









du mardi 7 au jeudi 9 juin 2016

Lille Grand Palais

Lille Grand Palais

Lille Grand Palais

## Best of en infectiologie Vaccinologie

**Odile Launay** 







## Déclaration de liens d'intérêt avec les industries de santé en rapport avec le thème de la présentation (loi du 04/03/2002) :

| Intervenant : Odile Launay  Titre : Best of en infectiologie. Vaccinologie                                | L'orateur no<br>souhaite pa<br>répondre |     |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|
| Consultant ou membre d'un conseil scientifique                                                            | OUI                                     | NON |
| Conférencier ou auteur/rédacteur rémunéré d'articles ou documents                                         | OUI                                     | NON |
| Prise en charge de frais de voyage, d'hébergement ou d'inscription à des congrès ou autres manifestations | OUI                                     | NON |
| Investigateur principal d'une recherche ou d'une étude clinique                                           | OUI                                     | NON |













et l'interrégion Nord-Pas-de-Calais-Picardie

**du mardi 7 au jeudi 9 juin 2016**Lille Grand Palais

### Déclaration d'intérêts de 2012 à 2015

- Intérêts financiers : aucun
- Liens durables ou permanents : aucun
- Interventions ponctuelles : aucun
- Intérêts indirects :



### Vaccin grippe

### Vaccin « high dose » plus efficace chez les plus de 65 ans

### **Vaccin High Dose:**

60 microgramme d'HA par souches
 (vs 15 pour le vaccin standard)

- essai randomisé en dble aveugle
  - 126 centres aux USA et Canada
  - saisons 2011/2012 et 2012/2013
  - 31 898 personnes > 65 ans

### Principaux résultats:

- pas de différence en terme d'El
- meilleure immunogénicité du vaccin « high dose »

#### ORIGINAL ARTICLE

## Efficacy of High-Dose versus Standard-Dose Influenza Vaccine in Older Adults

Carlos A. DiazGranados, M.D., Andrew J. Dunning, Ph.D., Murray Kimmel, D.O., Daniel Kirby, B.Sc., John Treanor, M.D., Avi Collins, B.Sc.N., Richard Pollak, D.P.M., Janet Christoff, R.N., John Earl, M.D., Victoria Landolfi, M.Sc., M.B.A., Earl Martin, D.O., Sanjay Gurunathan, M.D., Richard Nathan, D.O., David P. Greenberg, M.D., Nadia G. Tornieporth, M.D., Michael D. Decker, M.D., M.P.H., and H. Keipp Talbot, M.D., M.P.H.

N ENGL J MED 371;7 NEJM.ORG AUGUST 14, 2014

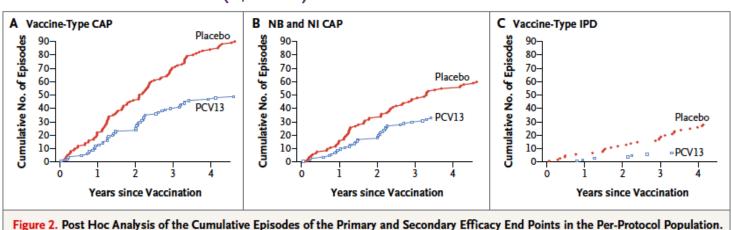
- efficacité relative du vaccin HD par rapport au vaccin standard: 24,2% (95%IC: 9.7;36.5). Fluzone High-Dose



### Vaccin pneumocoque conjugué Résultats de l'essai CAPITA

### Prévenar 13 versus placebo

- •Essai randomisé 84 496 adultes > 65 ans, non immunodéprimés
- •Efficacité démontrée sur les infections à pneumocoque de sérotype vaccinal:
  - pneumopathie communautaire: 45,6% (IC95%: 21,8-62,5%)
- IIP: 75% (IC95%: 41,4-90,8%)
- •Efficacité maintenue sur la durée (3,7 ans)


The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

#### Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults

M.J.M. Bonten, S.M. Huijts, M. Bolkenbaas, C. Webber, S. Patterson, S. Gault, C.H. van Werkhoven, A.M.M. van Deursen, E.A.M. Sanders, T.J.M. Verheij, M. Patton, A. McDonough, A. Moradoghli-Haftvani, H. Smith, T. Mellelieu, M.W. Pride, G. Crowther, B. Schmoele-Thoma, D.A. Scott, K.U. Jansen, R. Lobatto, B. Oosterman, N. Visser, E. Caspers, A. Smorenburg, E.A. Emini, W.C. Gruber, and D.E. Grobbee

#### N Engl J Med 2015;372:1114-25. DOI: 10.1056/NEJMoa1408544





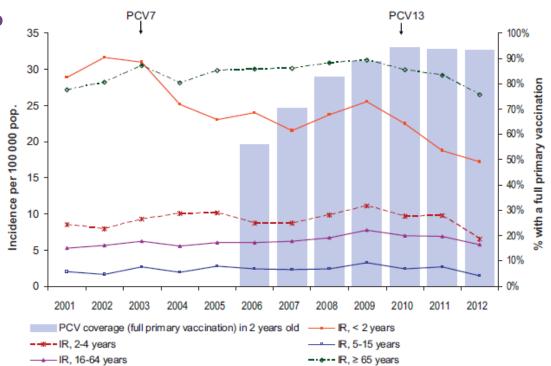
### Incidence des IPP en France : baisse depuis l'introduction du... Prévenar 13

Données d'Epibac et du CNR pneumocoque

- Augmentation de la CV de 56% (cohorte naissance 2004) à 94% à partir de 2008
- Entre 2001-2002 et 2008-2009 augmentation de l'incidence des IPP sauf chez les moins de 2 ans
- Depuis l'introduction du Prévenar 13: Baisse de l'incidence des IPP dans toutes les tranches d'âge
  - -34% < 5 ans
  - 50% 5-15 ans
  - 15% chez l'adulte



Vaccine journal homepage: www.elsevier.com/locate/vaccine


Impact of the pneumococcal conjugate vaccines on invasive pneumococcal disease in France, 2001–2012

Vaccine 33 (2015) 359-366



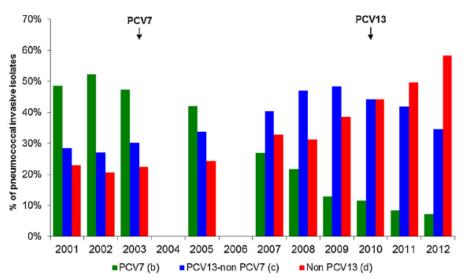
A. Lepoutre a,\*, E. Varon b, S. Georges a, F. Dorléans a, C. Janoir b,c, L. Gutmann b, D. Lévy-Bruhl<sup>a</sup>, the Microbiologists of the Epibac<sup>1</sup> and the ORP Networks<sup>2</sup>,

- <sup>a</sup> Département des maladies infectieuses, Institut de Veille Sanitaire, Saint Maurice, France
- b Centre National de Référence des Pneumocoques, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- CUniversité Paris Sud. EA 4043 Châtenay-Malabry, France





## Evolution des sérotypes des pneumocoques en cause dans les IIP de l'adulte en France 2001-2012






Impact of the pneumococcal conjugate vaccines on invasive pneumococcal disease in France, 2001–2012

A. Lepoutre<sup>a,\*</sup>, E. Varon<sup>b</sup>, S. Georges<sup>a</sup>, F. Dorléans<sup>a</sup>, C. Janoir<sup>b,c</sup>, L. Gutmann<sup>b</sup>, D. Lévy-Bruhl<sup>a</sup>, the Microbiologists of the Epibac<sup>1</sup> and the ORP Networks<sup>2</sup>,

CUniversité Paris Sud, EA 4043 Châtenay-Malabry, France



- (a) The distribution of the three serotype-groups is standardized on the ratio of pneumococcal meningitis to other non meningitis pneumococcal invasive diseases cases in adults (>15 years), assessed from Epibac data for the respective time periods
- (b) PCV7: PCV7 serotypes including serotypes, 6B, 9V, 14, 18C, 19F and 23F
- (c) PCV13-non PCV7: PCV13-non PCV7 serotypes, including serotypes 1, 3, 5, 6A, 7F and 19A
- (d) Non-PCV13: other serotypes than PCV7 and PCV13-non PCV13



a Département des maladies infectieuses, Institut de Veille Sanitaire, Saint Maurice, France

<sup>&</sup>lt;sup>b</sup> Centre National de Référence des Pneumocoques, AP-HP, Hôpital Européen Georges Pompidou, Paris, France

## Un vaccin contre le zona efficace dans plus de 90% des cas

- Vaccin sous unitaire : glycoprotéine E (gE) du VZV
- Système adjuvant: AS01<sub>B</sub>

## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 28, 2015

VOL. 372 NO. 22

Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults

| Table 2. Vaccine Efficacy against the First or Only Episode of Herpes Zoster Infection.* |                        |                              |                                     |                             |                        |                      |                                    |                             |                   |
|------------------------------------------------------------------------------------------|------------------------|------------------------------|-------------------------------------|-----------------------------|------------------------|----------------------|------------------------------------|-----------------------------|-------------------|
| Cohort and Age Group                                                                     |                        | HZ/su                        | Group                               |                             |                        | Vaccine<br>Efficacy† |                                    |                             |                   |
|                                                                                          | No. of<br>Participants | No. of<br>Confirmed<br>Cases | Cumulative<br>Follow-up<br>Period ‡ | Rate of<br>Herpes<br>Zoster | No. of<br>Participants | Confirmed            | Cumulative<br>Follow-up<br>Period‡ | Rate of<br>Herpes<br>Zoster |                   |
|                                                                                          |                        |                              | person-yr                           | no./1000<br>person-yr       |                        |                      | person-yr                          | no./1000<br>person-yr       | % (95% CI)        |
| Modified vaccinated<br>cohort                                                            |                        |                              |                                     |                             |                        |                      |                                    |                             |                   |
| All participants in cohort                                                               | 7344                   | 6                            | 23,297.0                            | 0.3                         | 7415                   | 210                  | 23,170.5                           | 9.1                         | 97.2 (93.7–99.0)  |
| 50–59 yr                                                                                 | 3492                   | 3                            | 11,161.3                            | 0.3                         | 3525                   | 87                   | 11,134.7                           | 7.8                         | 96.6 (89.6–99.3)  |
| 60–69 yr                                                                                 | 2141                   | 2                            | 7,007.9                             | 0.3                         | 2166                   | 75                   | 6,952.7                            | 10.8                        | 97.4 (90.1–99.7)  |
| 70 yr or older                                                                           | 1711                   | 1                            | 5,127.9                             | 0.2                         | 1724                   | 48                   | 5,083.0                            | 9.4                         | 97.9 (87.9–100.0) |
| Total vaccinated cohort                                                                  |                        |                              |                                     |                             |                        |                      |                                    |                             |                   |
| All participants in cohort                                                               | 7698                   | 9                            | 25,584.5                            | 0.4                         | 7713                   | 235                  | 25,359.9                           | 9.3                         | 96.2 (92.7–98.3)  |
| 50–59 yr                                                                                 | 3645                   | 3                            | 12,244.9                            | 0.2                         | 3644                   | 95                   | 12,162.5                           | 7.8                         | 96.9 (90.6–99.4)  |
| 60–69 yr                                                                                 | 2244                   | 5                            | 7,674.1                             | 0.7                         | 2246                   | 83                   | 7,581.8                            | 10.9                        | 94.1 (85.6–98.1)  |
| 70 yr or older                                                                           | 1809                   | 1                            | 5,665.5                             | 0.2                         | 1823                   | 57                   | 5,615.6                            | 10.2                        | 98.3 (89.9–100.0) |



| Table 3. Adverse Events and Reactogenicity.*                                          |                               |                  |                               |                  |
|---------------------------------------------------------------------------------------|-------------------------------|------------------|-------------------------------|------------------|
| Variable                                                                              | HZ/su Gr                      | oup              | Placebo G                     | roup             |
|                                                                                       | no. of participants/total no. | % (95% CI)       | no. of participants/total no. | % (95% CI)       |
| Reactogenicity subgroup                                                               | 4460                          |                  | 4466                          |                  |
| Within 30 days after vaccination                                                      |                               |                  |                               |                  |
| Unsolicited report of adverse event                                                   | 1308                          | 29.3 (28.0-30.7) | 1226                          | 27.5 (26.1-28.8) |
| Grade 3 unsolicited report of adverse<br>event†                                       | 208                           | 4.7 (4.1-5.3)    | 151                           | 3.4 (2.9-4.0)    |
| Within 7 days after vaccination                                                       |                               |                  |                               |                  |
| Solicited or unsolicited report of adverse<br>event                                   | 3765                          | 84.4 (83.3-85.5) | 1689                          | 37.8 (36.4–39.3) |
| Grade 3 solicited or unsolicited report of<br>adverse event†                          | 760                           | 17.0 (15.9–18.2) | 145                           | 3.2 (2.7–3.8)    |
| Grade 3 solicited or unsolicited report of<br>adverse event related to<br>vaccination | 694                           | 15.6 (14.5–16.7) | 83                            | 1.9 (1.5–2.3)    |
| Solicited report of injection-site reaction                                           | 3571/4382                     | 81.5 (80.3-82.6) | 522/4377                      | 11.9 (11.0-12.9) |
| Pain                                                                                  | 3464/4382                     | 79.1 (77.8-80.2) | 490/4377                      | 11.2 (10.3-12.2) |
| Redness                                                                               | 1664/4382                     | 38.0 (36.5-39.4) | 59/4377                       | 1.3 (1.0-1.7)    |
| Swelling                                                                              | 1153/4382                     | 26.3 (25.0-27.6) | 46/4377                       | 1.1 (0.8-1.4)    |
| Grade 3 solicited report of injection-site reaction†                                  | 417/4382                      | 9.5 (8.7–10.4)   | 16/4377                       | 0.4 (0.2-0.6)    |
| Solicited report of systemic reaction                                                 | 2894/4375                     | 66.1 (64.7-67.6) | 1293/4378                     | 29.5 (28.2-30.9) |
| Myalgia                                                                               | 2025/4375                     | 46.3 (44.8-47.8) | 530/4378                      | 12.1 (11.2-13.1) |
| Fatigue                                                                               | 2008/4375                     | 45.9 (44.4-47.4) | 728/4378                      | 16.6 (15.5-17.8) |
| Headache                                                                              | 1716/4375                     | 39.2 (37.8-40.7) | 700/4378                      | 16.0 (14.9-17.1) |
| Shivering                                                                             | 1232/4375                     | 28.2 (26.8-29.5) | 259/4378                      | 5.9 (5.2-6.7)    |
| Fever                                                                                 | 939/4375                      | 21.5 (20.3-22.7) | 132/4378                      | 3.0 (2.5-3.6)    |
| Gastrointestinal symptoms                                                             | 788/4375                      | 18.0 (16.9-19.2) | 387/4378                      | 8.8 (8.0-9.7)    |
| Grade 3 solicited report of systemic<br>reaction†                                     | 498/4375                      | 11.4 (10.5–12.4) | 106/4378                      | 2.4 (2.0-2.9)    |
| Total vaccinated cohort                                                               | 7698                          |                  | 7713                          |                  |
| Throughout study period                                                               |                               |                  |                               |                  |
| Serious adverse event‡                                                                | 689                           | 9.0 (8.3-9.6)    | 686                           | 8.9 (8.3-9.6)    |
| Potential immune-mediated disease                                                     | 78                            | 1.0 (0.8-1.3)    | 97                            | 1.3 (1.0-1.5)    |
| Death                                                                                 | 167                           | 2.2 (1.9-2.5)    | 174                           | 2.3 (1.9-2.6)    |
| Within 30 days after vaccination                                                      |                               |                  |                               |                  |
| Serious adverse event‡                                                                | 87                            | 1.1 (0.9-1.4)    | 97                            | 1.3 (1.0-1.5)    |
| Serious adverse event related to vaccina-<br>tion§                                    | 1                             | 0.0 (0.0-0.1)    | 3                             | 0.0 (0.0-0.1)    |
| Death                                                                                 | 8                             | 0.1 (0.0-0.2)    | 7                             | 0.1 (0.0-0.2)    |

## Mosquirix™: Vaccin RTS,S vaccin contre le paludisme et l' hépatite B

#### Protéine recombinante:

protéine de surface de *P falciparum* combinée à l'AgHBs

- + Système adjuvant AS01B
- •8922 enfants 5-17 mois
- •6527 nourrissons de 6-12 semaines
- •11 centres/7 pays africains
- •3 groupes:
  - 3 doses RTS,S: J0, M1, M2 rappel M20
  - 3 doses RTS,S et vaccin comparateur à M20
  - Bras control

Articles

Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial



RTS,S Clinical Trials Partnership\*

www.thelancet.com Vol 386 July 4, 2015

## Efficacité sur les cas graves de paludisme

Articles

Efficacy and safety of RTS, S/ASO1 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial



RTS, S Clinical Trials Partnership\*

|                         | C3C gro   | oup     |                      | R3C gr     | oup      |                         | R3R gr | oup |                         | Point estimate of VE unadjusted<br>for covariates R3C vs C3C |        | Point estimate of VE una<br>for covariates R3R vs C3C                  |         |
|-------------------------|-----------|---------|----------------------|------------|----------|-------------------------|--------|-----|-------------------------|--------------------------------------------------------------|--------|------------------------------------------------------------------------|---------|
|                         | N         | n       | Proportion affected* | N          | n        | Proportion<br>affected* | N      | n   | Proportion<br>affected* | VE (95% CI)                                                  | p valu | VE (95% CI)                                                            | p value |
| 5-17 months age catego  | ry        |         |                      |            |          |                         |        |     |                         |                                                              |        |                                                                        |         |
| Month 0 to study end    | 2974      | 171     | 0-06                 | 2972       | 169      | 0.06                    | 2976   | 116 | 0.04                    | 1·1% (-23·0 to 20·5)                                         | 0.96   | 32·2% (13·7 to 46·9)                                                   | 0.0009  |
| Months 0-32             | 2974      | 152     | 0-05                 | 2972       | 145      | 0.05                    | 2976   | 99  | 0.03                    | 4·5% (-20·6 to 24·5)                                         | 0.72   | 34·9% (15·6 to 50·0)                                                   | 0.0006  |
| Months 0-20†            | 2974      | 118     | 0-04                 | 5949       | 156      | 0.03                    | 5949   | 156 | 0.03                    | 33.9% (15.3 to 48.3)                                         | 0.000  | 7 "                                                                    |         |
| Months 21-32            | 2701      | 42      | 0-02                 | 2717       | 61       | 0-02                    | 2679   | 43  | 0-02                    | -44·4% (-119·0 to 4·1)                                       | 0.073  | -3·2% (-61·8 to 34·1)                                                  | 0.91    |
| Month 33 to study end   | 2309      | 20      | 0-01                 | 2267       | 31       | 0.01                    | 2236   | 23  | 0.01                    | -57·9% (-192·0 to 12·8)                                      | 0.12   | -18-8% (-128-0 to 37-6)                                                | 0.65    |
| Month 21 to study end   | 2702      | 62      | 0-02                 | 2719       | 88       | 0.03                    | 2681   | 64  | 0.02                    | -41·0% (-98·5 to -0·8)                                       | 0.038  | -4·0% (-50·0 to 27·8)                                                  | 0.86    |
| 6-12 weeks age category | ,         |         |                      |            |          |                         |        |     |                         |                                                              |        |                                                                        |         |
| Month 0 to study end    | 2179      | 116     | 0-05                 | 2178       | 104      | 0-05                    | 2180   | 96  | 0-04                    | 10·3% (-17·9 to 31·8)                                        | 0.45   | 17·3% (-9·4 to 37·5)                                                   | 0.16    |
| Months 0-32             | 2179      | 101     | 0-05                 | 2178       | 93       | 0.04                    | 2180   | 89  | 0.04                    | 7.9% (-23.3 to 31.2)                                         | 0.61   | 11.9% (-18.3 to 34.5)                                                  | 0.37    |
| Months 0-20†            | 2179      | 66      | 0.03                 | 4358       | 121      | 0.03                    | 4358   | 121 | 0.03                    | 8·3% (-25·7 to 32·6)                                         | 0.58   |                                                                        |         |
| Months 21-32            | 1976      | 43      | 0-02                 | 1995       | 40       | 0-02                    | 1966   | 29  | 0-01                    | 7·9% (-45·1 to 41·6)                                         | 0.74   | 32·2% (-11·1 to 59·2)                                                  | 0.12    |
| Month 33 to study end   | 1657      | 16      | 0-01                 | 1658       | 14       | 0.01                    | 1654   | 12  | 0.01                    | 12.6% (-91.2 to 60.5)                                        | 0.72   | 24·9% (-69·3 to 67·6)                                                  | 0.57    |
| Month 21 to study end   | 1976      | 58      | 0.03                 | 1996       | 52       | 0.03                    | 1966   | 39  | 0-02                    | 11·2% (-31·3 to 40·2)                                        | 0.56   | 32·4% (-3·2 to 56·2)                                                   | 0.064   |
|                         | 1 primary | schedul | e without boos       | ter. R3R=F | RTS,S/AS | 01 primary sch          |        |     |                         |                                                              |        | of participants with at least one<br>a). *Proportion of participants w |         |

## Mosquirix recommandations de l' OMS Novembre 2015

- le paludisme touche environs 200 000 millions de personnes par an en Afrique, environs 600.000 morts chaque année (82% < 5ans)</li>
- « ...le premier facteur de mortalité sur ce Continent reste le paludisme », a rapporté le Pr Jon Abramson, président du Groupe stratégique consultatif d'experts de l'OMS (SAGE) sur la vaccination. Il précise également que « les tests pourraient ouvrir la voie à une utilisation à grande échelle du vaccin au cours des cinq prochaines années ».
- Phase pilote: distribution dans 3-5 pays
- quatre injections : première dose serait administrée à des enfants âgés de cinq à 17 mois afin d'évaluer son effet protecteur.

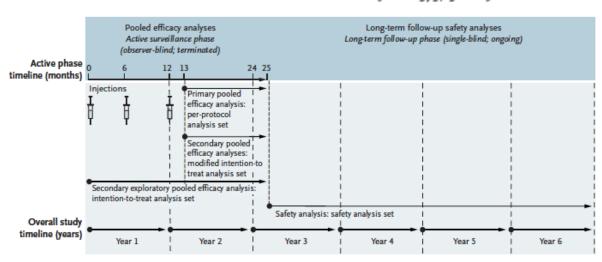


# Dengvaxia: un vaccin chimére dengue-fièvre jaune

- Analyse poolée de 4 essais cliniques
- 35 000 enfants, 2-16 ans
- Efficacité sur les hospitalisations pour dengue documentée jusqu'à 6 ans

## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


**SEPTEMBER 24, 2015** 

VOL. 373 NO. 13

Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease

S.R. Hadinegoro, J.L. Arredondo-García, M.R. Capeding, C. Deseda, T. Chotpitayasunondh, R. Dietze, H.I. Hj Muhammad Ismail, H. Reynales, K. Limkittikul, D.M. Rivera-Medina, H.N. Tran, A. Bouckenooghe, D. Chansinghakul, M. Cortés, K. Fanouillere, R. Forrat, C. Frago, S. Gailhardou, N. Jackson, F. Noriega, E. Plennevaux, T.A. Wartel, B. Zambrano, and M. Saville, for the CYD-TDV Dengue Vaccine Working Group\*

N ENGL J MED 373;13 NEJM.ORG SEPTEMBER 24, 2015



## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 24, 2015

VOL. 373 NO. 13

### Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease

S.R. Hadinegoro, J.L. Arredondo-García, M.R. Capeding, C. Deseda, T. Chotpitayasunondh, R. Dietze, H.I. Hj Muhammad Ismail, H. Reynales, K. Limkittikul, D.M. Rivera-Medina, H.N. Tran, A. Bouckenooghe, D. Chansinghakul, M. Cortés, K. Fanouillere, R. Forrat, C. Frago, S. Gailhardou, N. Jackson, F. Noriega, E. Plennevaux, T.A. Wartel, B. Zambrano, and M. Saville, for the CYD-TDV Dengue Vaccine Working Group\*

#### A Participants 9 Yr of Age or Older

| Serotype and Trial       | Vaccine<br>Group | Control<br>Group |             |                     |         |   |       |
|--------------------------|------------------|------------------|-------------|---------------------|---------|---|-------|
| beroype and than         |                  | es/total no.     |             |                     |         |   |       |
| All serotypes            |                  | ,                |             |                     |         |   |       |
| CYD14                    | 90/3316          | 136/1656         |             |                     |         | _ | -     |
| CYD15                    | 277/13,914       | 385/6940         |             |                     | _       | _ | _     |
| CYD14+CYD15              | 2/22,221         | ,                |             |                     | -       |   | -     |
| Serotype 1               |                  |                  |             |                     |         |   |       |
| CYD14                    | 36/3316          | 52/1656          |             | -                   |         |   |       |
| CYD15                    | 99/13,914        | 109/6940         |             |                     | -       |   |       |
| CYD14+CYD15              | , .              | ,                |             | _                   |         |   |       |
| Serotype 2               |                  |                  |             |                     |         |   |       |
| CYD14                    | 33/3316          | 26/1656          |             | -                   |         |   |       |
| CYD15                    | 84/13,914        | 84/6940          |             |                     |         |   |       |
| CYD14+CYD15              | , .              | ,                |             |                     |         |   |       |
| Serotype 3               |                  |                  |             |                     |         |   |       |
| CYD14                    | 11/3316          | 18/1656          |             |                     |         | _ |       |
| CYD15                    | 55/13,914        | 106/6940         |             |                     |         | - | -     |
| CYD14+CYD15              |                  |                  |             |                     | _       | • | -     |
| Serotype 4               |                  |                  |             |                     |         |   |       |
| CYD14                    | 10/3316          | 41/1656          |             |                     |         |   |       |
| CYD15                    | 32/13,914        | 83/6940          |             |                     |         | _ |       |
| CYD14+CYD15              |                  |                  |             |                     |         |   |       |
| Seropositive at baseline |                  |                  |             |                     |         |   |       |
| CYD14                    | 7/487            | 17/251           |             | -                   |         | - |       |
| CYD15                    | 8/1073           | 23/512           |             |                     | _       | _ | -     |
| CYD14+CYD15              |                  |                  |             |                     | _       | _ | -     |
| Seronegative at baseline |                  |                  |             |                     |         |   |       |
| CYD14                    | 7/129            | 8/59             |             |                     |         | - |       |
| CYD15                    | 9/258            | 9/149 ◀          |             | -                   |         | - | _     |
| CYD14+CYD15              |                  |                  |             |                     | •       | _ |       |
|                          |                  | -3               | 0 -20 -10 ( | 0 10 20 30 40 5     | 0 60 70 |   | 80 90 |
|                          |                  | -                |             | Vaccine Efficacy (9 |         |   |       |
|                          |                  |                  |             | vaccine ciricacy (  | 9       |   |       |

## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 24, 2015

VOL. 373 NO. 13

### Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease

S.R. Hadinegoro, J.L. Arredondo-García, M.R. Capeding, C. Deseda, T. Chotpitayasunondh, R. Dietze, H.I. Hj Muhammad Ismail, H. Reynales, K. Limkittikul, D.M. Rivera-Medina, H.N. Tran, A. Bouckenooghe, D. Chansinghakul, M. Cortés, K. Fanouillere, R. Forrat, C. Frago, S. Gailhardou, N. Jackson, F. Noriega, E. Plennevaux, T.A. Wartel, B. Zambrano, and M. Saville, for the CYD-TDV Dengue Vaccine Working Group\*

#### B Participants under 9 Yr of Age

| Serotype in Trial CYD14  | Group        | Control<br>Group |                                                                | Vaccine Efficacy<br>(95% CI) |
|--------------------------|--------------|------------------|----------------------------------------------------------------|------------------------------|
| ,                        | no. of cases |                  |                                                                |                              |
| All serotypes            | 196/3532     | 173/1768         |                                                                | 44.6 (31.6 to 55.0)          |
| Serotype 1               | 80/3532      | 74/1768          |                                                                | 46.6 (25.7 to 61.5)          |
| Serotype 2               | 64/3532      | 48/1768          | -                                                              | 33.6 (1.3 to 55.0)           |
| Serotype 3               | 19/3532      | 25/1768          |                                                                | 62.1 (28.4 to 80.3)          |
| Serotype 4               | 30/3532      | 31/1768          |                                                                | 51.7 (17.6 to 71.8)          |
| Seropositive at baseline | 11/414       | 17/193           | -                                                              | 70.1 (32.3 to 87.3)          |
| Seronegative at baseline | 13/295       | 10/157           | -                                                              | 14.4 (-111 to 63.5)          |
|                          |              | -                | 0 –20 –10 0 10 20 30 40 50 60 70 80 90 10 Vaccine Efficacy (%) | 00                           |

### Un vaccin efficace contre Ebola?

Vaccins utilisant des vecteurs viraux pour présenter la glycoprotéine du virus Ebola

•cAd3-ZEBOV: adenovirus du chimpanzé non replicatif bivalent ( 2 souches les + virulentes Zaïre et Soudan), développé par GSK et le NIH

- •rVSV-ZEBOV: virus de la stomatite vésiculaire (VSV) réplicatif, développé par Agence de Santé Publique du Canada (License Newlinks Genetics) racheté par Merck
- •Prime boost Ad26.ZEBOV et MVA-BN-Filo (programme IMI : Inserm-Janssen):

The NEW ENGLAND JOURNAL of MEDICINE

#### EDITORIAL



#### One Step Closer to an Ebola Virus Vaccine

Daniel G. Bausch, M.D., M.P.H.&T.M.

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

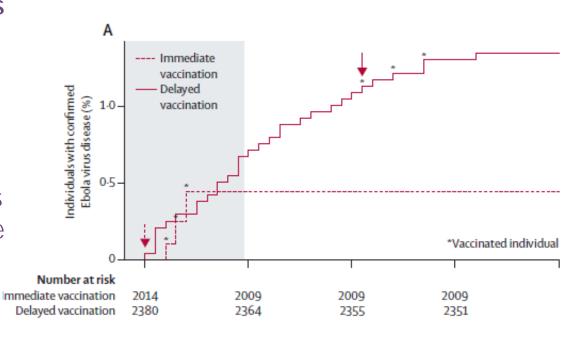
#### Chimpanzee Adenovirus Vector Ebola Vaccine — Preliminary Report

Julie E. Ledgerwood, D.O., Adam D. DeZure, M.D., Daphne A. Stanley, M.S.,

This article was published on November 26, 2014, at NEJM.org.



## Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial




Ana Maria Henao-Restrepo, Ira M Longini, Matthias Egger, Natalie E Dean, W John Edmunds, Anton Camacho, Miles W Carroll, Moussa Doumbia, Bertrand Draguez, Sophie Duraffour, Godwin Enwere, Rebecca Grais, Stephan Gunther, Stefanie Hossmann, Mandy Kader Kondé, Souleymane Kone, Eeva Kuisma, Myron M Levine, Sema Mandal, Gunnstein Norheim, Ximena Riveros, Aboubacar Sou mah, Sven Trelle, Andrea S Vicari, Conall H Watson, Sakoba Kélta, Marie Paule Kieny\*, John-Arne Rottingen\*

- Essai randomisé en anneau:
- -Randomisation des contacts d'un cas et des contacts des contacts
- -2 groupes: vaccination immédiate ou vaccination différée à 21j (1 dose)

#### Résultats

-> 10j suivant la vaccination : 0 cas dans le bras vaccination immédiate vs 16 cas dans le bras différé



Efficacité vaccinale : 100% (CI 95%; 74,7%-100.0%: p=0,0036)



## Vaccination contre la grippe de la femme enceinte

Etude prospective comparative contre vaccin méningo quadrivalent conjugué réalisée au Mali, vaccination 3e trimestre de grossesse

 4193 femmes randomisées et vaccinées : 2018 avec le vaccin grippe trivalent, 2085 avec le vaccin meningo quadrivalent conjugué

Efficacité sur le 1er épisode de grippe documentée par PCR

- Chez les mère: 70.3% (IC95% 42.2-85.8)
- Chez l' enfant :
   33.3% (IC95% 3.7-53.9) ITT
   37.3% (IC95% 7.6-57.8) Per protocol analysis (vaccination au moins 14j avant
   17es โหลดอน และคายาง

Articles

Maternal immunisation with trivalent inactivated influenza vaccine for prevention of influenza in infants in Mali: a prospective, active-controlled, observer-blind, randomised phase 4 trial



Milagritos D Tapia, Samba O Sow, Boubou Tamboura, Ibrahima Tégueté, Marcela F Pasetti, Mamoudou Kodio, Urna Onwuchekwa, Sharon M Tennant, William C Blackwelder, Flanon Coulibdy, Awa Traoré, Adama Mamby Keita, Fadima Cheick Haidara, Fatoumata Diallo, Moussa Doumbia. Doh Sanoaa. Ellen DeMatt. Nicholas H Schluterman. Andrea Buchwald. Karen L Kotloff. Wilbur H Chen. Evan W Orenstein. Lat



www.thelancet.com/infection Published online May 31, 2016 http://dx.dol.org/10.1016/51473-3099(16)30054-8

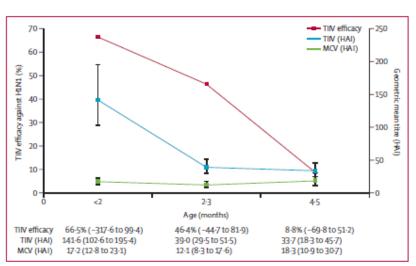



Figure 2: Vaccine efficacy and HAI antibody geometric mean titres in Infants, by age and maternal vaccine group Error bars and data in parentheses show 95% CIs.TIIV—trivalent inactivated influenza vaccine. MCV—quadrivalent meningococcal conjugate vaccine. HAI—hemagglutination inhibition antibodies.

#### MAJOR ARTICLE

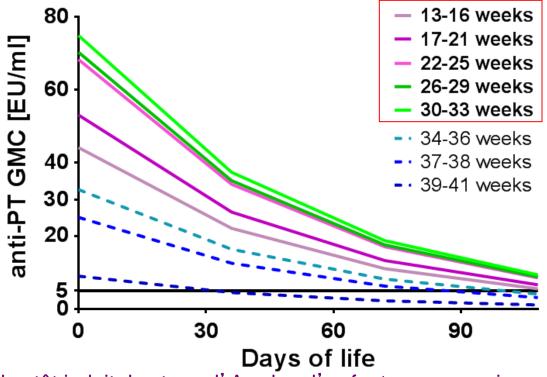






## Maternal Immunization Earlier in Pregnancy Maximizes Antibody Transfer and Expected Infant Seropositivity Against Pertussis

Christiane S. Eberhardt,<sup>1,2</sup> Geraldine Blanchard-Rohner,<sup>3</sup> Barbara Lemaître,<sup>1</sup> Meriem Boukrid,<sup>4</sup> Christophe Combescure,<sup>5</sup> Véronique Othenin-Girard,<sup>4</sup> Antonina Chilin,<sup>4</sup> Jean Petre,<sup>6</sup> Begoña Martinez de Tejada,<sup>4</sup> and Claire-Anne Siegrist<sup>1,3</sup>


Timing of Maternal Pertussis Vaccination • CID 2016:62 (1 April) • 829

A quel terme de grossesse vacciner ? On pensait que c'était mieux en fin de grossesse, Au 3èmetrimestre





# Meilleur transfert passif d'anticorps lorsque la vaccination a été effectuée plus tôt...



- Vacciner plus tôt induit des taux d' Ac chez l' enfant > que vacciner plus tard
- Pas de corrélation directe entre le taux d' Ac de la mère et les taux chez l'enfant.
- Ce qui compte, c' est le pic pendant la période de transfert des AC et la durée du transfert (≈ AUC).



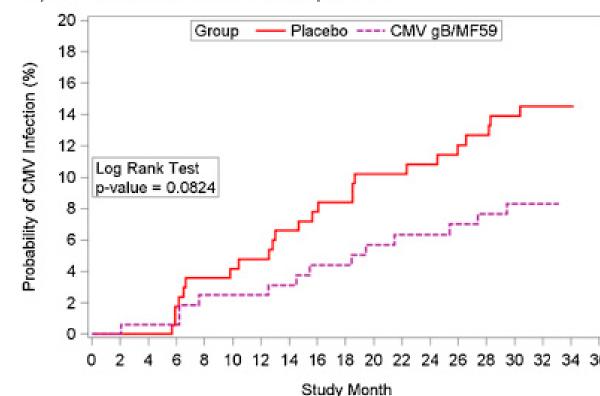
Contents lists available at ScienceDirect

### V

Vaccine

journal homepage: www.elsevier.com/locate/vaccine




Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial



David I. Bernstein<sup>a,\*</sup>, Flor M. Munoz<sup>b</sup>, S. Todd Callahan<sup>c</sup>, Richard Rupp<sup>d</sup>,

- 402 jeunes filles 12-17 ans
- gB adjuvantée MF59
- 3 injections M0, M1, M6
- Infection CMV ("CR urines et/ou séroconversion)
- Efficacité vaccinale : 43%
   95%CI: -36; 76% (p=0.20)

B) After 2 Doses Per Protocol Population



## Vaccination et grossesse : perspectives

Comment

#### Group B streptococcal maternal vaccination, the goal is near (W



Infections are the foremost cause of neonatal mortality maternal protective immunity, resulting in a specific worldwide, and group B streptococcus (GBS) remains transplacental IgG passage. IgG transfer would protect a leading cause of neonatal sepsis and meningitis.11 neonates from birth through the first weeks post-In The Lancet Infectious Diseases, Shabir Madhi and partum, when late-onset disease occurs. colleagues' report the first phase 1b/2 randomised trial Madhi and colleagues' present results from their large

on a trivalent GBS vaccine in 60 non-pregnant and and challenging randomised trial on a new capsular 320 pregnant (in the third trimester) healthy black- polysaccharide trivalent vaccine based on CRM so as the conjugate protein. The capsular polysaccharide



Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: a randomised phase 1b/2 trial



Shabir A Madhi, Clare L Cutland, Lisa Jose, Anthonet Koen, Niresha Govender, Frederick Wittke\*, Morounfolu Oluqbosi,

www.thelancet.com/infection Published online April 29, 2016 http://dx.doi.org/10.1016/S1473-3099(16)00152-3

### Strepto B

Vaccin polyosidique conjugué sérotypes la, lb, et III

The Journal of Infectious Diseases









**VRS** 

nanoparticule dirigée contre la protéine de fusion du VRS

A Randomized, Blinded, Controlled, Dose-Ranging Study of a Respiratory Syncytial Virus Recombinant Fusion (F) Nanoparticle Vaccine in Healthy Women of Childbearing Age

Gregory M. Glenn, Louis F. Fries, D. Nigel Thomas, Gale Smith, Eloi Kpamegan, Hanxin Lu, David Flyer, Dewal Jani, Somia P. Hickman, and

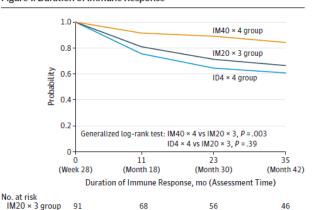
Novavax, Inc., Gaithersburg, Maryland; and "Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, Texas

Women of Childbearing Age and RSV F Vaccine • JID 2016:213 (1 February) •

## Vaccination contre l'hépatite B des populations immunodéprimées: intérêt de schémas intensifiés chez les patients vivant avec le VIH

Articles

 persistance de la réponse avec primo vaccination par 4 injections double dose


Research

#### **Original Investigation**

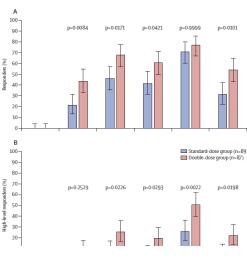
Long-term Immune Response to Hepatitis B Virus Vaccination Regimens in Adults With Human Immunodeficiency Virus 1 Secondary Analysis of a Randomized Clinical Trial

Odile Launay, MD, PhD; Arielle R. Rosenberg, MD, PhD; David Rey, MD; Noelle Pouget, PhD; Marie-Louise Michel, PhD; Jacques Reynes, MD, PhD; Didier Neau, MD, PhD; Francois Raffi, MD, PhD; Lionel Piroth, MD, PhD; Fabrice Carrat, MD, PhD; for the ANRS HBO3 VIHVAC-B (Trial Comparing 3 Strategies of Vaccination Against the Virus of Hepatitis Bi in HIV-Infected Patients) Group

Figure 1. Duration of Immune Response



95


81

Safety and immunogenicity of double-dose versus standard-dose hepatitis B revaccination in non-responding adults with HIV-1 (ANRS HB04 B-B00ST): a multicentre, open-label, randomised controlled trial



David Rey, Lionel Piroth, Marie-Josée Wendling, Patrick Miailhes, Marie-Louise Michel, Cécilie Dufour, Georges Haour, Philippe Sogni, Alexandra Rohel, Faiza Ajana, Eric Billaud, Jean-Michel Molina, Odile Launay, Fabrice Carrat, and the ANRS HB04 B-B00ST study group'

 supériorité de la vaccination par 3 double doses chez des non repondeurs



The Journal of Infectious Diseases

MAJOR ARTICLE







Vaccination Against Hepatitis B Virus (HBV) in HIV-1–Infected Patients With Isolated Anti–HBV Core Antibody: The ANRS HB EP03 CISOVAC Prospective Study

Lionel Piroth, Odile Launay, Marie-Louise Michel, Abderrahmane Bourredjem, Patrick Miailhes, Faiza Ajana, Catherine Chirouze, David Zucman, Marie-Josee Wendling, Dani Nazzal, Fabrice Carrat, M.1.12 David Rey, 11 and Christine Binquet; the ANRS HB EP03 CISOVAC Study Group

IM40 × 4 group 119

ID4 × 4 group

106

77



Contents lists available at ScienceDirect

#### Vaccine

journal homepage: www.elsevier.com/locate/vaccine



#### Vaccine hesitancy Causes, consequences, and a call to action



Daniel A. Salmon a,b,\*, Matthew Z. Dudley b, Jason M. Glanz c,d, Saad B. Omer e

- <sup>a</sup> Departments of International Health and Health, Behavior, and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- <sup>b</sup> Institute for Vaccine Safety, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- <sup>c</sup> Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, United States
- d Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- e Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Définition OMS (Strategic Advisory Group of Experts (SAGE): « delay in acceptance or refusal of vaccines despite availability of vaccinations services ».
- Hésitation vis-à-vis de la décision de se vacciner ou de faire vacciner ses enfants.
- Nombreux facteurs:
  - le vaccin victime de son succès
  - les polémiques autour des effets indésirables attribués aux vaccins: autisme, diabète, allergie; maladies auto immunes...
  - le manque de confiance dans les autorités de santé
  - les vaccins profitent aux industriels
  - on préfère des produits « naturels » voire des « vaccins homéopathiques »....
  - un changement des relations avec les parents et les patients, nécessité de pouvoir expliquer l'intérêt du vaccin



### Et chez les professionnels de santé?



#### Contents lists available at ScienceDirect

#### **EBioMedicine**



journal homepage: www.ebiomedicine.com

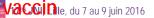
Original Article

Vaccine Hesitancy Among General Practitioners and Its Determinants During Controversies: A National Cross-sectional Survey in France



Pierre Verger <sup>a,b,c,d,\*</sup>, Lisa Fressard <sup>a,b,c</sup>, Fanny Collange <sup>a,b,c</sup>, Arnaud Gautier <sup>e</sup>, Christine Jestin <sup>e</sup>, Odile Launay <sup>d,f</sup>, Jocelyn Raude <sup>g</sup>, Céline Pulcini <sup>h,i</sup>, Patrick Peretti-Watel <sup>a,b,c</sup>

Practices, opinions, and attitudes of GPs regarding vaccination (weighted data, N = 1582).


| Frequency of vaccine recommendations (line %)                   | Never | Sometimes | Often | Always |
|-----------------------------------------------------------------|-------|-----------|-------|--------|
| MMR to non-immune adolescents and young adults                  | 4.3   | 12,9      | 22.9  | 59.9   |
| Meningococcal meningitis C to ages 2–24 (catch-up) <sup>a</sup> | 17.6  | 25.7      | 23.4  | 33.3   |
| Meningococcal meningitis C to 12-month-old infants              | 15.7  | 16.7      | 15.9  | 51.7   |
| Human papilloma virus vaccine to girls aged 11-14b              | 10.5  | 17,2      | 26.8  | 45.6   |
| Hepatitis B to adolescents (catch-up)                           | 10.9  | 26.0      | 29.1  | 34.0   |
| Seasonal influenza to adults under 65 with diabetes             | 4.5   | 11.6      | 26.2  | 57.6   |

16% à 43% des médecins généralistes interrogés ne recommandent jamais ou seulement quelquefois au moins un des vaccins du calendrier vaccinal

| Perceptions of vaccines utility (line %)                                   | Strongly<br>disagree | Somewhat disagree       | Somewhat agree     | Strongly agree    |
|----------------------------------------------------------------------------|----------------------|-------------------------|--------------------|-------------------|
| Today some vaccines recommended by authorities are not useful <sup>b</sup> | 38.3                 | 35.3                    | 20,0               | 6.4               |
| Children are vaccinated against too many diseases <sup>b</sup>             | 53.1                 | 26.7                    | 14,6               | 5.5               |
| Self-efficacy: confidence in one's ability to explain vaccines (line %)    | Very<br>unconfident  | Somewhat<br>unconfident | Somewhat confident | Very<br>confident |
| Vaccine utility                                                            | 0.9                  | 2.9                     | 41.7               | 54.5              |
| Vaccine safety <sup>a</sup>                                                | 2.2                  | 15.8                    | 55.7               | 26.2              |
| Role of adjuvants                                                          | 11.1                 | 45.7                    | 32.2               | 11.0              |

#### En analyse multivariée, les médecins vont recommander

- plus souvent les vaccins : s'ils se sentent à l'aise pour expliquer les bénéfices et les risques aux patients et s'ils ont confiance dans les sources officielles d'information
- moins souvent s'ils ont la sensation d'effets indésirables fréquents ou qu'ils doutent sur l'utilité du



## Merci pour votre attention!

