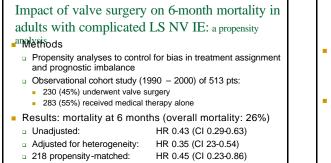
Nouvelles perspectives dans le traitement de l'EI

Bruno Hoen JNI 2004 - Strasbourg Mortality rates of IE in the XXth century Dramatic progress... until 1950

Period	Mortality rate	Reference
1900	100%	Osler 1899
1950	30%	Hunter 1951
2000	26% 27% 35% 17%	Hasbun, 2003 Wallace, 2002 Cabell, 2002 Hoen, 2002

IE: an evolving disease

- More valvular prostheses and PV IE
- More intravascular devices and device-related IE
- More patients with major comorbidities
 - Diabetes, hemodialysis
 - □ IVDU, HIV infection
- More nosocomial and nosohusial IE
- More staphylococcal IE
 - More antibiotic-resistant organisms


How to improve the cure rate of IE? Some milestones on a tough pathway

- Refining indications for surgery
- Antiplatelet agents ?
- Newer antibiotics
- Newer strategies

Comparison 1999 vs. 1991					
	1991	1999	Р		
Overall crude incidence	28.6 [25.9-31.6]	25.9 [23.4-28.7]			
Overall standardized incidence	30.9 [27.9-34.1]	26.5 [23.9-29.6]	<0.00001		
Standardized incidence by UHD - no previously known UHD - previously known UHD - prosthetic valve	10.2 [8.6-12.2] 20.6 [18.2-23.4] 6.9 [5.5-8.6]	11.4 [9.7-13.5] 15.1 [13.1-17.5] 4.7 [3.6-6.2]	0.78 <10 [®] <0.0001		
Standardized incidence by pathogen - oral streptococci - group D streptococci - <i>Staphylococcus aureus</i> Rate of surgical treatment	7.8 [6.4-9.5] 5.3 [4.1-6.9] 4.9 [3.8-6.3] 31.2 %	5.1 [4.0-6.7] 6.2 [5.0-7.9] 5.7 [4.5-7.3] 49.7 %	<0.0001 0.67 0.97 <2.10 ⁻⁷		
Lethality rate	21.6 %	16.6 %	0.08		

Indications for surgery in IE state-of-the-art

- Indications for surgery in IE are well defined
 - Congestive heart failure
 - Refractory infection
 - Severe anatomical/functional valve damages
- Benefits of surgery in IE are supported by clinical experience, not evidence-based
- Absence of randomized trials (unethical & unfeasible)
- u Unavoidable biases of observational studies
 - Overall, sicker patients are selected for surgery
 - The sickest patients are not operated on.

- Adjusted for confounding:
- HR 0.40 (CI 0.18- 0.91) HR 0.22 (CI 0.09- 0.53)
- Moderate to severe CHF:
- Vikram et al., JAMA 2003:290:3207

Should surgery be performed in all IE patients? (1)

IE in IVDU and HIV-1 patients (Miro, Cardiol Clin 2003)

	RS IE	LS IE
Overall mortality:	<5%	20-30%
Operated patients:	<2%	15-25%

- S. aureus PV IE (Chirouze, Clin Infect Dis 2004)
 61 SA-PVIE from the ICE-MD. Overall mortality rate 47.5%
 - Prognosis analysis:
 - Stroke was associated with an increased risk of death
 Early valve replacement was not associated with a significant
 - survival benefit in the whole population Patients who developed cardiac complications and underwent early
 - Patients who developed cardiac complications and underwent early valve replacement had the lowest mortality rate (28.6%).

Should surgery be performed in all IE patients? (2)

- Conclusion for routine clinical practice
 - Although patients with clear indications for surgery should undoubtedly undergo early valve replacement, hemodynamically stable patients under careful supervision may be treated safely with antibiotics alone.
- Some (out of many) pending questions
- What is the optimal interval between Ab and surgery?
- □ Is earlier better? If yes, how early?
- Is a large, oscillating vegetation an indication for surgery in itself?

How to improve the cure rate of IE? Some milestones on a tough pathway

- Refining indications for surgery
- Antiplatelet agents ?
- Newer antibiotics
- Newer strategies

Platelets induce/stimulate vegetation growth

- 1. endocardial lesion, inducing platelet and fibrin deposition at the damaged site
- 2. adherence of bloodstream pathogens to this site
- 3. further deposition of platelets and fibrin onto infected endocardium
- 4. endocardial reseeding, either hematogenously or from intra-endocardial microorganisms

Host defense role for platelets in IE

- Platelets secrete low-molecular-weight cationic antimicrobial peptides (PMPs)
- Thrombin-induced PMP-1 (tPMP-1) is generated from rabbit platelets in vitro upon stimulation with thrombin
- tPMP-1 exerts potent cidal effect and growth inhibition against pathogens such as *S. aureus* and viridans streptococci
- tPMP-1-resistant organisms have an apparent selective survival advantage in experimental IE, in terms of

 Intravegetation proliferation

 - Extracardiac hematogenous dissemination

Experimental data

- Facts: Low-dose (≤ 10 mg/kg/d) ASA reduces

 vegetation size
 - bacterial density in vegetations
 - hematogenous dissemination of bacteria
 - frequency of embolic events
- Mechanisms
 - ASA inhibits platelet aggregation
 - Reduces the capacity of microorganisms to adhere to vegetative lesion ?

Questions from a physician

- What can we expect from ASA in IE?
 - improved efficacy of antibiotics
 - abbreviated course of antibioticsreduced incidence of embolic events
- What are the potential risks of ASA in IE?
 - Bleeding (hemorrhagic stroke)
- increased hemorrhagic risk during cardiac surgery
- If effective and safe, how should aspirin be used?
 - What is the optimal ASA dosage?
 - How long time should ASA be administered?

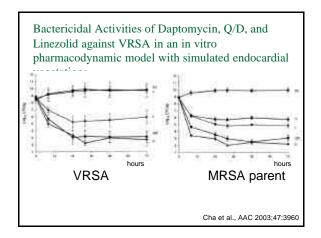
	The CATIE trial
D	Oouble-blind, placebo-controlled, randomized trial
• 1	4 centers in Canada – 4 years
A	SA dose: 325 mg/d for 4 weeks
P	atients screened: 560 – enrolled 115 (21%)
_	
_	Placebo (n=55) Aspirin (n=60)

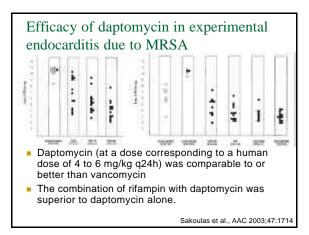
	Placebo (n=55)	Aspirin (n=60)
In hospital death	6 (11%)	4 (7%)
Embolism	11 (20%)	17 (29%)
Valve surgery	13 (24%)	18 (31%)
Bleeding (all)	8 (15%)	17 (29%)*

How to improve the cure rate of IE? Some milestones on a tough pathway

- Refining indications for surgery
- Antiplatelet agents ?
- Newer antibiotics
- Newer strategies

Linezolid (Zyvoxid[®], Pfizer)

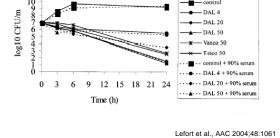

 Linezolid alone or in combination with vancomycin was less effective than vancomycin alone in the Rx of experimental endocarditis due to MRSA.


Collinson and			
	R/Rect	Today organized	1100
111		0.011.010	48-110
100	728	7.807 - 4.08	4.12 + 240
05	10	4/80° - 108	110 - 110 110 - 110
	11211		Chiang, AAC 20

- No synergy with rifampin (AAC 2003;47:2655)
- Case reports of clinical failure (CID 2003;37:e29)
- Time- and dose-dependant myelosuppression.

Daptomycin (Cubicin[®], Cubist)

- Cyclic lipopeptide with bactericidal activity against Gram-positive pathogens, including MRSA.
- Approved for use in the Rx of complicated skin and soft-tissue infections (CID 2004;38:1673)
- Currently evaluated in S. aureus bacteremia and endocarditis (DAP-IE-01-02)
 - A Phase 3, multicenter, randomized, open-label, comparative study to assess the safety and efficacy of daptomycin compared to conventional therapy in the treatment of subjects with infective endocarditis or bacteremia due to Staphylococcus aureus



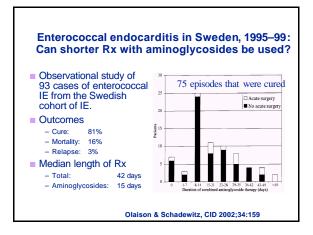
Dalbavancin (BI-397, Biosearch Italia)

- Semisynthetic glycopeptide
 - active in vitro and in animal models against grampositive cocci, including MRSA.
 - $\hfill \ensuremath{\,\circ}$ elimination half-life of $\ensuremath{\,\sim}$ 1 week, resulting in high plasma levels sustained in humans for a long time.
- Preliminary studies showed that dalbavancin is at least as potent as vancomycin against MRSA with or without reduced susceptibility to vancomycin.

Activity of dalbavancin in a rabbit model of endocarditis due to GISA 110^{11}

Telavancin (TD-6424, Theravance)

- Novel glycopeptide, with specific features
 - bactericidal,
 - nultiple synergistic mechanisms/sites of action
 - concentration-dependent killing against gram-positive aerobes, including vancomycin-resistant strains
 postantibiotic effects of up to 6 h against *S. aureus*
- TD-6424 is currently in phase 2 trials for serious
- gram-positive infections
- Skin and soft tissue infections
- Bacteremia and endocarditis (ASSURE trial).


How to improve the cure rate of IE? Some milestones on a tough pathway

- Refining indications for surgery
- Antiplatelet agents ?
- Newer antibiotics
- Newer strategies

Non-antibiotic antistaphylococcal therapies in bacteremic infections

- Sa-IVIG (Inhibitex)
- phase III (halted)
- anti-Sa clumping factor A Mab (Aurexis[®], Inhibitex)
- Phase II, multicenter, double-blind, placebo-controlled, evaluating Aurexis[®] as adjunct therapy in SaB.
- Pooled human Ab against Sa capsule antigens (Altastaph[®], Nabi)
- Phase II, multicenter, double-blind, placebo-controlled, evaluating Aurexis[®] as adjunct therapy in SaB.

Antistaphylococcal vaccination in highrisk patients Methods double-blind trial in HD pts vaccine: *S. aureus* type 5/8 capsular polysaccharides 1804 adult HD patients randomly assigned to receive a single IM injection of either vaccine or saline. Results Vaccine conferred partial Π. immunity against *S. aureus* bacteremia for 40 weeks Afterwards protection waned as antibody levels decreased Shinefield et al., N Engl J Med 2002;346;491

