The importance of cohort collaborations for guiding clinical management of individuals with HIV infection

Caroline Sabin
Professor of Medical Statistics and Epidemiology
Royal Free and University College Medical School
London, UK
Contents

• Why do we need cohort collaborations for HIV infection?
• An example of a successful cohort collaboration – The Antiretroviral Therapy Cohort Collaboration (ART-CC)
• What makes a cohort collaboration successful?
• The potential limitations of these collaborations and ways to deal with them
Much of our knowledge about HIV infection has been obtained from cohort studies:

- Description of the natural history of infection
- Identification of the CD4 count and viral load as good surrogate markers of clinical progression
- Identification of co-factors (including older age and viral infections [CMV, HCV]) for progression
- Assessment of impact of highly active antiretroviral therapy on outcomes
The main limitations of cohort studies

However, despite the tremendous role played by cohort studies in HIV infection, their value is hampered by two main factors:

- Their size
- The representativeness of the cohort
(i) Cohort size

Even the largest cohorts may be insufficiently powered to study rare events

- Data Collection on Adverse Events of Antiretroviral Therapy (D:A:D) Study considers relationship between exposure to HAART and cardiovascular disease
- Around 30,000 person-years of follow-up required to detect a doubling in risk of cardiovascular disease (around 6,000 patients followed for 5 years)

Cohorts that were large enough in the pre-HAART era may now be too small to answer questions relating to clinical events
(i) Representativeness

Cohorts may be limited in terms of:

- Geographic location
- Site of care (urban/rural)
- Exposure group (IDU, haemophilia, homosexual)
- Treatment status (naïve, experienced)
- Other characteristics (seroconverters, patients receiving health care from single health care insurer)
Early cohort collaborations – the Multi-cohort Analysis Project (MAP)

- Collaboration between statisticians, clinicians and epidemiologists working on 5 HIV cohorts
 - Edinburgh City Hospital cohort, Italian Seroconversion cohort, Royal Free Hospital Haemophilia cohort, National Cancer Institute cohort, Toronto Sexual Contact Study cohort
- Two-week workshop in Cambridge, 1993
- Aim: to pool data from HIV seroconverter cohorts to perform a variety of analyses on the prognostic value of biological markers (CD4, CD8, IgA, β2M)
- 4 papers in *Statistics in Medicine* and 2 in *AIDS*
Early cohort collaborations – the CASCADE Study

- Concerted Action on SeroConversion to AIDS and Death in Europe
- Initiated in 1997 as a collaboration between the investigators of 22 seroconverter cohorts
- Currently a network of epidemiologists, statisticians, virologists and clinicians from 15 European countries, Australia and Canada
- Aims to study issues relating to entire course of infection that cannot be addressed in individual cohorts
The Antiretroviral Therapy (ART) Cohort Collaboration

Aim of collaboration:

To provide reliable estimates of the prognosis of antiretroviral-naïve individuals starting HAART for the first time

- In particular, to consider progression to a new AIDS event or death
The Antiretroviral Therapy (ART) Cohort Collaboration

Inclusion criteria (patients)

- Aged >16 years
- Not previously received antiretroviral treatment
- Starting HAART containing >3 drugs
- CD4 count and HIV RNA level at baseline
The Antiretroviral Therapy (ART) Cohort Collaboration

Inclusion criteria (patients)

- Aged >16 years
- Not previously received antiretroviral treatment
- Starting HAART containing ≥3 drugs
- CD4 count and HIV RNA level at baseline

Inclusion criteria (cohorts)

- Enrolled at least 100 such patients
- Median follow-up of at least 1 year
- Able to provide required data in a timely manner
The Antiretroviral Therapy (ART) Cohort Collaboration

Participating cohorts

- French Hospital Database on HIV
- ICoNA, Italy
- Swiss HIV Cohort Study
- ATHENA, Netherlands
- EuroSIDA
- CHORUS, US
- Frankfurt HIV Cohort, Germany
- APROCO, France
- BC Centre for Excellence in HIV, Canada
- Royal Free Hospital Cohort, London
- South Alberta Clinic, Canada
- Köln/Bonn Cohort, Germany
Relationship between baseline CD4 count and progression to AIDS or death

AIDS-free survival stratified by CD4 count and HIV RNA at 6 months

i) CD4 response

ii) HIV RNA response

1. Risk calculator for HIV positive patients starting antiretroviral therapy

Please note that this calculator is only applicable to patients who are:

- HIV-1 positive
- No previous antiretroviral therapy (ART)
- Age 18 years or older

It estimates the probability of experiencing a new AIDS defining disease or death by the end of 1, 2 or 3 years after the patient starts antiretroviral therapy. It also estimates the probability of death from all causes (either HIV or non-HIV related) for up to three years after the start of therapy. Please note that CDC disease stage is defined by clinical diseases only and not by reference to CD4 cell count. You must enter all five prognostic factors for the calculator to work.

Enter patient's prognostic data at time of starting ART:

- **Age in years:**
 - 0 under 50
 - 50 or over

- **CD4 cell count:**
 - 0 under 50
 - 50-99
 - 100-199
 - 200-349
 - 350 or over

- **HIV-1 RNA copies/ml:**
 - Under 100,000
 - 100,000 or over

- **CDC disease stage:**
 - O A or B
 - C

- **HIV transmission through injection drug use:**
 - O yes
 - O no

[Calculate][Reset]

For more information on the methods used in the calculations and the limitations on their use, please see the corresponding publication from the ART Cohort Collaboration.

The ART Cohort Collaboration

Patient data entered

<table>
<thead>
<tr>
<th>Prognostic factor</th>
<th>Patient data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>less than 50 years old</td>
</tr>
<tr>
<td>CD4 cell count</td>
<td>100 to 199</td>
</tr>
<tr>
<td>HIV-1 RNA copiometric</td>
<td>over 100,000</td>
</tr>
<tr>
<td>CDC disease stage</td>
<td>C</td>
</tr>
<tr>
<td>Transmission through injection drug use</td>
<td>no</td>
</tr>
</tbody>
</table>

Estimated probability of progression to new AIDS defining disease or death

<table>
<thead>
<tr>
<th>Time from start of HAART</th>
<th>Predicted probability</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of year 1</td>
<td>8.55%</td>
<td>7.23% to 10.41%</td>
</tr>
<tr>
<td>End of year 2</td>
<td>13.17%</td>
<td>11.12% to 15.56%</td>
</tr>
<tr>
<td>End of year 3</td>
<td>16.70%</td>
<td>14.40% to 19.72%</td>
</tr>
</tbody>
</table>

Estimated probability of death

<table>
<thead>
<tr>
<th>Time from start of HAART</th>
<th>Predicted probability</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of year 1</td>
<td>2.92%</td>
<td>1.61% to 2.29%</td>
</tr>
<tr>
<td>End of year 2</td>
<td>4.06%</td>
<td>2.98% to 5.05%</td>
</tr>
<tr>
<td>End of year 3</td>
<td>6.88%</td>
<td>4.47% to 8.24%</td>
</tr>
</tbody>
</table>

For more information on the methods used in the calculations and the limitations on their use, please see the corresponding publication from the ART Cohort Collaboration:

Clinical events in first year of HAART

1. Mycobacterium avium disease
2. Kaposis Sarcoma
3. Cytomegalovirus disease
4. Pneumocystis carinii pneumonia
5. Tuberculosis
6. Oesophageal candida
7. HIV-related encephalopathy
8. Toxoplasmosis of the brain
9. Non-Hodgkin's lymphoma
10. Herpes simplex disease
11. Wasting syndrome
12. Progressive multifocal leukoencephalopathy
13. Cryptococcosis
14. Cryptosporidiosis
15. Bacterial pneumonia

Factors associated with incidence of TB

<table>
<thead>
<tr>
<th></th>
<th>Relative rate (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of HAART (/year)</td>
<td>0.59 (0.39-0.89)</td>
<td>0.009</td>
</tr>
<tr>
<td>Risk group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>2.98 (1.37-6.45)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>2.69 (1.41-5.12)</td>
<td></td>
</tr>
<tr>
<td>Other/not known</td>
<td>1.54 (0.55-4.35)</td>
<td>0.006</td>
</tr>
<tr>
<td>Year of HAART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1997</td>
<td>0.24 (0.11-0.56)</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>0.36 (0.16-0.80)</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>0.57 (0.26-1.21)</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.81 (0.39-1.68)</td>
<td></td>
</tr>
<tr>
<td>>2001</td>
<td>1</td>
<td>0.003</td>
</tr>
<tr>
<td>CD4 count (/100 cells/mm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At HAART</td>
<td>0.89 (0.83-0.96)</td>
<td>0.009</td>
</tr>
<tr>
<td>At 6 months</td>
<td>0.90 (0.81-0.99)</td>
<td>0.07</td>
</tr>
<tr>
<td>HIV RNA <400 copies/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 6 months</td>
<td>2.21 (1.33-3.67)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

What makes a cohort collaboration successful?

• Should not compete (for funding or research outputs) with participating cohorts
• Questions to be addressed must not be possible to answer in participating cohorts
• Must recognise the effort that has gone into the creation of participating cohorts
• Collaborators should play a role in study management (through steering committee membership, etc.)
The problems with cohort collaborations

Data collection and transfer

• Cohorts are likely to use different methods to collect and store data

• Coding schemes may vary from cohort to cohort and will often be language-specific

• Data may be transferred in a variety of formats - although it is possible to convert most datasets into a common format, this is time-consuming

• Attempts to harmonise data collection and transfer methods may be helpful
‘Coding of Deaths in HIV’ (CoDe) Project

• No uniform classification system for causes of death in HIV patients

• Cohorts have either created their own or have used ICD 9/10 codes - ICD system is not well adapted to HIV infection

• CoDe project (www.cphiv.dk/CoDe) is a uniform coding system that can be applied to deaths in HIV-positive individuals

• Evolved from a meeting of investigators of large HIV cohort studies and randomised trials
CoDe CRF page 1 and 2

Cause of Death Form (CRF)

Section 1: Background Information

- **A. Yes of birth?**
 - Yes
 - No

Section 2: What data sources were available for the completion of this form? (please mark all that apply)

- **A. Hospital records**
 - Yes
 - No

Section 3: Risk factors (please mark all that apply)

- **A. Disability (e.g., mental or physical)**
 - Yes
 - No

Section 4: Comorbidities (please mark all that apply)

- **A. Cigarette smoking**
 - Yes
 - No

Section 5: Case of death

- **A. Was the death sudden?**
 - Yes
 - No

www.cphiv.dk/CoDe
Local investigators complete CRF providing details on cause of death
CoDe Flow Diagram

CRF is reviewed by two independent reviewers who aim to assess cause of death and identify whether it is HIV-related or not.

www.cphiv.dk/CoDe
Is the death immunodeficiency related?

<table>
<thead>
<tr>
<th>YES</th>
<th>AIDS (CDC C) or Hodgkin’s Lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Cause(s) of death incompatible with immunodeficiency, e.g. patient dying in a plane crash</td>
</tr>
<tr>
<td>UNCLEAR</td>
<td>See table below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD4 cell count before death</th>
<th>CD4 ≤ 50 cells/µL</th>
<th>CD4 = 50-199 cells/µL</th>
<th>CD4 ≥ 200 cells/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden death</td>
<td>Possibly</td>
<td>Assumed not</td>
<td>Assumed not</td>
</tr>
<tr>
<td>Not sudden death</td>
<td>Likely</td>
<td>Possibly</td>
<td>Assumed not</td>
</tr>
</tbody>
</table>

www.cphiv.dk/CoDe
HIV Collaboration Data Exchange Protocol (HICDEP)

• Provides harmonised formats for data exchange between cohorts
• Provides guidance on possible data structure and formats for new cohorts
• Protocol, sample database and list of codes available electronically at www.cphiv.dk/HICDEP/tabid/60/Default.aspx
HICDEP – structure of database

Basic info
Lab + BP
Medication
Diseases/AE
Resistance

+ Visit info
+ Overlap
Conclusions

• Cohort collaborations have already provided valuable information that has been used to improve patient care.

• However, cohort collaborations are dependent on the continued follow-up of participating cohorts – thus care should be taken to ensure that participation in a collaboration does not impact negatively on an individual cohort.

• Where cohort collaborations are being initiated, a number of simple steps can be taken to simplify the data collection and transfer process.
Acknowledgements

HIV Epidemiology Unit, Department of Primary Care and Population Sciences, RF&UC MS

Andrew Phillips, Amanda Mocroft, Fiona Lampe, Colette Smith, Zoe Fox, Wendy Bannister, Teresa Hill, Loveleen Bansi, Alessandro Cozzi Lepri

Copenhagen HIV Program (CHIP), Hvidovre Hospital, Denmark

Nina Friis-Møller, Jesper Kjær

ART Cohort Collaboration

Jonathan Sterne, Matthias Egger, Margaret May
Good luck to France....
Good luck to France....

But even better luck to England!