Journée des Référents en Antibiothérapie

mardi 7 juin 2016

Alternatives aux carbapénèmes

Rémy Gauzit*, Philippe Lesprit**

*Unité de réanimation thoracique, équipe mobile transversale d'infectiologie, CHU Cochin - Paris V; **Infectiologie transversale, Service de biologie clinique, hôpital Foch- Suresnes

11

Journée des Référents en Antibiothérapie

mardi 7 juin 2016

Déclaration de liens d'intérêt avec les industries de santé en rapport avec le thème de la présentation (loi du 04/03/2002) :

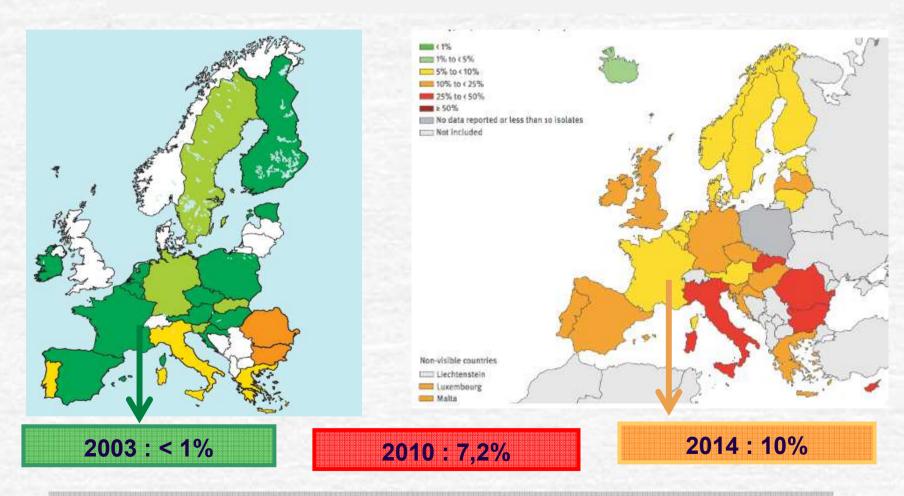
Intervenant : Rém	y Gauzit	
Titre: Alternative a	aux carbapénèmes	
		퀴
Consultant ou m	nembre d'un conseil scientifique	OUI NON
Conférencier ou	auteur/rédacteur rémunéré d'articles ou docume	ents Oui Non
	de frais de voyage, d'hébergement ou d'inscrip u autres manifestations	ption OUI NON
Investigateur pri	incipal d'une recherche ou d'une étude clinique	OUI NON

11°

Journée des Référents en Antibiothérapie

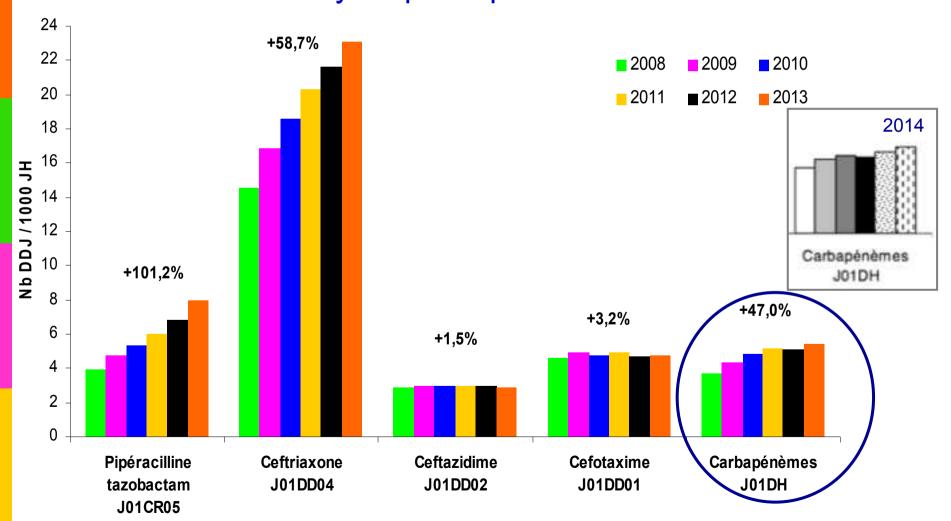
mardi 7 juin 2016

Déclaration de liens d'intérêt avec les industries de santé en rapport avec le thème de la présentation (loi du 04/03/2002) :


Intervenant : Lesprit Philippe
Titre: Alternative aux carbapénèmes

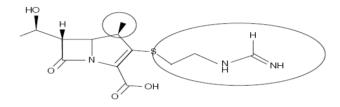
Consultant ou membre d'un conseil scientifique	OUI	NON
Conférencier ou auteur/rédacteur rémunéré d'articles ou documents	OUI	NON
Prise en charge de frais de voyage, d'hébergement ou d'inscription à des congrès ou autres manifestations	OUI	NON
Investigateur principal d'une recherche ou d'une étude clinique	OUI	NON

Résistance de *E coli* aux céphalosporines de 3^{ième} génération (85 à 100 % de BLSE)


Source: European Antimicrobial Resistance Surveillance Network (EARS-Net). http://ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/Database.aspx

Consommation en antibiotiques ATB-RAISIN, 2008-2013

Résultats



Evolution des consommations de certaines β -lactamines cohorte de 518 ES ayant participé de 2008 à 2013

Traitement de référence des BLSE : carbapénèmes

1985 Imipénème

1995 Méropénème

MAIS ...

2002 Ertapénème

2008 Doripénème

Utilisation des carbapénèmes dans les établissements de santé en 2011

Spa-Carb

251 établissements – 2 338 malades

Motif du choix d'un carbapénème

Recommandations locales 89 (3,8%)

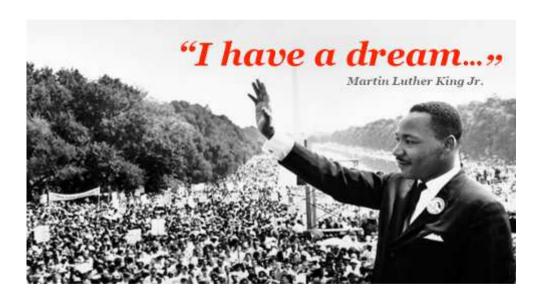
Sepsis sévère
 820 (35,1%)

Risque de résistance 414 (17,8%)
 (traitement probabiliste)

Multirésistance à l'ATBg 792 (33,9%)

o Autres 87 (3,7%)

o Inconnu 136 (5,8%)


Gauzit R Int J Antimicrob Agents 2015; 46: 707

Utilisation des carbapénèmes dans les établissements de santé en 2011

Spa-Carb

- Ce qui est déclaré :
 - Dispensation carbapénèmes contrôlée 92 %
 - Ré-évaluation systématique à 72 h 78 %
 - Ré-évaluation systématique à 7-10 j 44 %
- MAIS prescriptions de carbapénèmes :
 - 17 % sans aucun prélèvement microbiologique
 - 34 % dans infect communautaire (dont 4% cystites)
 - 21 % des motifs de prescription : BLSE identifiée mais... alternative possible 2/3 des cas...
 - après résultats microbio désescalade non optimale
- Traçabilité écrite des prescriptions < 50 %

- Définition d'un patient grave : sans doute pas la même pour :
 - o un vieux réanimateur... moi
 - o un plus jeune...lui
 - o un jeune CCA...
 - o un non réanimateur

Et si les docteurs suivaient les recommandations...

PNA grave

2014

Traitement probabiliste

- C3G IV (céfotaxime ou ceftriaxone) + amikacine
- si allergie : aztréonam + amikacine

si [sepsis grave ou geste urologique (ET) [antécédent d'IU ou colonisation urinaire à EBLSE dans les 6 mois]

- carbapénème (imipénème, méropénème) + amikacine
- en cas d'allergie aux carbapénèmes : aztréonam + amikacine
 - Si choc septique ET [IU ou colonisation urinaire à EBLSE dans les 6 mois, ou antibiothérapie par péni + inhibiteur, C2G, C3G ou fluoroquinolones dans les 6 mois, ou voyage récent en zone d'endémie d'EBLSE, ou hospitalisation < 3 mois, ou vie en long séjour]
 - carbapénème (imipénème, méropénème) + amikacine
- en cas d'allergie aux carbapénèmes : aztréonam + amikacine

Relai adapté aux résultats de l'antibiogramme

- Arrêt carbapénème dès que possible
- Poursuite en parentéral si critère de sévérité persistant
- Puis relai oral : idem PNA sans signe de gravité

Durée totale de traitement : 10 à 14 jours

3. Quand et comment diminuer l'utilisation des carbapénèmes ?

RFE SRLF/SFAR/SPILF Juin 14

Après documentation bactériologique, il faut rechercher une alternative aux carbapénèmes en fonction du site infecté et après discussion entre microbiologistes et cliniciens

Accord fort

Dossier 1

- Mr M..., 63 ans
- Voyages : Soudan, Ethiopie
- Pas d'antécédents particuliers, poids 90 kgs, taille 190 cm, BMI 26
- Fièvre, frissons, pollakiurie, brûlures mictionnelles le 25/7/2015
- SAU le 27/7/15 à 3 heures du matin

Douleurs thoraciques

T 38,9°C; Sa O₂ 97%, PA 121/62 mm Hg, FC 116/min

NFS : 6700 GB/mm³; créatininémie 100 μmol/L; ↑ troponine 0,41 μg/L

ECG normal

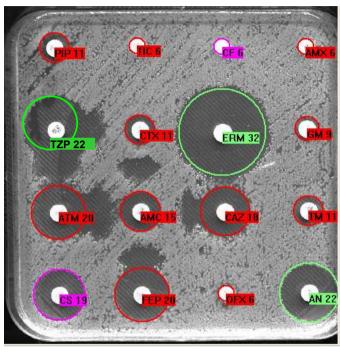
BU: leucocytes +++, nitrites -

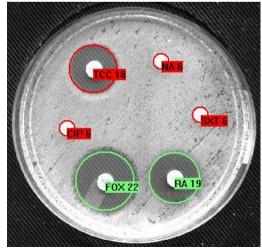
ECBU direct : leucocytes 10⁶/mL, quelques BGN

Antibiothérapie : ceftriaxone 1 g/j

Dossier 1 suite

- Hospitalisation en cardiologie pour surveillance
 Contrôle troponine normal; échocardiographie TT normale
- Fièvre persistante le 28/7/15
- CRP 175 mg/L
- Appel du laboratoire : hémocultures et ECBU + à BGN, suspicion de BLSE
- Evaluation


Rétention urinaire avec résidu de 300 ml au bladder scan : pose d'une SU


Modification antibiothérapie : imipénème IV 1 g x3/j

Dossier 1: antibiogramme

27/07/2015	11278882 9		Hemoculture anaerobie	· Validé	
07:20	·	Irgences	(Périphérique)		(.) *
27/07/2015 07:2	0 Hemocultur	e anaerobi	e (Périphérique)		
HEMOCULTUR			- (
Temps de détec	tion(anaerobie) 9 h			
Bacilles gram né	egatir	Prése	nce		
CULTURE					
Hémoculture An	aerobie	1 ESC	HERICHIA COLI BLSE		
		1. 250	ILKIOTIA COLI BESE		
AMOXICILLINE		R			
AMOXICILLINE	ACIDE	R			
CLAVULANIQU	E	K			
TICARCILLINE		R			
TICARCILLINE		R			
PIPERACILLINE		R			
PIPERACILLINE	+ TAZOB	-			
CEFALOTINE		R			
TEMOCILLINE		R			
CEFOXITINE		s			
CEFOTAXIME		R			
CEFTAZIDIME		R			
CEFEPIME		R			
AZTREONAM		R			
IMIPENEME		s			
MEROPENEME		-			
TOBRAMYCINE		R S			
AMIKACINE GENTAMICINE		R			
COLISTINE					
TRIMETHOPRIN	ME + CIII EA	R			
ACIDE NALIDIX		R			
MOXIFLOXACIN					
PEFLOXACINE					
OFLOXACINE		R			
CIPROFLOXAC	INE	R			
RIFAMPICINE		s			

Dossier 1 suite

• Que demandez vous au laboratoire ?

Pénicillines	Concentrations critiques (mg/L) S ≤ R >	Charge du disque (µg)	Diamètres critiques (mm) S≥ R <	Notes Chiffres arabes pour les commentaires portant sur les concentrations critiques (CMI) Lettres pour les commentaires portant sur les diamètres critiques d'inhibition
--------------	--	--------------------------------	--	---

Les Enterobacteriaceae productrices de BLSE sont souvent catégorisées «sensibles» aux pénicillines associées aux inhibiteurs de β-lactamases de classe A (acide clavulanique, tazobactam). Si l'utilisation d'une de ces associations est retenue par le clinicien pour traiter une infection due à une entérobactérie productrice de BLSE, il y a lieu de mesurer la CMI de l'association retenue si l'infection à traiter est autre qu'une infection du tractus urinaire ou un urosepsis.

Catégoriser «intermédiaire» l'isolat clinique catégorisé «sensible» à la pipéracilline alors qu'il est catégorisé «résistant» ou «intermédiaire» à la ticarcilline (EUCAST expert rules v. 2.0, règle 9.3 de grade C). Les β-lactamases hydrolysant la ticarcilline hydrolysent également la pipéracilline, mais la résistance peut être moins évidente si l'expression de la β-lactamase est faible (principalement observée chez *Klebsiella* spp. et *E. coli*). Cette règle ne s'applique pas aux associations pénicillines-inhibiteurs de β-lactamases.

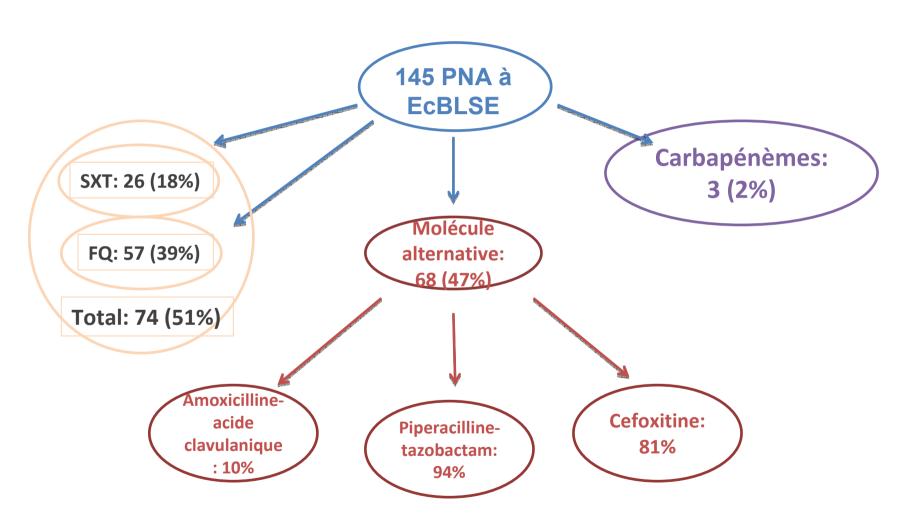
Pour *Proteus mirabilis*, catégoriser «intermédiaire» un isolat clinique apparaissant «sensible» à la ticarcilline et/ou «sensible» à la pipéracilline alors qu'il est catégorisé «résistant» aux aminopénicillines (ampicilline, amoxicilline) et sensible ou intermédiaire à l'amoxicilline-acide clavulanique.

Cette règle ne s'applique pas au Proteus mirabilis producteurs de céphalosporinse plasmidique.

Ampicilline	8 ¹	8	10	14 ^{A,B}	14 ⁸	1/A. Les souches sauvages d'entérobactéries du groupe I (E. coli, P. mirabilis,
						Salmonella spp., Shigella spp.) sont sensibles à l'amoxicilline.
						B. Ignorer la pousse fine dans la zone d'inhibition.
Ampicilline-sulbactam	81,2	8 ²	10-10	14 ^{A,B}	14 ⁸	2. Pour évaluer la sensibilité, la concentration en sulbactam est fixée à 4 mg/L.
Amoxicilline	8	8	20	19	19	
Amoxicilline-acide clavulanique	81,3	8 ³	20-10	19 ^{A,B}	19 ⁸	3. Pour évaluer la sensibilité, la concentration d'acide clavulanique est fixée à 2 mg/L.
Amoxicilline-acide	32 ^{1,3}	32³	20-10	16 ^{A,B}	16 ⁸	
clavulanique(cystites)						
Pipéracilline	8	16	30	20	17	
Pipéracilline-tazobactam	84	16 ⁴	30-6	20	17	4. Pour évaluer la sensibilité, la concentration du tazobactam est fixée à 4 mg/L.
Ticarcilline	8	16	75	23	23	
Ticarcilline-acide clavulanique	8 ³	16³	75-10	23	23	
Mécillinam (cystites)	8	8	10	15 ^c	15 ^c	C. Ignorer les colonies situées dans la zone d'inhibition pour les isolats de l'espèce E. coli.»
Témocilline	8	8	30	20	20	

Dossier 1 suite

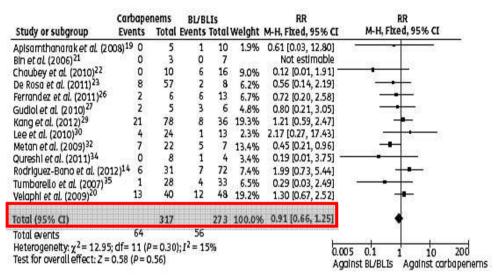
CMI: pip/taz 0.5 mg/L; céfoxitine 1.5 mg/L



Dossier 1 suite

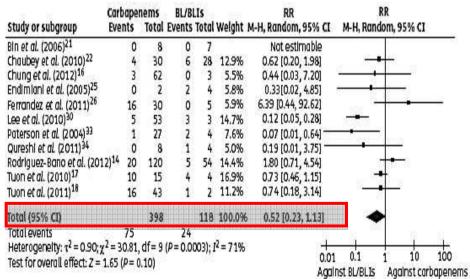
• Adaptation antibiothérapie ?

Alternatives *in vitro* aux carbapénèmes : pyélonéphrites à *E. coli* BLSE



Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis

- 21 études, 1584 patients
- Rétrospectives = 16;
 cohortes prospectives = 5
- Mortalité : hospitalière, 14 j, 21 j, 28-30 j
- Mono-centriques = 14
- Années 1996-2010
- Association antibiotiques ?



Carbapénèmes vs. BL/BLIs

Probabiliste

Figure 3. Forest plot depicting the RRs of all-cause mortality of patients with ESBL-positive backs BI/BLIs, Vertical line='na difference' point between the two regimens, Squares= RRs. Diamond-

Définitif

Figure 2. Forest plot depicting the RRs of all-cause mortality of patients with ESBL-positive bacteroemia treated definitively with carbapenems versus BL/BLIs. Vertical line='no difference' point between the two regimens. Squares= RRs. Diamond= pooled RR for all studies. Harizontal lines= 95% CIs.

PNA documentées à E. coli producteurs de BLSE

Antibiogramme FQ-S ^b		Choix préférentiel a (en l'absence d'allergie ou d'autre contre-indication)			
		FQ			
FQ-R & Cotrimoxazole-S	6	Cotrin	noxazole		
FQ-R & Cotrimoxazole-F	R 1 ^{er} choix :			F =	
Durée du traitement : à décompter à partir de l'administration d'au moins une molécule active in vitro		ou ou ou ou	amox-clav pipéra-tazo céfotaxime ceftriaxone ceftazidime céfépime	si S et CMI <8 c/d si S et CMI <8 d si S et CMI <1 d	
	2ème choix :				
		ou	céfoxitine aminoside	si S et <i>E. coli</i> ^e si S ^f	
	3ème choix : (en l'abso	ence d'alternative		
			ertapénème	si S	

^a en cas d'évolution non favorable au moment de la documentation : si possible ajout d'un aminoside jusqu'à contrôle

^b usage prudent des FQ pour les souches Nal-R FQ-S, en particulier si abcès, lithiase ou corps étranger

c situation rare ; utiliser d'abord IV ; à éviter pour les IU masculines

d mesure de CMI (par bandelette et non automate) indispensable

^e céfoxitine mal validé sur les autres espèces d'entérobactéries (risque d'acquisition de résistance sous traitement)

f gentamicine, tobramycine ou amikacine selon sensibilité ; surveillance étroite de la toxicité

Dossier 1 suite

- Relais céfoxitine IV 8 g/j le 29/7/15
- Apyrétique à partir du 1/8
- Désondage le 1/8
- Retour à domicile le 2/8

Céfoxitine : modèle murin de pyélonéphrite à *E. coli* BLSE

TABLE 3 Effect of antibiotics on viable organisms in bladders of mice infected with the E. coli strains used in this study

E. coli strain	Results (log CFU/g of bladder ± SD [no. sterile/total no.]) for mice treated with:								
	Start-of-treatment control	Cefoxitin q4h	Cefoxitin q3h	Ceftriaxone	Imipenem	Ertapenem			
CFT-RR	7.02 ± 1.16 (0/15)	$4.42 \pm 1.49^{a,b} (1/15)$	$3.65 \pm 1.15^{a,b} (3/15)$	$4.57 \pm 0.63^{a,b} (0/15)$	$3.29 \pm 0.92^{a,b} (3/15)$	3.75 ± 1.07 ^{a,b} (2/15)			
CFT-RR Tc (pbla _{CTX-M-15})	6.49 ± 1.53 (0/16)	$4.06 \pm 1.37^{a,b} (1/15)^c$	$3.77 \pm 1.28^{a,b} (1/15)^d$	3.94 ± 0.80 ^{a,b} (2/15)	$3.25 \pm 0.85^{a,b} (3/15)$	$3.72 \pm 0.79^{a,b} (1/15)$			

[•] P < 0.001 when compared with results for the start-of-treatment control group.

TABLE 4 Effect of antibiotics on viable organisms in kidneys of mice infected with the E. coli strains used in this study

E. coli strain	Results (log CFU/g of kidney \pm SD [no. sterile/total no.]) for mice treated with:								
	Start-of-treatment control	Cefoxitin q4h	Cefoxitin q3h	Ceftriaxone	Imipenem	Ertapenem			
CFT-RR		$2.74 \pm 1.75^{a,b} (3/15)$							
CFT-RR Tc (pbla _{CTX-M-15})	4.64 ± 1.26 (0/15)	$1.41 \pm 1.52^a (9/15)^{f_g}$	2.34 ± 1.19° (9/15) ^f 8	3.90 ± 0.80 ^{d,e} (2/15)	2.11 ± 1.76 ^a (7/15) ^c	1.98 ± 0.97 ^a (3/15)			

 $^{^{}a}$ P < 0.001 when compared with results for the start-of-treatment control group.

g P = 0.02 when compared with proportions (in parentheses) for mice treated with ceftriaxone.

 $^{^{}b}$ P = 0.14 when the different treatment groups are compared.

^c P = 0.76 when compared with the results for the same treatment for mice infected with CFT-RR.

 $[^]dP = 0.30$ when compared with the results for the same treatment for mice infected with CFT-RR.

 $^{^{}b}$ P = 0.25 when the different treatment groups are compared.

 $^{^{}c}P < 0.01$ when compared with proportions (in parentheses) for the start-of-treatment control group.

 $^{^{}d}P = 0.05$ when compared with results for the start-of-treatment control group.

 $^{^{}e}P$ < 0.001 when compared with results for mice treated with cefoxitin q4h.

fP < 0.001 when compared with proportions (in parentheses) for the start-of-treatment control group.

Céfoxitine: modalités

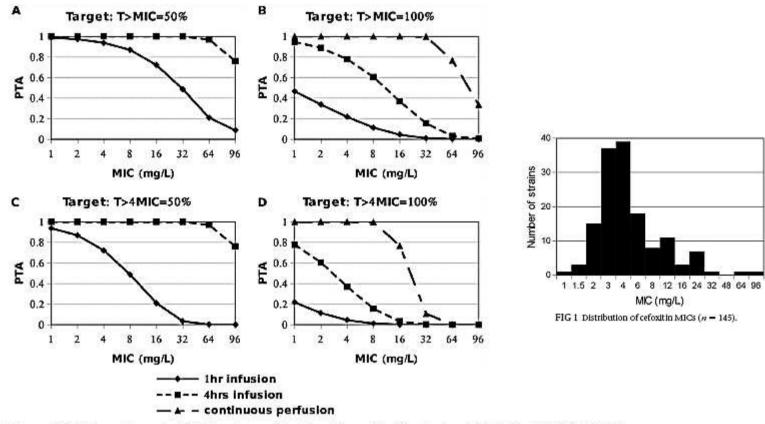
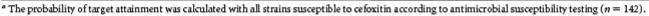



FIG 2 Probability of target attainment (PTA), depending on the MIC, for a dosage of 2 g 4 times/day and the following targets: T>MIC = 50% (A), T>MIC = 100% (B), T>4MIC = 50% (C), and T>4MIC = 100% (D).

TABLE 2 Probability of pharmacological success

	Duration of	% of strains with pha	% of strains with pharmacological success by target"					
Dosage	infusion	T>MIC = 50%	T>MIC = 100%	T>4MIC = 50%	T>4MIC = 100%			
2 g 4 times/day	1 h	92	22	70	5.4			
2 g 4 times/day	4 h	100	76	99	38			
8 g/day	Continuous	100	100	100	98.5			

Céfoxitine et BLSE : expérience HEGP

- Rétrospective, 01/12-10/13, n=32 (H 81%)
- Infections urinaires 72%
- E. coli 59%, K. pneumoniae 41%
- Relais carbapénèmes 22%, bithérapie aminoside 41%
- Posologie 6 g/j (1,5-9), durée 9 j (3-41)
- Evolution clinique favorable : J2-J3 = 29/32 (91%) moyen terme = 17/21 (81%)
- Eradication microbiologique à moyen terme : 11/16 (69%)
- 2 échecs cliniques avec émergence de résistance (K. pneumoniae)

Infections urinaires masculines à *E. coli* BLSE : céfoxitine vs. imipénème

	Céfoxitine	Imipénème	P
N	31	12	
Durée ATB	17	14.5	
Succès clinique Fin de traitement Suivi 4 mois	29/31 (94%) 23/27 (85%)	12/12 (100%) 9/10 (90%)	0,99 0,99
Eradication microbiologique	10/17 (59%)	4/7 (57%)	0,99

Dossier 1 suite

- Adaptation antibiothérapie ?
- Quel suivi?

Tableau 3 : Administration des antibiotiques en perfusion prolongée / continue a l'hôpital

- Chaque médicament doit être administré sur une voie veineuse dédiée. Dans le cas contraire, le prescripteur doit vérifier que la co-administration est possible. L'administration en continu peut être remplacée par la perfusion prolongée (sur 3-4h) pour permettre d'utiliser la voie veineuse pour d'autres administrations, en cas d'incompatibilité
- L'administration continue ou prolongée doit être précédée d'une dose de charge

MOLECULE IVSE /POMPE	CONCENTRATION MAXIMALE APRES DILUTION	SOLUTE DE DILUTION	DOSE JOURNALIERE PRESCRITE	DILUTION ET ADMINISTRATION	COMMENTAIRES
PIPERACILLINE + TAZOBACTAM IVSE continue	80 mg/ml + 10 mg/ml	NaCl ou G5	12 g + 1,5 g	3 seringues de 4 g sur 8h Soit 4 g dans chaque seringue de 48 cc sur 8h x 3/j	Stable 24h à 25°
	80 mg/ml + 10 mg/ml	NaCl ou G5	16 g + 2 g	4 seringues de 4 g sur 6h Soit 4 g dans chaque seringue de 48cc, sur 6h x 4/j	Stable 24h à 25°
CEFAZOLINE IVSE continue	100 mg/ml	NaCl ou G5	6 g	2 seringues de 3 g sur 12 h Soit 3 g dans chaque seringue de 48 cc, sur 12h x 2/j	Stable 24h à 25°
	100 mg/ml	NaCl ou G5	8 g	2 seringues de 4 g sur 12h Soit 4 g dans chaque seringue de 48 cc sur 12h x 2/j	Stable 24h à 25°
	100 mg/ml	NaCl ou G5	10 g	2 seringues de 5 g sur 12h Soit 5 g dans chaque seringue de 48 cc sur 12h x 2/j	Stable 24h à 25°
	100 mg/ml	NaCl ou G5	12 g	3 seringues de 4 g sur 8h Soit 4 g dans chaque seringue de 48 cc sur 8h x 3/j	Stable 24h à 25°
CEFOXITINE IVSE continue	100 mg/ml	NaCl	6 g	2 seringues de 3 g sur 12 h Soit 3 g dans chaque seringue de 48 cc sur 12h x 2/j	Stable 24h à température ambiante
	100 mg/ml	NaCl	8 g	2 seringues de 4 g sur 12h Soit 4 g dans chaque seringue de 48cc sur 12h x 2/j	Stable 24h à température ambiante
	100 mg/ml	NaCl	10 g	2 seringues de 5 g sur 12h Soit 5 g dans chaque seringue de 48 cc sur 12h x 2/j	Stable 24h à température ambiante
	100 mg/ml	NaCl	12 g	3 seringues de 4 g sur 8h Soit 4 g dans chaque seringue de 48 cc sur 8h x 3/j	Stable 24h à température ambiante
CEFOTAXIME* POMPE en continu	20 mg/ml	NaCl ou G5	8 g	2 perfusions de 4 g dans 200 cc sur 12h, Soit 4 g dans 200 cc sur 12h x 2/j	Stable 24h à 25°
	20 mg/ml	NaCl ou G5	10 g	2 perfusions de 5 g dans 250 cc sur 12h, Soit 5 g dans 250 cc sur 12h x 2/j	Stable 24h à 25°
	20 mg/ml	NaCl ou G5	12 g	2 perfusions de 6 g dans 300 cc sur 12h, Soit 6 g dans 300 cc sur 12h x 2/j	Stable 24h à 25°

Tableau 4 : Administration prolongée des antibiotiques en ambulatoire, dans des diffuseurs ou par pompes volumétriques

- 1) Les diffuseurs et pompes portables sont portés par les patients près du corps, ce qui soumet le contenant à des températures élevées (32-33°)
- Pour quelques antibiotiques, il existe des données de stabilité à des températures au-delà de 25°; pipéracilline + tazobactam, ceftazidime, céfépime, aztréonam
- Pour les autres antibiotiques, Il n'existe pas de données au-delà de 25°. Il est donc souhaitable que les diffuseurs/pompes soient placés dans des sacoches isothermes : pénicilline G, amoxicilline, oxacilline, ticarcilline + acide clavulanique, céfazoline, céfoxitine, céfoxitine
- En cas de dilution dans du G5, le débit théorique peut varier de 10% environ avec les diffuseurs. La dilution dans du NaCl est donc à privilégier, sauf en cas de meilleure stabilité dans du G5,
- 2) Disponibilité : O (en officine) ou R (Rétrocédable) / H : HAD

MOLECULE	CONCENTRATION MAXIMALE SOUHAITEE	SOLUTE DE DILUTION	STABILITE	NOMBRES DE PASSAGES PAR JOUR NECESSAIRES SELON POSOLOGIE JOURNALIERE	DISPONIBILITE DE L'ANTIBIOTIQUE
PENICILLINE G	200 000 U/ml	NaCl	12h à 25°	2 passages/jour	Н
AMOXICILLINE*	20 mg/ml	NaCl	8h à 25°	2 à 3 passages/jour	Н
CLOXACILLINE	50 mg/ml	G5	24h à 23°	2 passages/jour en l'absence de données au- delà de 23°en HAD	Н
TICARCILLINE	100 mg/ml	NaCl	24h à 24°	Possibilité un seul passage par jour	0
TEMOCILLINE	80 mg/ml	Eau PPI**	24h à 25° 24 h à 37	Possibilité un seul passage par jour, en HAD	Н
PIPERACILLINE	80 mg/ml	NaCl ou G5	24h à 24° 21h à 37°	Possibilité un seul passage par jour, en HAD	Н
PIPERACILLINE + TAZOBACTAM	80 mg/ml + 10 mg/ml	NaCl ou G5	24h à 25° 24 h à 37°	Possibilité un seul passage par jour	0
CEFAZOLINE	100 mg/ml	NaCl ou G5	24h à 24°	Possibilité un seul passage par jour, en HAD	н
CEFOXITINE	40 mg/ml	NaCl	24 h à 37°	1 à 2 passages/jour, en HAD	R
CEFOTAXIME*	20 mg/ml	NaCl ou G5	24h à 24° Limites de stabilité	Privilégier 2 passages/jour En HAD	Н
CEFTAZIDIME	80 mg/ml	NaCl ou G5	8h à 21° 8h à 37°	3 passages/jour	0
СЕБЕРІМЕ*	50 mg/ml	NaCl ou G5	Stable 8h à 25°	Par perfusions intermittentes sur 30 min' uniquement*** 3 passages/jour	O

Dossier 1 fin

- Poursuite céfoxitine à domicile 8 g/j en perfusion continue 2 perfusions/12h
- Durée totale antibiothérapie 21 jours
- ECBU 7 jours et 2 mois après arrêt antibiothérapie stérile
- Consultation urologue à 6 mois : hypertrophie bénigne de prostate, mise sous alphabloquant

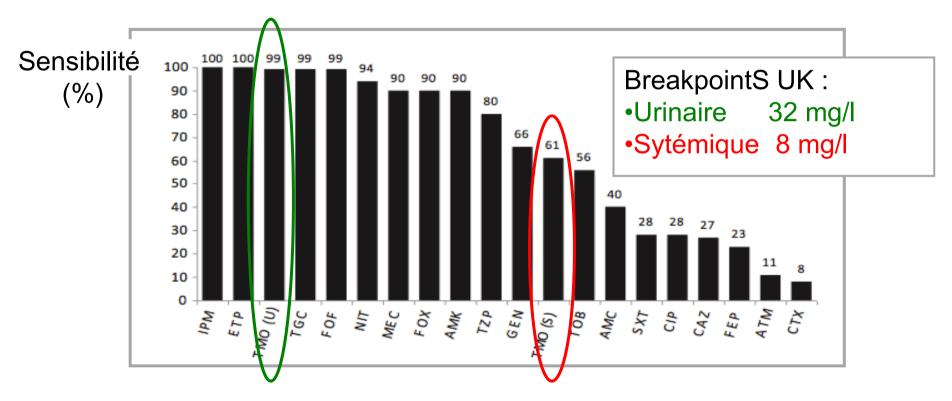
Autre(s) alternative(s) à la céfoxitine ???

Témocilline

- Dérivé de la ticarcilline : 6- α méthoxy ticarcilline
- Spectre étroit :
 - ✓ entérobactéries
 - ✓ Burkholderia cepacia
 - ✓ H. influenzae
 - ✓ M. catarrhalis
 - ✓ N. gonorrhoeae
- Pas d'activité sur :
 - √ Pseudomonas spp
 - ✓ Acinetobacter spp
 - √ S.maltophilia

Livermore DM JAC 2009 ; 63 : 243

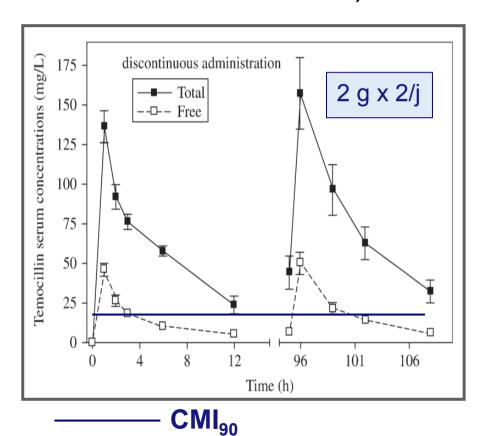
Activité microbiologique


- CMI des entérobactéries « élevées » (CMI₉₀ : 16 mg/l)
 Mais stables dans le temps
 - Non hydrolysée par β-lactamases (BLSE, AmpC) et céphalosporinases
- Pas de breakpoint « officiels » de l'EUCAST Breakpoints UK : urines 32 mg/l systémique 8 mg/l

Breakpoint CA-SFM 2014 : 8 mg/l (révision possible à 16 mg/l ?)

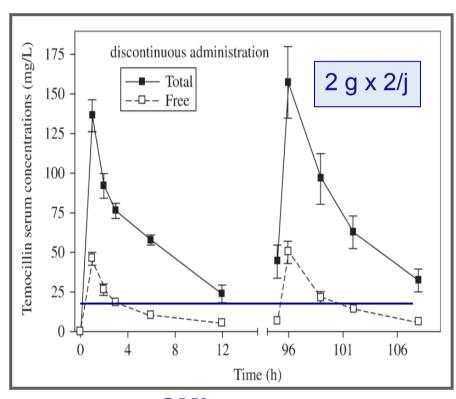
Livermore DM JAC 2009; 63 : 243 Tarnberg M ERJCMID 2011; 30 : 981 Rodriguez-Villalobos H JAC 2011 ; 66 : 37

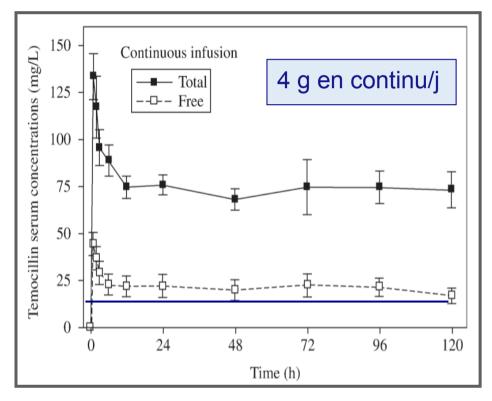
Alternatives to carbapenems in ESBL-producing Escherichia coli infections


- CHU Besançon (juin 2009 septembre2010)
- IU; 100 souches de E. coli BLSE

CMI₉₀ des 100 souches 16 mg/l

Témocilline

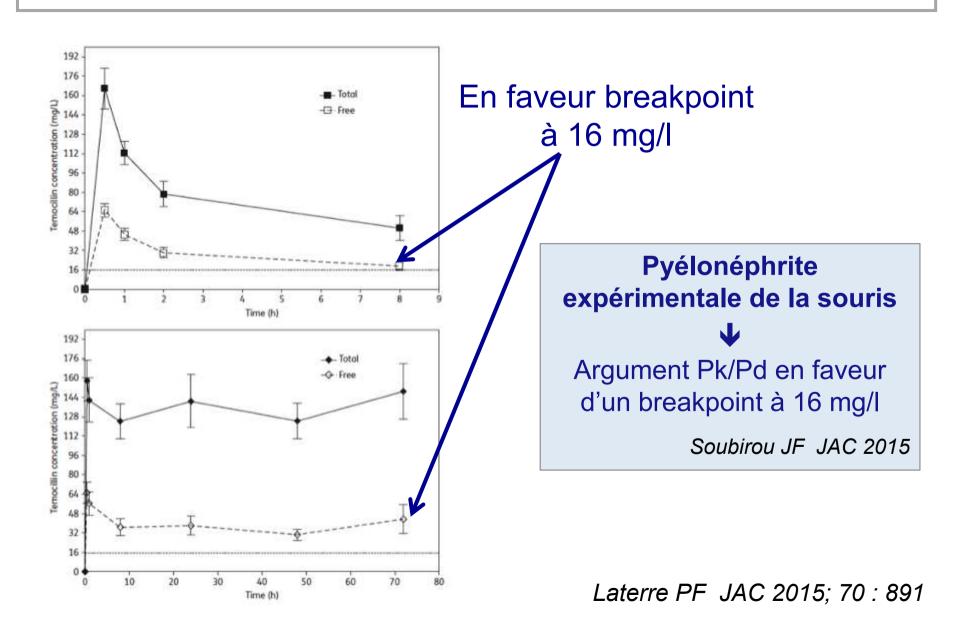

 Données PK/PD « limites » (forte liaison protéines et CMI « élevées »)



De Jongh R JAC 2008; 61 : 382

Témocilline

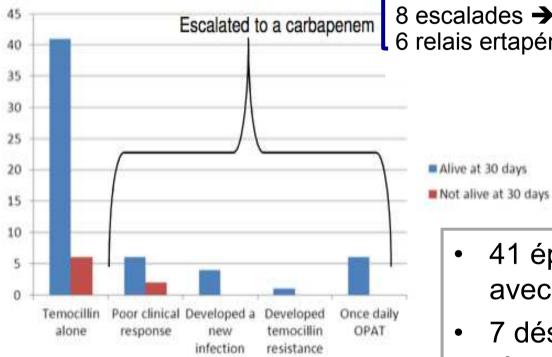
 Données PK/PD « limites » (forte liaison protéines et CMI « élevées »)



- CMI₉₀

De Jongh R JAC 2008; 61:382

Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration


Case series demonstrating the use of temocillin as a carbapenem-sparing agent

- Rétrospectif (janvier 12 août 14)
- 67 infections (dont 13 bactériémies) à EBLSE
- Hors réanimation

Factor influencing decision	No of patients
Only alternative to carbapenem	17
To spare quinolone in patient at risk of Clostridium difficile infection	31
To spare aminoglycoside in patients with renal impairment	15
Poor penetration of aminoglycoside to the lung	8
To prevent prolonged aminoglycoside course	3
To avoid quinolone in breastfeeding mother	1
Patient allergic to quinolones	1

Case series demonstrating the use of temocillin as a carbapenem-sparing agent

- 8 escalades → carbapénème
- 6 relais ertapénème pour ambulatoire

- Alive at 30 days
 - 41 épargnes de carbapénème avec guérison (60 % des cas)
 - 7 désescalades carbapénème témocilline
 - MAIS, 4 C. difficile

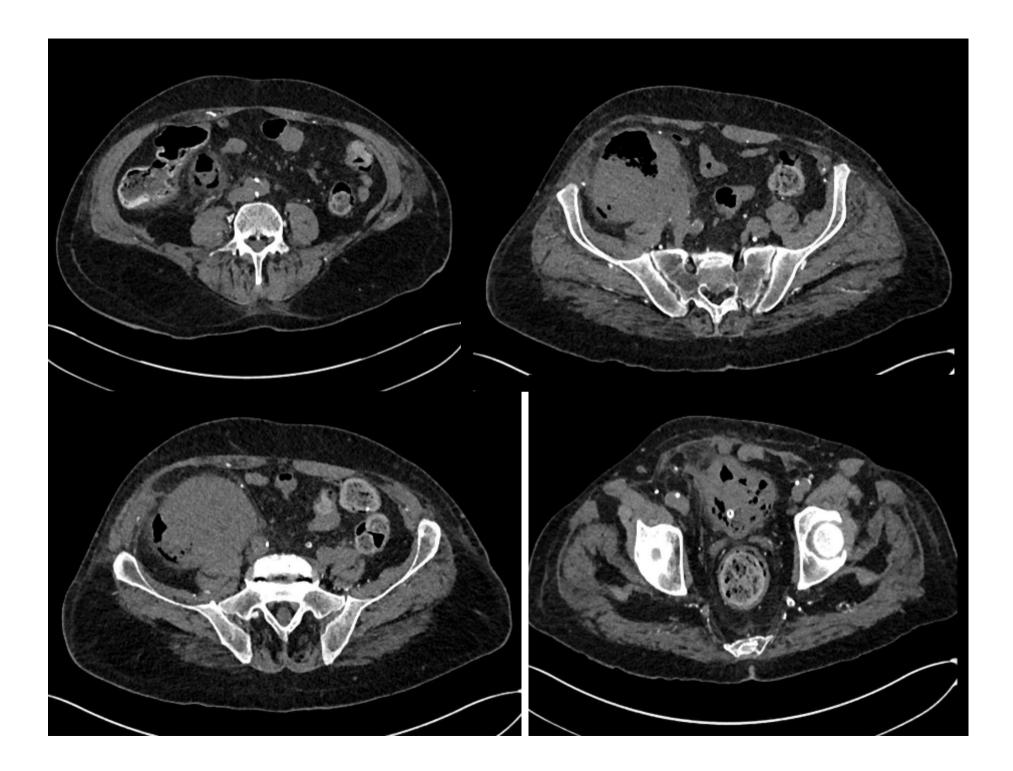
Dossier 2

- Mr O..., 72 ans
- Diabète insulino-dépendant multi-compliqué
- Transplantation rénale mars 2015 : prednisone 15 mg/j, tacrolimus, mycophénolate; créatininémie de base 140 μmol/L
- Amputation 3^{ème} orteil pied gauche septembre 2015 : dermo-hypodermite et ostéite à *P. aeruginosa* + *K. oxytoca*, antibiothérapie Pip/taz + ciprofloxacine
- Amputation trans-métatarsienne octobre 2015; prélèvement per-op + à E. cloacae BLSE, imipénème 14 jours
- SAU le 5 mars 2016 : confusion, fièvre

Aggravation insuffisance rénale : créatininémie 215 µmol/L

Echographie : pas de dilatation, « épaississement paroi du bassinet »

Antibiothérapie : ceftriaxone 1 g/j


Aggravation clinique le 7 mars : anurie, vomissements

Dossier 2 suite

- Hémocultures et ECBU + à K. pneumoniae
- Réalisation d'un scanner abdominal
- Créatininémie 545 μmol/L
- Début dialyse
- Modification antibiothérapie le 7 mars: imipénème 500 mg x2/j + gentamicine

Pyélonéphrite emphysémateuse

- Infection nécrosante du rein et des structures adjacentes
- Facteurs de risque : diabète, obstruction de l'appareil urinaire
- Bactériologie : E. coli (69%), K. pneumoniae (29%)
- Pyélonéphrite grave, défaillance multi-viscérale
- Mortalité globale 25% (11-42%)
- Transplanté rénal : 23 cas

Pyélonéphrite emphysémateuse : classification

Classification systems for emphysematous pyelonephritis

Classification schema	Description	Mortality
Huang & Tseng (1)		
Class 1	Collecting system gas	0
Class 2	Renal parenchymal gas without extension	10
Class 3A	Perinephric extension of gas/abscess	29
Class 3B	Pararenal extension of gas/abscess	19
Class 4	Emphysematous pyelonephritis bilaterally or in a solitary kidney	50
Wan et al. (3)		
Type 1	Parenchymal destruction without fluid collection ± streaky gas collections	69
Type 2	Renal/perinephric fluid collection with loculated gas or gas present in collecting system	18
Al-Geizawi et al. (4)		
Stage 1	Gas in the collecting system	0
Stage 2	Gas replacing <50% of renal parenchyma, with minimum spread to the surrounding tissues. Sepsis rapidly controlled	0
Stage 3	Gas replacing >50% of renal parenchyma; or extensive spread of infection in the perinephric area; or patient with evidence of multiple organ failure, uncontrolled sepsis, or shock not responding to medical management	25

Fig. 1. Renal allograft in right iliac fussa (circle). Pareachymal involvement is almost 90%. Al-Geizawi Stage 3 (2).

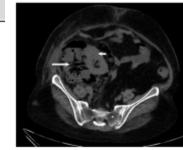
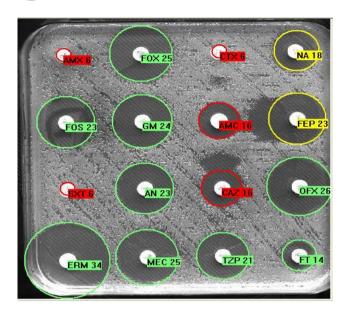
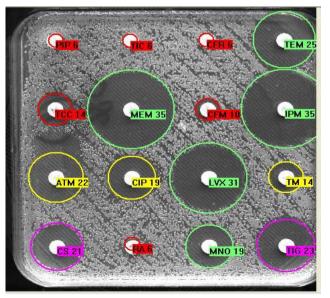
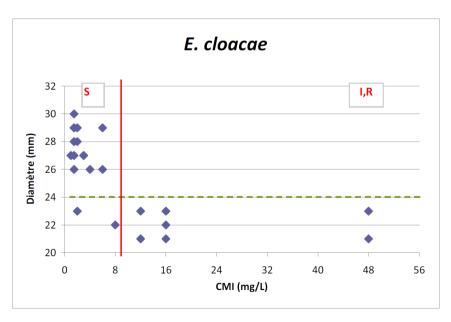


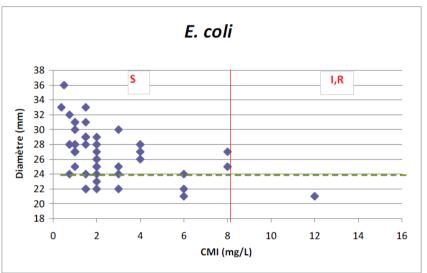
Fig. 1. Computed homography scan of the kidney, ureter, and bladder done on the I observing renal allograds in the right line from (blott arrow) and moderate perinsplate collection with air pockets thougarrows displacing the ascending colon and bladder and extending userals in the retrogerizoned space.

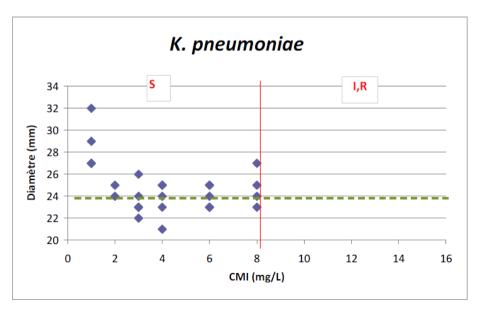

Dossier 2 suite


• Que demandez vous au laboratoire ?

Dossier 2: antibiogramme






CMI Pip/taz et E-BLSE : corrélation méthode des disques et E-tests

- Diamètre PTZ ≥ 24 mm :
 100% des E-BLSE sensibles en CMI
- Diamètre PTZ entre 21 et 24 mm :
 64% des E-BLSE sensibles en CMI

Farfour E, RICAI 2015

Dossier 2 suite

• Que demandez vous au laboratoire ?

In Vivo Selection of a Cephamycin-Resistant, Porin-Deficient Mutant of *Klebsiella pneumoniae* Producing a TEM-3 β -Lactamase

- Pneumonie
- Imipénème 2 jours puis céfoxitine/gentalline 12 jours
- Echec clinique et microbiologique
- Sélection de mutant avec
 ↓ perméabilité

Table 1. Minimal inhibitory concentrations ($\mu g/mL$) of different β -lactam antibiotics for Klebsiella pneumoniae strains.

	MICs					
Antibiotics	CB141	CB146				
Ampicillin	>1,024	>1,024				
Ticarcillin	>1,024	>1,024				
Azlocillin	512	>1,024				
Cephalothin	256	512				
Cefotaxime	4.	32				
Cefoperazone	8	128				
Ceftazidime	8	32				
Ceftriaxone	8	32				
Aztreonam	2	16				
Carumonam	0.12	2				
Mecillinam	2	8				
Cefoxitin	4	32				
Moxalactam	0.25	4				
Cefotetan	0.1	4				
Imipenem	0.25	0.12				
AMPI + CLA	8*	32*				
CTX + CLA	0.01*	0.5*				
CRO + CLA	0.03*	0.5*				

Dossier 2 suite

CMI: pip/taz 6 mg/L; témocilline 4 mg/L

Dossier 2 suite

- CAT/greffon ?
- Adaptation antibiothérapie ?

Pyélonéphrite emphysémateuse : prise en charge

- Antibiothérapie
- Drainage per cutané +++
- Néphrectomie d'emblée ou secondaire

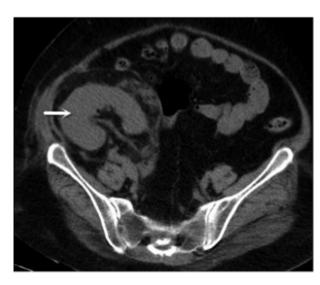


Fig. 3. Computed tomography scan of kidneys, ureter, and bladder done on day 17 showing significant reduction in the perinephric collection and normal renal parenchyma (arrow).

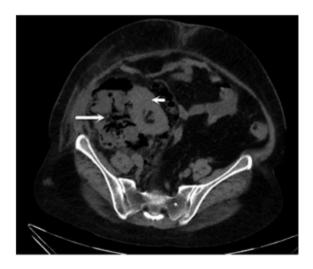


Fig. 1. Computed tomography scan of the kidney, ureter, and bladder done on day 1 showing renal allograft in the right iliac fossa (short arrow) and moderate perinephric collection with air pockets (long arrow) displacing the ascending colon and bladder and extending upwards in the retroperitoneal space.

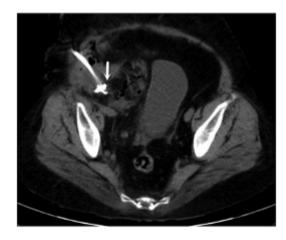


Fig. 2. Computed tomography of kidneys, ureter, and bladder done on day 1 showing allograft perinephric drain in situ (arrow).

Effet inoculum

TABLE 4. Representative strains with low MICs of ESBL screening agents: standard- and high-inoculum MICs

	MIC (μg/ml) of drug at the indicated inoculum (CFU/ml) ^a															
Strain (enzyme)	MI	EM	C	ГТ		CTX	C	ΆΖ		CRO	FI	EP.	1	ATM	1	ZP
	10 ⁵	10 ⁷	10 ⁵	10 ⁷	105	10 ⁷	10 ⁵	10 ⁷	10 ⁵	10 ⁷	10 ⁵	107	10^{5}	107	105	10 ⁷
P. mirabilis 177 (TEM-10)	0.06	0.06	0.25	0.25	0.12	1	4	256	0.5	4	2	64	0.25	32	2	8
E. coli MISC 377 (SHV-10)	≤0.015	≤0.01:	0.12	≤0.03	≤0.06	≤0.06	≤0.25	5 4	≤0.06	≤0.06	0.12	0.25	0.12	≤0.06	4	8
K. pneumoniae 98 (TEM-10, TEM-1, SHV-1)	0.03	4	0.25	1	1	128	512	>1,024	4	128	4 >	128 2	56	>1,024	1,024	>1,024
K. pneumoniae 221 (TEM-12-like	0.06	0.12	0.12	0.25	0.5	-8	128	>1,024	1	512	8 >	128	8	>1,024	8	16
K. pneumoniae 222 (SHV-3, SHV-1 or -2 ^b)	0.03	0.03	0.06	0.06	2	128	1	8	4	512	1 >	128	0.5	4	4	8
C. freundii M421b (SHV-3-like)	0.03	0.06	0.12	1	2	256	1	32	4	512	0.5 >	128	0.5	32	2	16
E. cloacae 154 (SHV-3)	0.06	0.12	1	64	8	>1,024	4	512	4	>1,024	1 >	128	2	>1,024	2	>1,024
M. morganii M518b (SHV-4)	0.12	1	1	4	2	64	2	128	1	128	0.06	4	4	32	0.5	5 64

^a Abbreviations: MEM, meropenem; CTT, cefoteten; CTX, cefotaxime; CAZ, ceftazidime; CRO, ceftriaxone; FEP, cefepime; ATM, aztreonam; TZP, piperacillin-tazobactam.

Modification parfois très importante des CMI en fonction de l'inoculum

Effet inoculum

TABLE 1. MICs of various agents for K. pneumoniae 5657

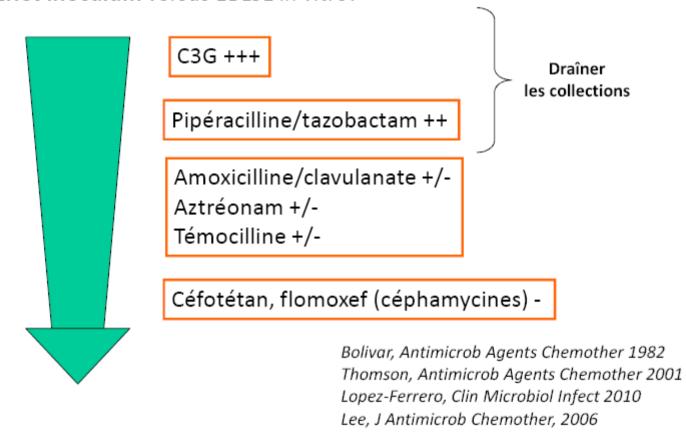
Antimicrobial agent	MIC (µg/ml) for K. pneumoniae 5657 at an inoculum of:					
	105 CFU/ml	107 CFU/ml				
Cefoperazone	2	256				
Sulbactam	32					
Cefonerazone-sulhactam (2:1) ^a	0.5	256				
Cefotaxime	1	256				
Cefpirome		>256				
Ceftazidime	>256					
Imipenem	0.5	16				

⁴ MICs are micrograms of cefoperazone per milliliter.

TABLE 2. Intra-abdominal abscess treatment outcomes

Antibiotic	No. of rats	Mean serum antibiotic level (µg/ml) ± SD	log ₁₀ CFU/g of abscess ± SD
None	30		8.02 ± 1.02
Cetoperazone	11	13.3 ± 4.72	7.41 ± 0.74°
Cefoperazone- sulbactam	11	8.9 ± 3.22^{b}	$5.84 \pm 0.95^{\circ}$
Cefotaxime	18	17.7 ± 8.42	$7.26 \pm 1.02^{\circ}$
Cefpirome	11	28.3 ± 2.06	7.80 ± 1.18^{o}
Ceftazidime	10	19.4 ± 3.09	8.85 ± 0.64^{a}
Imipenem	19	7.1 ± 2.08	4.99 ± 0.97°

 $^{^{}a}$ P > 0.05 for comparison with value for untreated controls.

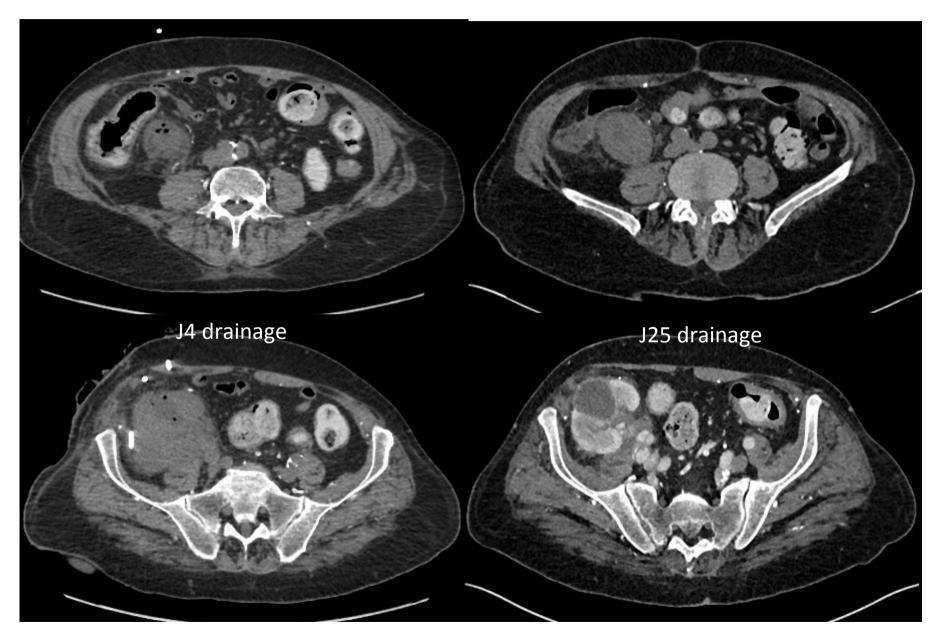


^b Concentration of cefoperazone.

 $^{^{}c}$ P < 0.05 for comparison with values for untreated controls, cefoperazone, cefotaxime, cefpirome, and ceftazidime.

Importance du Bon Usage des Antibiotiques

- Effet inoculum versus EBLSE in vitro:



Dossier 2 suite

- Augmentation posologie imipénème 500 mg x3/j
- Drainage per cutané le 18 mars! (culture +)
- Fièvre persistante jusqu'au 21 mars
- Absence de localisations septiques secondaires
- Décision de traitement conservateur car amélioration progressive de la fonction rénale et sevrage de la dialyse
- Poursuite imipénème
- Ablation drain le 31 mars

Dossier 2 évolution

Dossier 2 fin

- Poursuite imipénème jusqu'au 26 avril (6 semaines)
- Revu le 23 mai : créatininémie 145 μmol/L
- ECBU stérile
- A suivre ...

Dossier 3

Mr C, 74 ans

- •BPCO, ancien fumeur sevré
- Surinfection bronchique depuis 3 mois
 - amoxicilline (7j)
 - puis amoxiclav (10 j)
 - puis télithromycine (10 j)
- •Arrêt ATB il y a 15 j
- Occlusion sur bride (appendicite il y a 25 ans)
- Inextubable en post opératoire → réanimation

J2

- •Fièvre à 39° C, secrétions « très sales »
- •GB 17 000/mm³, hypoxémie
- Image de pneumopathie du lobe moyen

Direct PDP:

- nbx polynucléaires
- > nbx BGN
- •Colonisation rectale connue à E. coli BLSE

Antibiothérapie?

Contrairement à tous ce qui a été dit depuis 10 ans (même dans des recommandations récentes) :

Chez les patients colonisés à BLSE, le risque de faire une infection à BLSE est probablement peu élevé... (sauf en cas de neutropénie fébrile)

EVALUATION DES PRESCRIPTIONS DE CARBAPENEMES

GUIDE METHODOLOGIQUE

VERSION 14 MAI 2014

GROUPE DE TRAVAIL CCLIN SUD-OUEST/SPILF/ONERBA: S. ALFANDARI, C. BERVAS, C. CALAS, B. CASTAN, C. DUMARTIN, R. GAUZIT, A. LEPAPE, PH. LESPRIT, Y. PÉAN, M. PEFAU, A. RICHÉ, J. ROBERT, E. VARON.

GROUPE DE LECTURE : C. BRUN-BUISSON, C. CORDONNIER, E. LENGLINE, PF. PERRIGAULT

- Objectifs : analyser la conformité de 2 critères :
 - ✓ indication des prescriptions CBP
 - ✓ ré-évaluation à 48-72h ou à réception de l'antibiogramme
- Identifier les axes de travail pour réduire ou améliorer la prescription de carbapénèmes
- Sensibiliser au bon usage des CBP

FR d'infection à BMR

- **R42 (suite)** Les six critères suivants sont des facteurs de risque d'infection à BMR (Grade 2+) Accord FORT:
- 1.Traitement antérieur par C3G ou fluoroquinolone (dont monodose) dans les 3 mois
- 2.Portage d'une entérobactérie BLSE, ou *P. aeruginosa* résistant à la ceftazidime, sur un prélèvement de moins de 3 mois, quel que soit le site
- 3. Hospitalisation à l'étranger dans les 12 mois précédents
- 4.Patient vivant en EHPAD médicalisé ou soins de longue durée ET porteur d'une sonde à demeure et/ou d'une gastrostomie
- 5. Echec de traitement par une antibiothérapie à large spectre par céphalosporine de 3° génération ou fluoroquinolone ou pipéracilline-tazobactam
- 6.Récidive précoce (< 15 jours) d'une infection traitée par pipéracilline-tazobactam pendant au moins 3 jours

Carbapèmes si choc septique/sepsis grave + 1 FR

3. Quand et comment diminuer l'utilisation des carbapénèmes ?

RFE SRLF/SFAR/SPILF Juin 14

En traitement probabiliste, d'une infection bactérienne communautaire, il ne faut pas prescrire de carbapénème

Accord fort

Un carbapénème peut être éventuellement considéré chez les patients qui présentent :

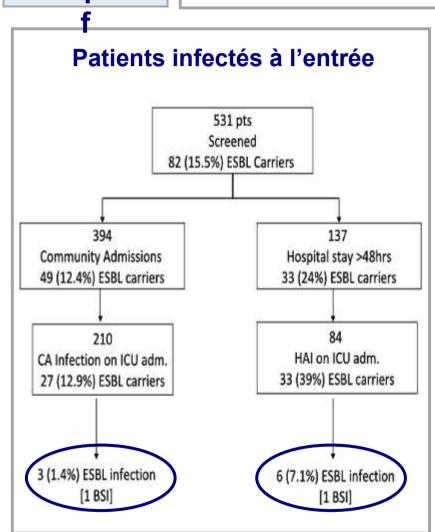
- ✓ un sepsis sévère ou choc septiqueET
- ✓ un antécédent connu de colonisation/infection à entérobactérie- BLSE, ou à *P. aeruginosa* résistant à la ceftazidime, sur un prélèvement de moins de 3 mois, quel que soit le site.

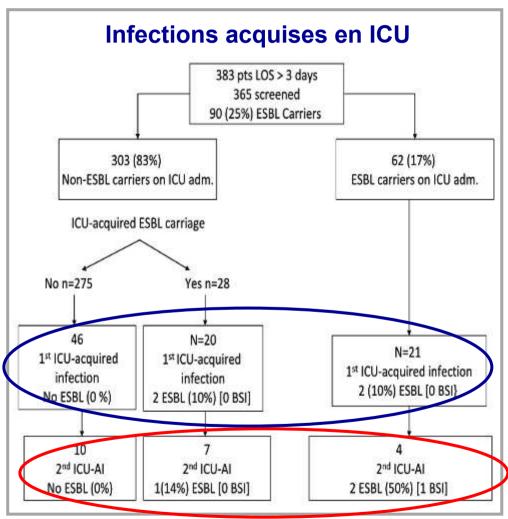
Accord faible

3. Quand et comment diminuer l'utilisation des carbapénèmes ?

RFE SRLF/SFAR/SPILF Juin 14

Infection associée aux soins/nosocomiale, pas de carbapénème en probabiliste sauf si au moins 2 facteurs parmi :


- •traitement antérieur par C3G, FQ (dont monodose) ou TZP dans les 3 mois
- •portage EBLSE, ou d'un *P. aeruginosa* caz-R, sur un prélèvement de moins de 3 mois, quel que soit le site
- •hospitalisation à l'étranger dans les 12 mois
- patient d'EHPAD médicalisé ou SLD avec sonde U à demeure et/ou gastrostomie
- épidémie BMR en cours avec carbapénème comme seule option thérapeutique


 Accord fort

France Prospecti

Clinical impact and risk factors for colonization with extended-spectrum β -lactamase-producing bacteria in the intensive care unit

Razazi K ICM 2012; 38:1769

Predictive Value of Prior Colonization and Antibiotic Use for Third-Generation Cephalosporin-Resistant Enterobacteriaceae Bacteremia in Patients With Sepsis

	3GC-R EB Bacteremia (n = 64 [0.7%])	Any 3GC-R EB Infection ^a (n = 331 [3.5%])	3GC-S EB Bacteremia (n = 709 [7.5%])				
Predictor	Sensitivity for Outcome						
Prior ^b colonization with 3GC-R EB: 90 d	27 (42)	125 (38)	30 (4)				
Prior ^b colonization with 3GC-R EB: 1 y	31 (48)	144 (44)	41 (6)				
Prior 2GC or 3GC use: 30 d	15 (23)	85 (26)	61 (9)				
Prior FQ use: 30 d	10 (16)	47 (14)	41 (6)				
Prior 2GC, 3GC, or FQ use: 30 d	20 (31)	111 (34)	88 (12)				
Prior 2GC, 3GC, or FQ use: 90 d	33 (52)	162 (49)	158 (22)				
Prior ^b colonization with 3GC-R EB (90 d) or prior 2GC, 3GC, or EQ use (30 d)	32 (50)	172 (52)	107 (15)				
Prior ^b colonization with 3GC-R EB (1 y) or prior 2GC, 3GC, or EQ use (90 d)	42 (66)	210 (63)	176 (25)				

- Hollande, rétrospectif (2008 à 2010), 2 hôpitaux
- 9 422 sepsis
- 331 (3,5%) infections à entérobact C3G-R (dont 64 (0,7%) avec Hc +)
- Antécédents de :
 - colonisation C3G-R
 - traitement C2G,C3G, FQ

Mauvaise sensibilité (maximum 66%)

Rottier WC CID 2015; 60: 1622

Predictive Value of Prior Colonization and Antibiotic Use for Third-Generation Cephalosporin-Resistant Enterobacteriaceae Bacteremia in Patients With Sepsis

	200 B EB	Any 3GC-R	3GC-S EB	
			VPP	tif (2008)
Priorb colon	C3G o	dans le u FQ dar		mois 1,3% ns à
Prior b colon 3GC-R EI Prior 2GC o 30 d	ou l'aut	re		1,8% ∍c Hc +)
Prior FQ use: 30 d	10 (16)	47 (14)	41 (6)	
Prior 2GC, 3GC, or FQ use: 30 d	20 (31)	111 (34)	88 (12)	 Antécédents de : - colonisation C3G-R
Prior 2GC, 3GC, or FQ use: 90 d	33 (52)	162 (49)	158 (22)	- traitement C2G,C3G, FQ
Prior ^b colonization with 3GC-R EB (90 d) or prior 2GC, 3GC, or EQ use (30 d)	32 (50)	172 (52)	•	
Prior ^b colonization with 3GC-R EB (1 y) or prior 2GC, 3GC, or EQ use (90 d)	42 (66)	210 (63)	176 (25)	Mauvaise sensibilité (maximum 66%)
Data are presented as No. (9	%) unless other	wise indicated.	Rottier WC CID 2015 ; 60 : 1622	

Journal of Antimicrobial Chemotherapy Advance Access published January 10, 2016

J Antimicrob Chemother doi:10.1093/jac/dkv423

Journal of Antimicrobial Chemotherapy

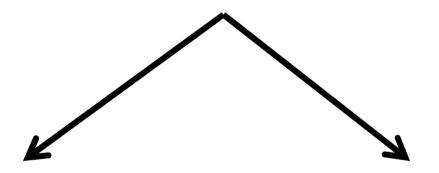
Colonization and infection with extended-spectrum β -lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure?

François Barbier¹, Cécile Pommier², Wafa Essaied², Maïté Garrouste-Orgeas³, Carole Schwebel⁴, Stéphane Ruckly⁵,
Anne-Sylvie Dumenil⁶, Virginie Lemiale⁷, Bruno Mourvillier⁸, Christophe Clec'h⁹, Michaël Darmon¹⁰,
Virginie Laurent¹¹, Guillaume Marcotte¹², Jean-Christophe Lucet^{2,13}, Bertrand Souweine¹⁴, Jean-Ralph Zahar¹⁵ and
Jean-François Timsit^{2,8*} on behalf of the OUTCOMEREA Study Group†

 Résultats allant dans le même sens dans une cohorte de16 734 pts de ICU

Significance of Prior Digestive Colonization With Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Patients With Ventilator-Associated Pneumonia*

As a conclusion, we showed herein that ESBL-EB rectal carriage could predict the subsequent isolation of such bacterial species within the airways of patients with suspected VAP in a low-prevalence area. The choice of first-line antibiotics could be thus more accurate.


En fait

- •587 PAVM
- •20 PAVM à EBLSE
- Dont 17 étaient colonisés à EBLSE

- Présentés tels quels ces résultats incitent a la prescription de carbapénèmes
- Alors que la bonne question était : « parmi les patients colonisés à EBLSE combien ont fait 1 PAVM à EBLSE »

Risk associated with a systematic search of extended-spectrum β-lactamase—producing Enterobacteriaceae

Dépistage systématique des BLSE

Intérêt pour :

- prévenir la transmission croisée
- données épidémiologiques

Risque +++ de prescriptions inappropriée de carbapénèmes

J Antimicrob Chemother doi:10.1093/jac/dkv423

Journal of Antimicrobial Chemotherapy

Colonization and infection with extended-spectrum β -lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure?

François Barbier¹, Cécile Pommier², Wafa Essaied², Maïté Garrouste-Orgeas³, Carole Schwebel⁴, Stéphane Ruckly⁵, Anne-Sylvie Dumenil⁶, Virginie Lemiale⁷, Bruno Mourvillier⁸, Christophe Clec'h⁹, Michaël Darmon¹⁰, Virginie Laurent¹¹, Guillaume Marcotte¹², Jean-Christophe Lucet^{2,13}, Bertrand Souweine¹⁴, Jean-Ralph Zahar¹⁵ and Jean-François Timsit^{2,8*} on behalf of the OUTCOMEREA Study Group†

Table 5. Use of carbapenems, BLBLI combinations and fluoroquinolones in the ICU in carriers of ESBL-PE and non-carriers

- Antimicrobial class	Number of treatment days per 1000 patient days ^a			
	non-ESBL-PE carriers	ESBL-PE carriers without ESBL-PE infection	ESBL-PE carriers with ≥1 ESBL-PE infection	P value ^b
Carbapenems	69	241	627	<0.0001
BLBLI combinations				
amoxicillin/clavulanic acid	220	103	123	<0.0001°
ticarcillin/clavulanic acid	122	54	26	<0.0001°
piperacillin/tazobactam	99	49	97	< 0.0001
Fluoroquinolones	114	87	108	0.89

^aSee the Patients and methods section for details.

^bGlobal comparison.

^cP<0.05 for the comparison between non-carriers and carriers (either infected or not).

Céfépime 2g en 30 mn puis 2 g x 3

H 48 Antibiogramme pour le micro-organisme n° 1

Enterobacter aerogenes

Technique : diffusion Amoxicilline Amoxicilline + ac. clavulanique R Ticarcilline Ticarcilline + ac. clavulanique R R Pipéracilline Pipéracilline + tazobactam R R Céfoxitine R Céfotaxime R Ceftazidime Aztréonam Céfépime Imipénème Méropénème Ertapénème Gentamicine Nétilmicine Tobramycine Amikacine Acide nalidixique Norfloxacine Péfloxacine Ofloxacine Ciprofloxacine Lévofloxacine Triméthoprime + sulfaméthoxazole S Fosfomycine

DIFFUSION

Appel du labo : « il y a une hémoc qui pousse à BGN... »

Vous faites quoi?

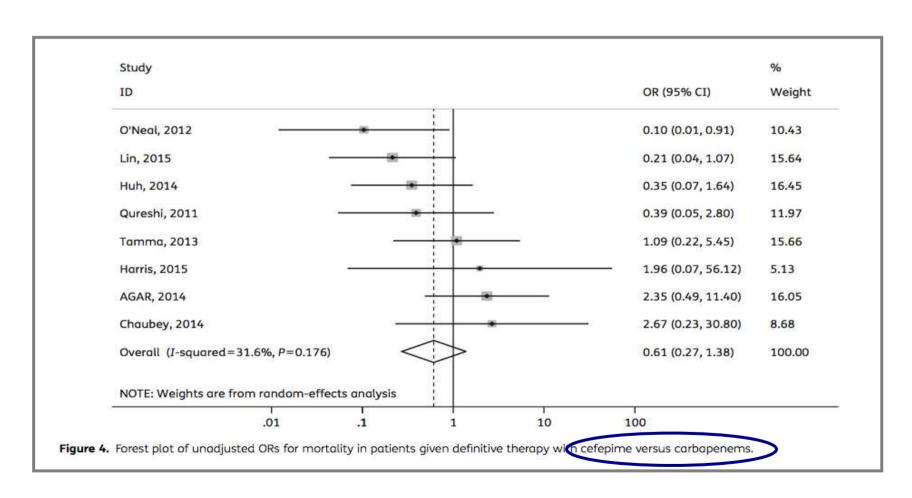
(1) Prescripteur absent ou illisible

Coup de téléphone au labo pour savoir ce que ce « l » veut dire

•Diamètre : 22 mm

EUCAST S ≥ 24 mm R < 21 mm

Demande mesure CMI du céfépime


Vous faites quoi?

Patient stable sous FiO₂ 40 % Pas de problème hémodynamique

Poursuite céfépime 6 g en continu

Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by *Enterobacter*, *Citrobacter* or *Serratia* species: a systematic review with meta-analysis

Cefepime pharmacodynamics in patients with extended spectrum β-lactamase (ESBL) and non-ESBL infections*

Su Young Lee, Joseph L. Kuti, David P. Nicolau*

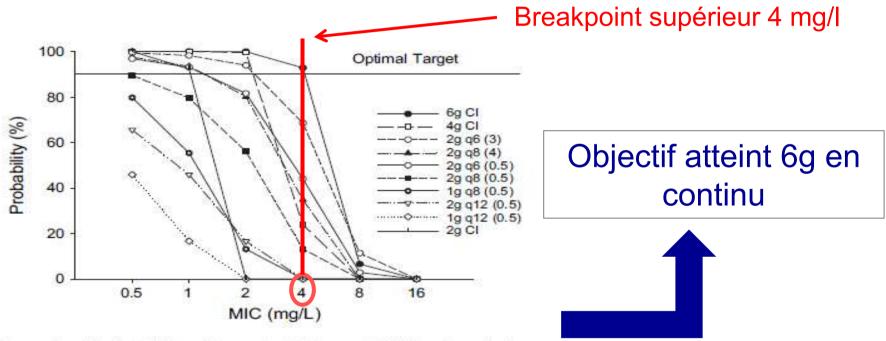


Figure 2 Probability of target attainment (PTA) of each drug regimen (infusion time) to obtain fCmin/MIC > 7.6 for simulated subjects with CL_{CR} between 60 and 120 ml/min.

Résultat CMI: 2 mg/l

Cefepime pharmacodynamics in patients with extended spectrum β-lactamase (ESBL) and non-ESBL infections^{*}

Su Young Lee, Joseph L. Kuti, David P. Nicolau*

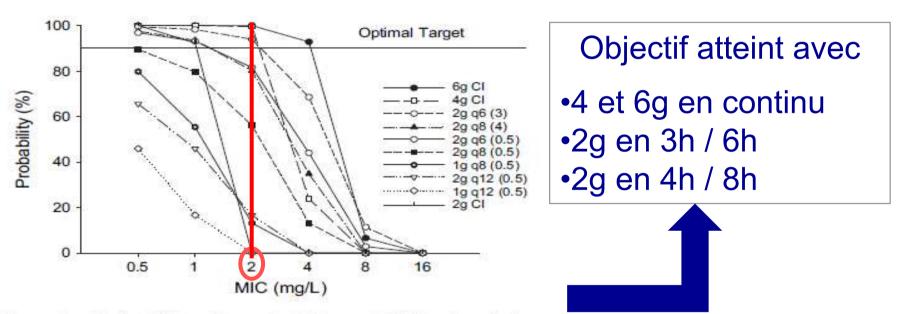


Figure 2 Probability of target attainment (PTA) of each drug regimen (infusion time) to obtain fCmin/MIC > 7.6 for simulated subjects with CL_{CR} between 60 and 120 ml/min.

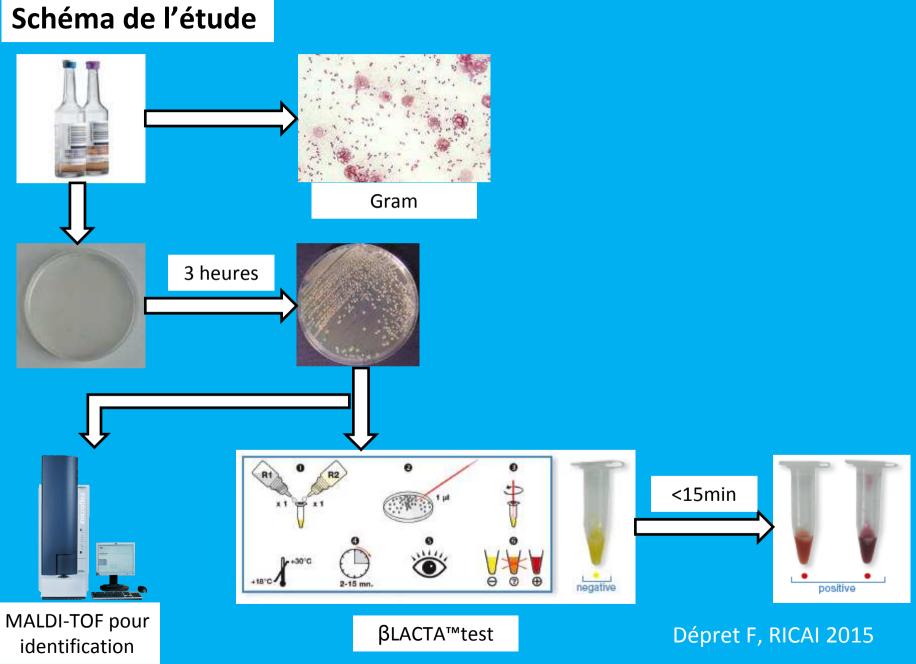
- Céfépime : concentration plateau : 35 mg/l
- Diminution de posologie 4 g en continu
- Concentration plateau : 21 mg/l
- Pas de toxicité neurologique et EEG normal
- Durée de traitement ????

7 jours

- Disparition fièvre en 3 jours
- LBA de contrôle après 5 j de traitement : stérile

J15: extubation

J18: transfert en pneumo



Gram-negative bacteremia: Does β-Lacta-test and MALDI-TOF improved Antimicrobial Stewardship decisions?

F. Dépret, A. Aubry, A. Fournier, S. Janicot, S. Katsahian, H. Bensekhri, F. Compain, JL. Mainardi, MP. Fernandez-Gerlinger

Unité Mobile de Microbiologie clinique, Service de Microbiologie, Hôpital Européen Georges Pompidou, Université Paris Descartes

