Relationship Between Antibiotic Consumption and Resistance in European Hospitals

Dominique L. Monnet
National Center for Antimicrobials and Infection Control, Statens Serum Institut, Copenhague, Danemark
The World (of Antimicrobial Resistance) According to...

Human Bacterial Pathogens and Their Habitat

- R *Pseudomonas aeruginosa*
- R *Acinetobacter baumannii*
- R *Salm.
- R *Camp.
- R *E. coli*
- R *Strep. pneumoniae*
- R *Haem. influenzae*
- MRSA
- R *S. aureus*

le MONDe de la Résistance Intrinsèque et Acquise aux ANtibiotiques ;-).
Antimicrobial Consumption and Resistance: Examples from ARPAC European Hospitals, 2001

Source: ARPAC, 2004 (http://www.abdn.ac.uk/arpac/)
Usefulness of Antimicrobial Resistance and Antimicrobial Use Data Comparison

High level of resistance
Low antimicrobial use
Possible areas of improvement:
 . infection control
 . identif. of colonized patients upon admission
 . appropriate dosage (low dose)
 . use of other antimicrobials

Low level of resistance
Low antimicrobial use

Low level of resistance
Relatively high antimicrobial use
Possible area of improvement: detection of resistance in the laboratory
Possible explanation: resistant bacteria has not been introduced in setting

Percent Ceftazidime-Resistant/Intermediate Gram-Negative Bacilli and Hospital Ceftazidime Use, Hospital Vega Baja, Spain, 1991-1998

Yearly data

Monthly data (5-month moving average)

Ceftazidime use (DDD/1,000 pt-days) Ceftazidime-resistant GNB (%)

Examples of Time Series

Crude Death Rates for Infectious Diseases, USA, 1900-1996

Dow Jones Industrial Average

Multivariate Time Series Analysis

- To assess relationships between a target (output) series and one or several explanatory (input) series
- Various types of models: transfer function (TF), polynomial distributed lag (PDL), etc.
- TF models: cross-correlation function (CCF) to identify time lags between series

Sources:
Transfer Function Model for Percent Ceftazidime-Resistant/Intermediate Gram-Negative Bacilli Series (taking into account hospital ceftazidime use)

<table>
<thead>
<tr>
<th>Term</th>
<th>Parameter (SE)</th>
<th>T-ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.354 (0.760)</td>
<td>1.78</td>
<td>0.078</td>
</tr>
<tr>
<td>AR3</td>
<td>0.352 (0.096)</td>
<td>3.68</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AR5</td>
<td>0.265 (0.098)</td>
<td>2.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>ULAG1</td>
<td>0.420 (0.096)</td>
<td>4.34</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Average delay = 1 month
+1 DDD/1,000 patient-days = 6.5 days of treatment
→ +0.42 %R
e.g. from R = 5% → R = 5.42%

5-Month Moving Average Percent Amikacin-Resistant/Intermediate *P. aeruginosa* and Hospital Antimicrobial Use, Hospital Vega Baja, Spain, 1991-1999

5-Month Moving Average Percent Amikacin-Resistant/Intermediate *P. aeruginosa* and Hospital Antimicrobial Use, Hospital Vega Baja, Spain, 1991-1999

Transfer Function Model for Percent Amikacin-Resistant *Pseudomonas aeruginosa* Series (taking into account aminoglycoside and 3rd-generation cephalosporin use)

<table>
<thead>
<tr>
<th>Term</th>
<th>Order</th>
<th>Parameter (SE)</th>
<th>T-ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0</td>
<td>-20.741 (4.516)</td>
<td>-4.59</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Amikacin</td>
<td>7</td>
<td>0.973 (0.391)</td>
<td>2.49</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>7</td>
<td>0.420 (0.153)</td>
<td>2.75</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>3</td>
<td>0.297 (0.112)</td>
<td>2.66</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>6</td>
<td>0.437 (0.110)</td>
<td>3.98</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AR</td>
<td>2</td>
<td>0.295 (0.091)</td>
<td>3.24</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Co-Resistances in Amikacin-Resistant/Intermediate and Susceptible *Pseudomonas aeruginosa* Isolates, Hospital Vega Baja, Spain, 1991-1999

<table>
<thead>
<tr>
<th>Co-resistance</th>
<th>Amikacin-R/I no. (%)</th>
<th>Amikacin-S no. (%)</th>
<th>RR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentamicin-R/I</td>
<td>78 (97.5)</td>
<td>177 (17.5)</td>
<td>128.0</td>
<td><0.0000001</td>
</tr>
<tr>
<td>Cefotaxime-R/I</td>
<td>73 (91.3)</td>
<td>840 (83.0)</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Ceftriaxone-R/I*</td>
<td>40 (81.6)</td>
<td>361 (74.7)</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Tobramycin-R/I</td>
<td>34 (42.5)</td>
<td>18 (1.8)</td>
<td>14.8</td>
<td><0.0000001</td>
</tr>
<tr>
<td>Ceftazidime-R/I</td>
<td>15 (18.8)</td>
<td>37 (3.7)</td>
<td>4.6</td>
<td><0.0000001</td>
</tr>
</tbody>
</table>

* only 55.3% of isolates were tested for susceptibility to ceftriaxone

%MRSA and Monthly Use of Macrolides, Third-Generation Cephalosporins and Fluoroquinolones, Aberdeen Royal Infirmary, 01/1996-12/2001

<table>
<thead>
<tr>
<th>Explaining variable for monthly %MRSA</th>
<th>Lag (months)</th>
<th>Estimated coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>%MRSA</td>
<td>1</td>
<td>0.420</td>
</tr>
<tr>
<td>Macrolide use</td>
<td>1,2,3</td>
<td>0.165</td>
</tr>
<tr>
<td>Third-generation cephalosporin use</td>
<td>4,5,6,7</td>
<td>0.290</td>
</tr>
<tr>
<td>Fluoroquinolone use</td>
<td>4,5</td>
<td>0.255</td>
</tr>
<tr>
<td>Constant</td>
<td>-</td>
<td>- 36.7</td>
</tr>
</tbody>
</table>

$R^2=0.902$

5-Month Moving Average Percent Imipenem-Resistant/Intermediate *P. aeruginosa* and Hospital Imipenem Use, Hospital Vega Baja, Spain, 1991-1999

Average delay = 1 month
1 DDD/1,000 pat-days $\rightarrow +0.40$ %R

%Carbapenem-Resistant *Pseudomonas aeruginosa* and Carbapenem Use in 4 Hospitals, 1996-2003

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Location</th>
<th>Data Source</th>
<th>Average Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. Hospital, Ulm (D)</td>
<td>Germany</td>
<td>Lepper et al. AAC 2002:46:2920-5.</td>
<td>0-1 month</td>
</tr>
<tr>
<td>Univ. Hospital, Antwerp (B)</td>
<td>Belgium</td>
<td>Goossens H, et al. Unpublished data.</td>
<td>0-2 months</td>
</tr>
<tr>
<td>Univ. Hospital, Utah (USA)</td>
<td>USA</td>
<td>Samore MH, et al. Unpublished data.</td>
<td>0-1 month</td>
</tr>
<tr>
<td>Centre Hosp. Mulhouse (F)</td>
<td>France</td>
<td>Aujoulat O, Delarbre JM. ViResiST.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
ACR Chart

Source: Muller A, et al. (available free-of-charge, September 2005)
Effects of reduction of quinolone use on antibiotic susceptibility in *P. aeruginosa*, Pittsburgh (PA), 2001-2004

Effect of Restricting Fluoroquinolones, ICU, Saint-Etienne (F), 2000-2002

Antibiotic Rotation and Development of Gram-Negative Antibiotic Resistance, Surgical ICU, Utrecht (NL), 2001-2002

Proportion of patients treated (%)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>2001-02</th>
<th>2002-03</th>
<th>2003-04</th>
<th>2004-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levofloxacin</td>
<td>40</td>
<td>0</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>Cefpirome</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pip/Tazo</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>55</td>
</tr>
</tbody>
</table>

Effect of Cycle Length

10 day cycles
90 day cycles
360 day cycles

Fraction Resistant

Time (days)

Areas for Future Research

- Adequation between studies at patient level and time series analyses?
- Are these relationships found in every hospital?
- More on the effect of interventions aiming at rationalizing antimicrobial prescriptions
- Short cycling vs. optimal mixing of prescriptions
- MRSA vs. antimicrobial consumption
- Outbreaks vs. endemic situations
- Interaction between infection control and antimicrobial consumption
Pan-Resistant Gram-Negative Bacilli

ICU, Henry Dunant Hosp., Athens, Greece, 2001-2004

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior colistin use (days)</td>
<td>0</td>
<td>23</td>
<td>11</td>
</tr>
</tbody>
</table>

Legend:
- Carbapenem-R, colistin-S only
- Gram-neg. bact.
- 3rd-gen. cephs-R
- Gram-neg. bact.

Hosp. Clinico San Carlos, Madrid, 08/2003-08/2004:
>20 pts with carbapenem-R, colistin-R *P. aeruginosa*
It’s a numbers game!

Illustration: Prittie EJ.