Mycoplasma genitalium: epidemiology, diagnostics and antimicrobial resistance

Cécile Bébéar

USC EA 3671 Mycoplasmal and chlamydial infections in humans
INRA - University of Bordeaux
Bordeaux University Hospital
Bordeaux, France
Déclaration d’intérêts de 2012 à 2015

Investigateur principal d’une recherche ou d’une étude clinique :

- Roche Diagnostics,
- Diagenode,
- Hologic,
- SpeeDx
Mycoplasma genitalium

- 1980: *Mycoplasma genitalium* isolated from 2 of 13 men with nongonococcal urethritis (NGU)
 - Mollicutes class: no cell wall
 - Very slow growth (>50 days)
 - Very few isolates available
 - Animal model in chimpanzees

- 1990’s: development of PCR assays, allowed study of disease association

- 1995: smallest genome known (580 kbp, ≈ 480 genes)
 - The 2nd bacterial genome fully sequenced (Himmelreich, 1995)
 - Minimal requirements of life, concept of minimal cell
M. genitalium: prevalence and incidence

• Prevalence
 - Community-based populations 1–3%
 Carriage may be asymptomatic
 - STI testing centers populations (high risk) 4 – 38%

• Incidence
 - University women: 0.9 per 100 WY
 - Kenyan female sex workers: 23 per 100 WY

M. genitalium: disease association

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGU</td>
<td>Urethritis</td>
</tr>
<tr>
<td>Balanoposthitis</td>
<td>Cervicitis</td>
</tr>
<tr>
<td>Epididymitis</td>
<td>Endometritis, Salpingitis (PID)</td>
</tr>
<tr>
<td>Prostatitis</td>
<td></td>
</tr>
<tr>
<td>Proctitis (MSM)</td>
<td>Adverse pregnancy outcomes</td>
</tr>
<tr>
<td></td>
<td>Female infertility</td>
</tr>
<tr>
<td></td>
<td>Increased HIV transmission</td>
</tr>
</tbody>
</table>
Association between *M. genitalium* and male NGU (1)

- Responsible for 15-20% NGU (pooled OR 5.5),
 20-25% NCNGU,
 30% persistent-recurrent U

- 2nd cause of NGU after *Chlamydia trachomatis*

- Coinfection with *C. trachomatis* not incommon

- 2015 Updated CDC STD guidelines, 2016 European guideline on NGU, 2016 European guideline on *M. genitalium* infection: role of Mg in urethritis and treatment-related implications

Association between *M. genitalium* and male NGU (2)

Manhart et al, *Clin Infect Dis* 2011
Association between *M. genitalium* and female reproductive tract disease (1)

- Fewer studies than in men, small sample sizes
- Commonly asymptomatic
- Mg detected in 10-30% clinical cervicitis, 2-22% PID
- Similar to *C. trachomatis*: Mg can cause PID (proportion of cases unknown), but less frequently than with *C. trachomatis*
- Adverse pregnancy outcomes and female infertility: more research needed
- 2015 Updated CDC STD guidelines, 2016 European guideline on *M. genitalium* infection: role of Mg in cervicitis and treatment-related implications

Association between *M. genitalium* and female disease (2)
Metanalysis 1980-2014
(Lis et al, Clin Infect Dis 2015, 61:418, PMID: 26042815)

- *M. genitalium* infection significantly associated with approximately 2-fold increased risk of:
 - Cervicitis (20 included studies): pooled OR, 1.66
 - PID (10 studies): pooled OR, 2.14
 - Pre-term birth (6 studies): pooled OR 1.89
 - Spontaneous abortion (3 studies): pooled OR 1.82

- Elevated risk of female infertility
 - 5 included studies, risk about 2.5-fold
 - Only statistically significant in subanalyses
Diagnosis of *M. genitalium* infections (1)

- **Only a direct diagnosis**, no serology kit commercialized
- **Culture extremely fastidious** (very few strains isolated worldwide, coculture with Vero cells)
- **By nucleic acid amplification tests:**
 - A lot of in-house PCRs, real-time PCR ++, TMA
 - MgpA adhesin gene, 16S rRNA
 - Monoplex and multiplex tests commercialized, some CE-marked, no FDA-approved (RUO tests)
 - Load very low even in symptomatic infections
 - Some specimens better than others:
 - FVU > urethral swabs in men
 - vaginal swabs > cervix > FVU in women

Commercially available mono and multiplex NAATs for *M. genitalium*

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Kit</th>
<th>Technique</th>
<th>Pathogens targeted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagenode</td>
<td>S-DIAMGTV</td>
<td>qPCR</td>
<td>M. genitalium, Trichomonas vaginalis</td>
</tr>
<tr>
<td>Fast-track Diagnostics</td>
<td>Several kits</td>
<td>qPCR</td>
<td>M. genitalium and several STI pathogens and urogenital mycoplasmas</td>
</tr>
<tr>
<td>Hologic</td>
<td>Mycoplasma genitalium</td>
<td>TMA</td>
<td>M. genitalium</td>
</tr>
<tr>
<td></td>
<td>Aptima assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche/TIB MolBiol</td>
<td>LightMix Mycoplasma genitalium</td>
<td>qPCR</td>
<td>M. genitalium</td>
</tr>
<tr>
<td>Sacace</td>
<td>Several kits</td>
<td>qPCR</td>
<td>M. genitalium alone or multiplexed with several STI pathogens and/or urogenital mycoplasmas</td>
</tr>
<tr>
<td>Seegene</td>
<td>Several kits</td>
<td>qPCR</td>
<td>M. genitalium and several STI pathogens and urogenital mycoplasmas</td>
</tr>
</tbody>
</table>
Diagnosis of *M. genitalium* infections (2)

• **Barriers for Mg testing:**
 - No reimbursement
 - Lack of validated commercial assays
 - Low throughput in commercial available assays
 - Test diagn. performance varies significantly between labs

⇒ **Need for quality assessment**
⇒ **Diagnostic activity is predicted to increase**
Diagnosis of *M. genitalium* infections (3)

- **Indications for Mg testing:**
 - Symptoms
 - Risk factors
 - Symptoms in a regular sexual partner
 - Persons with high-risk sexual behavior (<40 yo, >3 new sexual contacts, >5 life-time partners)
 - Sexual contact of persons with STI or PID, Mg-infected persons
 - Before termination of pregnancy or other procedures, that break the cervical barrier
 - Regular testing of MSM including anal sampling (role of Mg in increased HIV transmission risk)

M. genitalium and antibiotics

- **Intrinsic resistance related to** β-lactams +++, fosfomycin, glycopeptides and rifampicin

- **Active antibiotics in vitro**
 - Macrolides, lincosamides, streptogramins, ketolides (MLSK), tetracyclines, fluoroquinolones
 - Early in vitro Mg studies:
 - highly S to macrolides (azithromycin, AZM), reduced S to tetracyclines and older fluoroquinolones (CIP, OFX)

- No antimicrobial susceptibility testing done in routine

- **Acquired resistance**
 - Genetic support: chromosomal mutations ++
 - Target modification

Most male NGU studies

Tetracyclines not useful, effective in only 30-40% (no acquired R)

AZM 1g single dose = 1st line treatment

Efficacy of azithromycin against *M. genitalium* declines

![Graph showing the efficacy of azithromycin against *M. genitalium* before and after 2009.](image)

- Before 2009: 83.50%
- Since 2009: 67%

Pooled microbial cure rate from meta-analysis if 21 studies (n=1,490)

M. genitalium treatment studies

- Most male NGU studies

- Tetracyclines not useful, effective in only 30-40% (no acquired resistance). AZM 1g single dose = 1st line treatment

- Metanalysis on the efficacy of AZM for Mg treatment (Lau Clin Infect Dis 2015)

⇒ Declining treatment efficacy of AZM 1g for the treatment of urogenital *M. genitalium*

⇒ Why? Increasing prevalence of macrolide resistance due to widespread use of AZM 1g single dose

Macrolide resistance in *M. genitalium* (1)

- Mutations in domain V of 23S rRNA
 - A2058G/C, A2059G (*E. coli* numbering)
 - AZM 1g single dose
 - Selection of resistant mutants **during** AZM treatment
 - Therapeutic failure if patient infected with a mutated strain
Macrolide resistance in *M. genitalium* (2)

- **Extended 1.5 g AZM (500 mg d1, 250 mg d2-4) 85-95% effective and associated with lower risk of inducing AZM R**

- **Patients failing azithromycin 1g single dose cannot be treated successfully with extended 1.5 g AZM**

- **Macrolide resistance since 2005 in Australia, New-Zealand, Japan, Scandinavia, The Netherlands, France, Spain, Russia, South Africa**

 France: 17.2% of specimens (2013-2014)
 Denmark, UK: ≈ 40%...Greenland 100%!!

Frequency of macrolide resistance in *M. genitalium*

- No data
- <10%
- 10%-20%
- 30%-40%
- 40-50%
Fluoroquinolone resistance in *M. genitalium*

• **Moxifloxacin 400 mg for 7-10 d in case of AZM failure** but…

 www.cdc.gov/std/tg2015;

• **Emerging MXF resistance** with few MXF-R isolates and failures described in Australia, Japan, Scandinavia and Europe:

 - **Australia and Japan**: prevalence ranges from 10-47% between 2006 and 2014
 - **France**: prevalence of 7% in 2013-2014
 - **UK**: prevalence of 4.5% in 2011

• **Mutations in the bacterial target genes of fluoroquinolones**

 - Most frequent mutations in *parC*
 - A few mutations in *gyrA*
Molecular diagnosis of *M. genitalium* antibiotic resistance

Molecular detection of macrolide resistance
- Sanger sequencing, SNP detection using pyrosequencing, qPCR (FRET or TaqMan probes)
- In-house and commercial assays (Speedx)
- Simultaneous detection of Mg and macrolide resistance directly from specimens -> treatment to be adjusted

Molecular detection of fluoroquinololone resistance
- amplification and sequencing of the gene targets (*parC*+++)

Conclusion

- *M. genitalium*, a STI pathogen, has emerged!!
 An accepted cause of male NGU and female cervicitis,
 Significant association with PID

- Diagnostic activity is predicted to increase (commercially available NAAT tests): testing Mg on symptomatic patients and patients with high STI risk behavior

- Increasing prevalence of macrolide resistance \(\Rightarrow\) Decreasing efficacy of AZM monotherapy

- 2nd line treatment with MXF …under pressure

\(\Rightarrow\) Need to detect Mg and macrolide resistance in the same time
 (implementation of molecular diagnostic tests):
 change from syndromic to etiologic treatment

\(\Rightarrow\) Need for trials of combinations of registered drugs and new antimicrobial compounds

Horner Clin Infect Dis 2015; Jensen BMC Infect Dis 2015; Manhart Clin Infect Dis 2014

Acknowledgments

USC EA 3671
Sabine Pereyre
Charles Cazanave
Delphine Chrisment
Arabella Touati
Bertille de Barbeyrac
Olivia Peuchant
Chloé Le Roy
Hélène Renaudin

Statens Serum Institut, Denmark
Jorgen J. Jensen

University of Washington, USA
Lisa L. Manhart

Gynecology, Infect. Diseases clinics, Bordeaux Univ Hospital
Dominique Dallay
Jacques Horowitz
Charles Cazanave