilmaz, 2015	KP	BSI	4/9	4/13	⊢	13.09%	0.74 (0.23, 2.43)
RE model					•	100.00%	1.58 (1.03, 2.42)
Heterogeneity: r^2	=0; χ ² =2.7	6, df=6 (P=	0.84); I ² =0		0.10 1.00 20.00 OR (log scale)		

Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis

Oren Zusman¹*, Sergey Altunin^{2,3}†, Fidi Koppel², Yael Dishon Benattar^{2,4}, Habip Gedik⁵ and Mical Paul^{2,3}

Monothérapie versus association avec tigécycline, AG ou fosfomycine : Mortalité globale

		Mono Comb			
Author, year	Bacteria Infection	events/total events/tota	ıl	Weight	OR (95% CI)
Daikos, 2014	KP BSI	12/22 13/49	I	13.84%	3.32 (1.16, 9.51)
Gomez-Simmonds, 20	s, 2016 KP BSI	2/7 14/32		4.82%	0.51 (0.09, 3.06)
Kontopidou, 2014	4 KP BSI	6/26 6/30	⊢ ⊨ 1	9.38%	1.20 (0.33, 4.31)
(u, 2014	mix mix	26/71 7/19	⊧ ∳ i	13.90%	0.99 (0.35, 2.83)
opez-Cortes, 2014	14 AB mix	12/46 2/9	⊢ ⊢ ,	5.28%	1.24 (0.22, 6.79)
Moloudi, 2010	KP BSI	15/19 10/17	⊢∔ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	7.13%	2.62 (0.61, 11.37)
Nguyen, 2010	KP BSI	4/9 4/13	F	4.92%	1.80 (0.31, 10.52)
Petrosillo, 2014	mix mix	17/61 4/12	⊢	8.73%	0.77 (0.21, 2.91)
Tumbarello, 2012	KP BSI	11/22 7/23	⊢⊢ − − − − − − − − − − − − − − − − − −	10.30%	2.29 (0.68, 7.74)
Zarkotou, 2011	KP BSI	4/7 0/9		1.53%	24.43 (1.03, 580.63)
Srijatuphat, 2014	AB mix	21/39 19/43		20.19%	1.47 (0.62, 3.52)
RE model			•	100.00%	1.57 (1.06, 2.32)
Heterogeneity: $\tau^2 = 0$;	² =0; χ ² =9.31, df=10 (P=0.	.5); I ² =0	0.10 1.00 20.00 OR (log scale)		
RE model Heterogeneity: 7 ² =0;	² =0; χ ² =9.31, df=10 (P=0.	.5); I ² =0	0.10 1.00 20.00 OR (log scale)	100.00%	1.57 (1.06, 2

Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis

Oren Zusman¹*, Sergey Altunin^{2,3}†, Fidi Koppel², Yael Dishon Benattar^{2,4}, Habip Gedik⁵ and Mical Paul^{2,3}

Monothérapie versus association avec tigécycline ou AG dans BSI à KP : Mortalité globale

A			Mono	Comb			00 (050) 01
Author, year	Bacteria	Infection	events/total	events/tota		Weight	OR (95% CI)
Daikos, 2014	KP	BSI	12/22	13/49	↓ → → ↓	26.67%	3.32 (1.16, 9.51)
Gomez-Simmonds, 20	016 KP	BSI	2/7	14/32	< ₽ ↓ →	9.29%	0.51 (0.09, 3.06)
Kontopidou, 2014	KP	BSI	6/26	6/30	⊢ I	18.07%	1.20 (0.33, 4.31)
Moloudi, 2010	KP	BSI	15/19	10/17	⊢	13.73%	2.62 (0.61, 11.37)
Nguyen, 2010	KP	BSI	4/9	4/13	⊧ 	9.47%	1.80 (0.31, 10.52)
Tumbarello, 2012	KP	BSI	11/22	7/23	⊢ <u>↓</u>	19.84%	2.29 (0.68, 7.74)
Zarkotou, 2011	KP	BSI	4/7	0/9		2.94%	24.43 (1.03, 580.63)
RE model					-	100.00%	2.09 (1.21, 3.60)
Heterogeneity: $\tau^2 = 0$; $\chi^2 = 6.3$, df=6 (P=0.39); I ² =0					0.10 1.00 20.00 OR (log scale)		

Précisions

- Posologies (EMA) :
 - Dose de charge 9 MU
 - Dose quotidienne 9 MU/j en 2-3 prises
- Sensibilité :
 - Méthode recommandée (EUCAST) : CMI en milieu liquide avec seuil ≤2 mg/L (CLSI : pas de seuil)

Émergence en France d'une nouvelle résistance plasmidique à la colistine (gène *mcr-1*) chez les entérobactéries

Bilan épidémiologique au 10/05/2017

C. Humans

		BLSE	NDM*	OXA-48*	KPC-28**	S-C3G
Escherichia coli		6 souches	2 souches	1 souche	1 souche	-
Klebsiella pneumoniae		3 souches	-	-	-	-
	Salmonella typhymurium	-	-	-	-	3 souches
	Espèce inconnue	1 souche	-	-	-	-

Tigecycline Treatment for Carbapenem-Resistant Enterobacteriaceae Infections

A Systematic Review and Meta-Analysis

Wentao Ni, MD, Yuliang Han, MD, Jie Liu, MD, Chuanqi Wei, MD, Jin Zhao, MD, Junchang Cui, MD, Rui Wang, PhD, and Youning Liu, MD

Tigécycline aussi efficace que les autres traitements

Probable intérêt aux associations et à de fortes doses

Mais hétérogénéité

Study name	Statistics for each study				Odds ratio and 95% Cl	
	Odds ratio	Lower limit	Upper limit	p-Value		Relative weight
Mortality						
Nguyen (2010)	1.83	0.51	6.57	0.35		3.70
Qureshi (2012)	0.89	0.20	3.93	0.88		2.73
Tumbarello (2012)	0.39	0.17	0.89	0.02		8.97
Daikos (2014)	0.80	0.43	1.49	0.48	│∎├_ │	15.41
Gonzalez-Padilla (2014)	0.37	0.11	1.21	0.10	-	4.27
Huang (2014)	2.75	0.63	11.97	0.18		2.79
Papadimitriou (2014)	0.84	0.17	4.23	0.83		2.32
Chang (2015)	0.62	0.15	2.58	0.51		2.93
de Oliveira (2015)	0.87	0.32	2.36	0.79		6.12
Ji (2015)	2.00	0.58	6.85	0.27		3.98
Neuner (2011)	0.42	0.05	3.32	0.41	<u> </u>	1.43
Sánchez-Romero (2012)	7.67	0.35	166.65	0.19	· · · · · · · · · · · · · · · · · · ·	0.64
Kontopidou (2014)	1.49	0.60	3.75	0.39	│ → │	7.14
Tumbarello (2015)	1.02	0.64	1.65	0.92	│ _≢_ │	26.86
Zarkotou (2011)	0.16	0.03	1.00	0.05	<u>k</u>	1.80
Navarro (2013)	3.06	0.68	13.79	0.14		2.67
Katsiari (2015)	2.33	0.48	11.44	0.30		2.39
Capone (2013)	1.55	0.45	5.42	0.49		3.86
Overall	0.96	0.75	1.22	0.73		100.00
Clinical response						
Nguyen (2010)	1.01	0.29	3.58	0.99	│╈ │	25.01
Kontopidou (2014)	0.51	0.23	1.12	0.09		64.06
Brizendine (2015)	0.33	0.05	2.26	0.26	⊢ ∎── │	10.93
Overall	0.58	0.31	1.09	0.09		100.00
Microbiological response						
Ji (2015)	1.78	0.55	5.77	0.34		26.88
Brizendine (2015)	0.08	0.01	0.84	0.04	k	14.41
Satlin (2011)	0.20	0.07	0.58	0.00	k ∎	28.56
van Duin (2015)	0.70	0.28	1.76	0.45		30.15
Overall	0.46	0.15	1.44	0.18		100.00

1

0.1

Medicine 2016

10

Aminoglycosides

- EPC fréquemment sensibles
- Sauf en cas de 16S rRNA methyltransférases >> résistance à tous les AG
- Méthyltransférases particulièrement fréquentes chez les NDM, et en augmentation chez les KPC (Doi *et al* IDCNA 2016 ; Mezzatesta *et al* JAC 2013)
- Utilisation en association ou en monothérapie pour les infections à EPC
- Pas de RCT
- A n'utiliser qu'en cas d'impasse ou de choc (toxicité +++)

Fosfomycine

• Très très très peu de données cliniques

• Emergence de R, y compris lors de l'utilisation en association pour les infections à KPC

• Difficile de le positionner compte tenu du manque d'information

Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria

Konstantinos Pontikis^{a,*}, Ilias Karaiskos^b, Styliani Bastani^c, George Dimopoulos^d, Michalis Kalogirou^e, Maria Katsiari^f, Angelos Oikonomou^g, Garyphallia Poulakou^g, Emmanuel Roilides^h, Helen Giamarellou^b

- Etude multicentrique, 48 patients en réanimation
- VAP et BSI +++, Bactéries XDR
- Traités par fosfomycine (sensibles), dose médiane 24 g/j
- ATB associés : colistine et tigécycline +++
- Mortalité à J28 37.5%,
- Apparition de R dans 3 cas

	Clinical outcome at Day 14				Microbiological outcome at Day 14			All-cause mortality	
	Successful	Failure	Indeterminate	Superinfection	Eradication	Persistence	Indeterminate	Day 14	Day 28
By sepsis classification ^b									
Sepsis $(n = 16)$	9(56.3)	5(31.3)	1(6.3)	1(6.3)	13(81.3)	3(18.8)	0	0	3(18.8)
Severe sepsis $(n = 10)$	6(60.0)	2(20.0)	1(10.0)	1(10.0)	5(50.0)	1(10.0)	4(40.0)	4(40.0)	4(40.0)
Septic shock $(n = 20)$	10(50.0)	8(40.0)	1(5.0)	1(5.0)	8(40.0)	9(45.0)	3(15.0)	6(30.0)	10(50.0)
By fosfomycin administration timing ^c									
Early administration (n = 22)	14 (63.6) *	5(22.7)	1(4.5)	2(9.1)	11 (50.0)	7(31.8)	4(18.2)	4(18.2)	8(36.4)
Late administration $(n = 26)$	12(46.2)	11(42.3)	2(7.7)	1(3.8)	16(61.5)	6(23.1)	4(15.4)	7(26.9)	10(38.5)
By resistance profile of the pathogen									
XDR(n=32)	16(50.0)	12(37.5)	2(6.3)	2(6.3)	17(53.1)	10(31.3)	5(15.6)	9(28.1)	11(34.4)
PDR $(n=16)^d$	10(62.5)	4(25.0)	1(6.3)	1(6.3)	10(62.5)	3(18.8)	3(18.8)	2(12.5)	7(43.8)
By bacterial species among monomicro	bial infections								
Klebsiella pneumoniae (n = 23)	13(56.5)	8(34.8)	0	2(8.7)	15(65.2)	4(17.4)	4(17.4)	6(26.1)	10(43.5)
Pseudomonas aeruginosa (n=6)	5(83.3)	1(16.7)	0	0	4(66.7)	2(33.3)	0	2(33.3)	3(50.0)

Témocilline et KPC

- Témocilline active sur faible proportion de E-KPC (seuil BSAC ≤8 mg/L et ≤32 mg/L en cas d'IU),
- Et en cas de R aux carbapénèmes due à l'association imperméabilité + BLSE ou AmpC
- Pas d'efficacité sur OXA-48 (marquer de l'enzyme)
- 1 étude expérimentale avec résultats encourageants (modèle murin de péritonite à *E. coli* KPC avec CMI ≤ 16mg/L) (Alexandre *et al.* JAC 2016)
- Pas de données cliniques !!!

Aztreonam et MBL

- Aztreonam pas hydrolysé par les MBLs
- In vitro : activité bactéricide lente contre Kl pn sécrétrice de VIM-1
- Modèles animaux : efficacité sur les souches NDM et VIM
- Problème : fréquente co-résistance des MBL avec BLSE >> rendant Aztreonam inefficace
- Très peu de données cliniques

C₃G et Oxa 48

- Peu d'activité hydrolytique vis à vis des cépahlosporines (Pas de R aux céphalosporines),
- Souvent associée à BLSE
- Attention, certaines Oxa48 ont des CMI basses aux carbapénèmes (si non associées aux BLSE)
- Ceftazidime actif dans modèles expérimentaux vis à vis d'Oxa 48 si absence de BLSE et AmpC
- Pas de données cliniques

Ceftazidime-Avibactam

Revue des séries et cas cliniques des infections à EPC traités par Ceftazidime-avibactam

	no. of sites; inclusion Reference criteria	n	Types of infections and pathogens	Mortality definition (no. of deaths/no. of patients treated [%] [CAZ-AVI vs other regimens])	Clinical cure (no. of patients with cure/no. of patients treated [%] [CAZ-AVI vs other regimens])	
	Retrospective cohort, hematological,	31	4 sites; BSI due to CRE, 85% <i>K. pneumoniae</i> ; 60% OXA-48 producers and 40% KPC producers; sources: 14 (45.1%) primary, 6 (19.3%) HAP	Day 30; 2/8 (25) vs 12/23 (52.2); P = 0.24	Day 14; 6/8 (75) vs 8/23 (34.8); <i>P</i> = 0.03	
:	Retrospective cohort, 1 site; BSI due to CR <i>K. pneumoniae</i> , ≤3 days of therapy	109	All <i>K. pneumoniae;</i> 97% KPC; 50% in ICU; Source: 50 (45.8%) IAI, 28 (25.6%) primary BSI	30-day; 1/13 (7.6) vs 30/96 (31.2)	Day 30; 11/13 (85) vs 30/96 (40.6); <i>P</i> 0.006; adjusted OR 8.64 (95% Cl 1.61–43.39)	
es	Retrospective, 1 site; CRE infections treated with CAZ-AVI	37	84% K. pneumoniae; 78.3% KPC	30-day; 9/37 (24.3)	23/37 (62); for monotherapy, 58%; for combination therapy, 64%; 10 (27%) recurrences, with 3 isolates developing resistance	
	Retrospective, 1 site; CRE infections treated with CAZ-AVI	6	All K. pneumoniae, KPC; all susceptible to CAZ-AVI	In-hospital; 3/6 (50)	4/6 (66.6); 2 relapses, no development of resistance	
	Retrospective cohort, 15 sites; CRE infections treated with CAZ- AVI, salvage therapy	38	34 <i>K. pneumoniae;</i> 23 KPC, 13 OXA-48; type of infection: 15 (39.4%) IAI, 7 (18.4%) HAP	In-hospital; overall, 15/38 (39.5); for IAI, 6/15 (40); for HAP, 5/7 (71.4)	28 (73.7); for monotherapy, 69.2%; for combination therapy, 76%; 2 relapses, no resistance detected	
	Retrospective cohort, 9 health care systems in USA; CRE infections treated with CAZ-AVI for ≤24 h	60	83% <i>K. pneumoniae</i> ; type of infection: 38% BSI, 28% UTI, 27% HAP	In-hospital; overall, 19/60 (32); for monotherapy, 30%; for combination therapy, 33%; for BSI, 39%; for UTI, 12%; for pneumonia, 56%	39/60 (65); for monotherapy, 67%; for combination therapy, 63%	
	Prospective cohort, 18 hospitals in USA; CRE infections	137	97% <i>K. pneumoniae,</i> 96% KPC-producers; type of infection: 46% BSI, 22% HAP, 14% UTI	30-day, adjusted; 8% vs 32% (difference, 23%; 95% Cl, 9–35%)	30-day adjusted probability of better outcome (using desirable outcome ranking), 64% (95% CI, 57– 71%) with ceftazidime-avibactam	

Ceftazidimeavibactam actif sur la plupart des KPC et OXA-48 selon seuils définis (≤8/4 mg/L)

Ceftazidime-Avibactam

- Absence d'activité *in vitro* vis à vis des MBL
- Intérêt de l'association avec Aztreonam sur les MBL (si pas de BLSE, AmpC, OXA-48, etc.)
- Données cliniques nécessaires
- Mais peut être la nouvelle pierre d'angle dans le traitement des infections sévères à KPC ou OXA-48

Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β -Lactam Resistance Conferred by Metallo- β -Lactamases in *Enterobacteriaceae* and *Pseudomonas aeruginosa*

Benjamin Davido,^a Lesly Fellous,^b Christine Lawrence,^{c,d} Virginie Maxime,^e
Martin Rottman,^{d,f} Aurélien Dinh^a

Avis « d'experts » (Aujourd'hui)

Niveau de risque, type d'ATB, et sensibilité aux ATB	ATBs		
Haut risque, association ATB			
Sensible à β-lactamine (selon sensibilité)	Backbone : ceftazidime-avibactam (+++) ou méropénem-vaborbactam ; alternative : meropénem (si CMI < 8 mg/L), ceftazidime ou aztreonam		
	En combinaison avec : colistine, tigécycline, aminoglycoside, ou fosfomycine (si isolat intermédiaire à ATB backbone, choisir 2 ATBs) Aucune donnée sur besoin d'association d'Atb en cas d'utilisation de ceftazidime-avibactam ou méropénem-vaborbactam		
Résistant à toutes les β -lactamines (y compris isolats avec CMI	Backbone: colistine		
méropénem ≥8 mg/L), sensible à 2 ATBs dont colistine	En combinaison avec : tigécycline, aminoglycoside (haut risque de néphrotoxicité), ou fosfomycine		
Résistant à toutes les β -lactamines et colistine, sensible à 2 ATBs	Backbone: tigécycline ou aminoglycoside		
	En combinaison avec : tigécycline, aminoglycoside, ou fosfomycine		
Pan-résistant ou sensible à 1 seul ATB	Méropénem + ertapénem ou ceftazidime-avibactam + aztreonam		
	Associer tout ATB efficace ; tester association in vitro pour synergie		
Risque faible, monothérapie			
Selon sensibilité	Ceftazidime-avibactam, méropénem-vaborbactam, méropénem, ceftazidime, aztreonam, colistine, tigécycline, aminoglycoside (si intermédiaire, choisir autre ATB ou association)		

Meropénem-vaborbactam

- Vaborbactam : nouvel inhibiteur de β-lactamase
- Restore efficacité du méropénème vis à vis des KPC mais pas visà-vis des MBL (NDM ou VIM) et OXA 48
- Essai phase III : différentes infections à EPC
- Meilleure efficacité du meropénem-vaborbactam vs best available therapy (57.1% des 28 patients versus 26.7% des 15 patients; différence absolue, 30.5%; IC95% = 1.5-59.4%),
- Moins de néphrotoxicité

Plazomicine

- Nouvel aminoglycoside (non commercialisé)
- Actif sur la plupart des EPC (échappe aux enzymes de résistance)
- Inactif en cas de méthyltransférases
- Essai de phase 3 (HAP/VAP et BSI) par CPE : plazomicine (n=17) vs colistine + tigécycline ou meropénem (n=20)
- Mortalité 11.8% vs 40%, respectivement (différence, 28%; IC95 : 0.7-52.5)
- Moins de toxicité rénale avec plazomicine

Cefiderocol

- Une céphalosporine type sidérophore
- Active contre BGN MDR (EPC compris)
- Avec une posologie de 2g x3/j on obtient ≥50% temps au dessus de la CMI pour des CMI allant jusqu'à 8 mg/L
- Si administrée sur 3h : efficace vis à vis des KPC et des Kl pn NDM (modèle murin de pneumonie)
- Essai de phase III vs Imipenème dans les IUc : Non infériorité démontrée et possible supériorité

Relebactam

- Nouvel inhibiteur de β-lactamase
- Actif vis à vis de KPC et BLSE
- Moins actif vis à vis des OXA-48
- Inactif vis à vis des MBLs
- Etudes phase III en association avec Imipénème dans IIA et les IUc

Et bien sûr

- Associer
 - Prise en charge chirurgicale
 - Drainage
 - Contrôle de la source

En résumé

- Choix individuel
- Faire CMI pour toutes les molécules
- Carbapénèmes si CMI < 8mg/L
- Multithérapie sauf infection facile à traiter (rare)
- Privilègier carbapénème/CAZ AVI + colistine (fonction de la sensibilité)
 - Si KPC double carbapénème
 - Si metallo : Azactam+avibactam
 - Si Oxa-48 : Ceftazidime-avibactam
- Toujours à forte dose

MERCI BEAUCOUP !

