

Aminosides toujours et encore... Bon usage et suivi thérapeutique

Rémy Gauzit
Unité de réanimation Ste Marthe
Hôtel Dieu - Paris V
Commission d'AMM, GTA - Afssaps

Déclaration de conflits d'intérêts de 2009 à 2011 Rémy Gauzit

- Intervenant au titre d'orateur
 Janssen-Cylag, MSD, Sanofi-Aventis, Bayer
- Participation à des groupes de travail Janssen-Cylag, MSD
- Invitations à des congrès ou des journées scientifiques Janssen-Cylag, MSD, Astellas, Sanofi-Aventis

Aminosides

- Avènement début des années 70
- Famille homogène : Pk et Pd
- Index thérapeutique étroit (toxicité rénale et auditive)
- Inhibition de la synthèse protéique des bactéries par fixation sur le ribosome S30
- Large spectre, bactéricides
- Pas beaucoup de littérature récente
- Utilisation pas toujours optimale

- Gentamicine
- Nétilmicine
- Tobramycine
- Amikacine

Providing guidelines and education is not enough: an audit of gentamicin use at The Royal Melbourne Hospital

C. L. Leong, 1,2 K. Buising, 2 M. Richards, 2 M. Robertson 3 and A. Street 2

Janv 2006

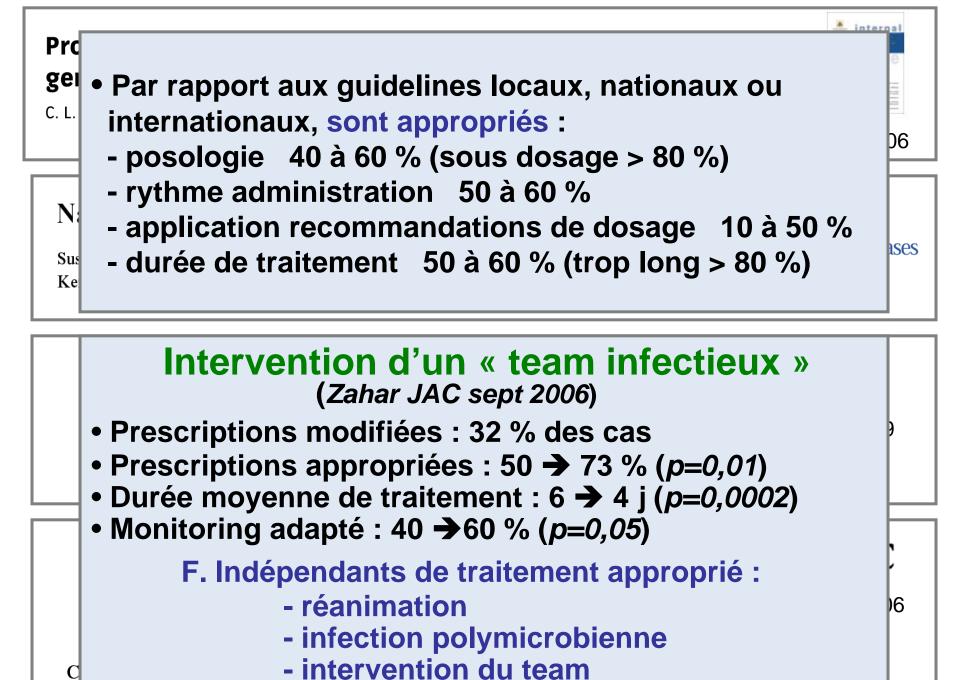
National Survey of Extended-Interval Aminoglycoside Dosing

Susan K. Chuck,¹ Susan R. Raber,^{3,4} Keith A. Rodvold,^{1,2} and Danyel Areff¹

Clinical Infectious Diseases Mars 2000

Eight years' experience of an extended-interval dosing protocol for gentamicin in neonates

JAC


Evan J. Begg^{1,*}, Jane W. A. Vella-Brincat¹, Barbara Robertshawe², Mark J. McMurtrie³, Carl M. J. Kirkpatrick³ and Brian Darlow⁴

Mars 2009

Inappropriate prescribing of aminoglycosides: risk factors and impact of an antibiotic control team

JAC Sept 2006

Jean-Ralph Zahar¹, Christophe Rioux², Emmanuelle Girou^{2,3}, Anne Hulin⁴, Colette Sauve², Alexandra Bernier-Combes³, Christian Brun-Buisson¹ and Philippe Lesprit²*

Spectre

- Bactéricidie à large spectre
- Activité in vitro :
 - BGN : entérobactéries, *P.* aeruginosa, *Acinetobacter spp*
- Activité > en anaérobiose
 si pH acide
 présence de débris cellulaires (pus ++)
- Gardent une activité bactéricide sur les bactéries quiescentes

Break-points (EUCAST) (CMI critiques) - Avril 2010

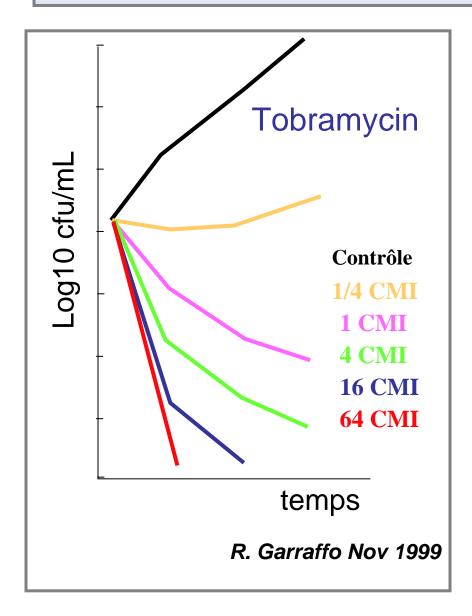
Gentamicine/netilmicine/tobramycine

Staphylocoques

S si CMI \leq 1 mg/l R si CMI > 1 mg/l

Entérobactéries

S si CMI < 2 mg/I R si CMI > 4 mg/I


P. aeruginosa, A. baumannii

S si CMI < 2 mg/I R si CMI > 4 mg/I

Amikacine

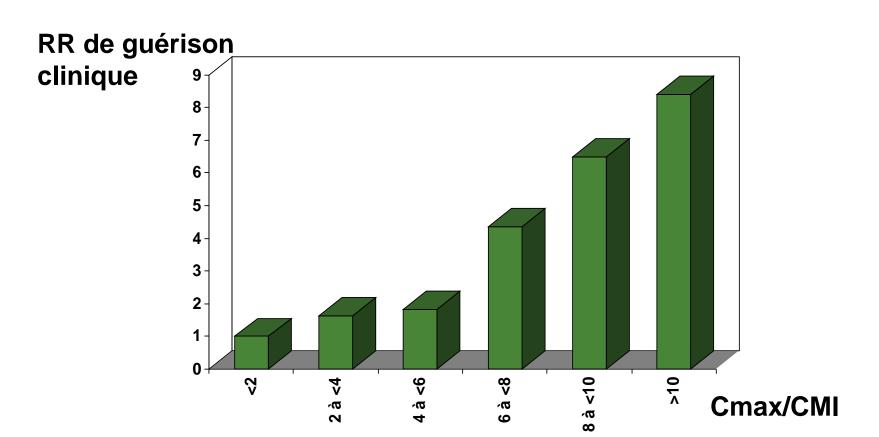
S si CMI \leq 4 mg/I R si CMI > 8 mg/I

Pharmacodynamie

 Bactéricidie concentration dépendante

> Cmax/CMI AUC/CMI

- EPA prolongé
- Pas d'effet inoculum


Pharmacocinétique

- Très polarisées, très hydrosolubles
- Elimination
 - rénale
 - pas de sécrétion biliaire ou digestive
- Faible Volume de distribution (0.3-0.4 L/kg)
- Demi-vie d'environ 2h

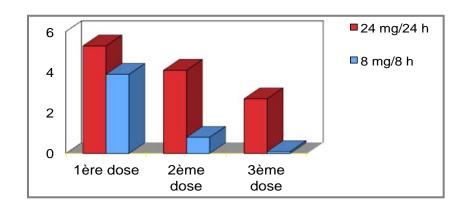
Quels objectifs Pk/Pd pour les aminosides ?

 Bactéricidie conc-dépendante (même sur pyo en croissance lente) → pic/CMI = 8 à 10

Aminosides : relation Cmax/CMI et guérison clinique

Moore JID 1987; 155 : 93-99 Spanu Intern J Antimicrob Agents 2003

Quels objectifs Pk/Pd pour les aminosides ?


- Bactéricidie conc-dépendante (même sur pyo en croissance lente) → pic/CMI = 8 à 10
- EPA (temps entre le moment ou Cser devient inférieure à la CMI et la recroissance bactérienne)
 2 à 4 h in vitro, x 2 à 10 in vivo

Quels objectifs Pk/Pd pour les aminosides ?

- Bactéricidie conc-dépendante (même sur pyo en croissance lente) → pic/CMI = 8 à 10
- EPA (temps entre le moment ou Cser devient inférieure à la CMI et la recroissance bactérienne)
 2 à 4 h in vitro, x 2 à 10 in vivo
- Phénomène de résistance adaptative à la 1^{ère} dose (réduction vitesse de bactéricidie et EPA)

Résistance adaptative et aminoside (effet 1ère dose)

«Down régulation» du transport entre l'aminoside et sa cible ribosomiale chez les bactéries survivantes aprés la 1ère dose d'aminoside

Conséquences

- CMI augmente
- > vitesse de la bactéricidie et de l'EPA
- Réversible après 24h
- Implique principalement Pyocyanique et *E coli*

Karlowsky JAC 1994; 33: 937

Quels objectifs Pk/Pd pour les aminosides ?

- Bactéricidie conc-dépendante (même sur pyo en croissance lente) → pic/CMI = 8 à 10
- EPA (temps entre le moment ou Cser devient inférieure à la CMI et la recroissance bactérienne)
 2 à 4 h in vitro, x 2 à 10 in vivo
- Phénomène de résistance adaptative après la 1ère dose (réduction vitesse de bactéricidie et EPA)
- Risque +++ de mutants-R → pic/CMI = 8 à 10
 Nilsson JAC 1987, Blaser AAC 1987

Comment administrer un aminoside ?

- Tous ces arguments sont en faveur de la DUJ
- Bénéfice en terme d'efficacité difficile à démontrer par les essais cliniques
- DUJ et tolérance ?

Tolérance

Toxicité auditive (souvent irréversible) et rénale

- Facteurs de risque multiples
 - âge > 75 ans
 - diabète
 - néphropathie préexistante ou concomitante
 - AINS, vancomycine, ampho B, produits iodés...
 - déshydratation, hypoalbuminémie, états de choc
 - hypovolémie + diurétique (situation courante)
 - IVG
 - cirrhose (doit être considéré comme CI)
 - si ins rénale chronique : surveiller audiogramme
 - durée de traitement

Toxicité

Durée traitement > 5-7 jours

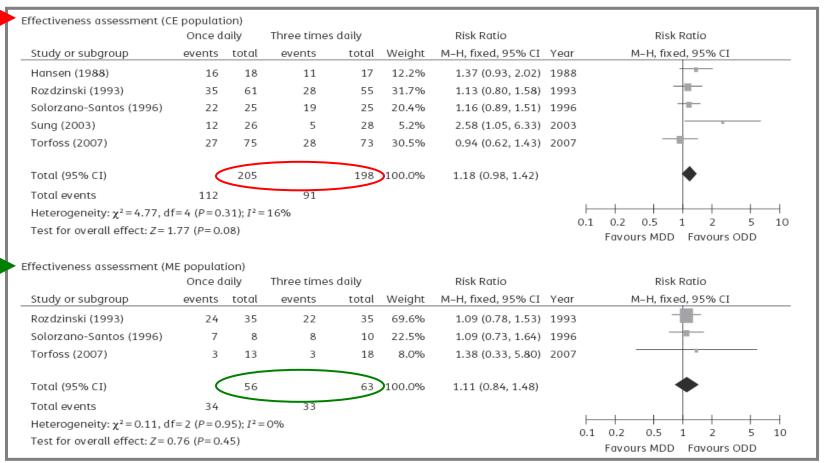
Rénale
 Toxicité indépendante de la C_{max}

 Auditive et vestibulaire
 Pas de preuve d'une corrélation à la C_{max}

Comment administrer un aminoside ?

- Tous ces arguments sont en faveur de la DUJ
- Bénéfice en terme d'efficacité difficile à démontrer par les essais cliniques
- DUJ et tolérance ?

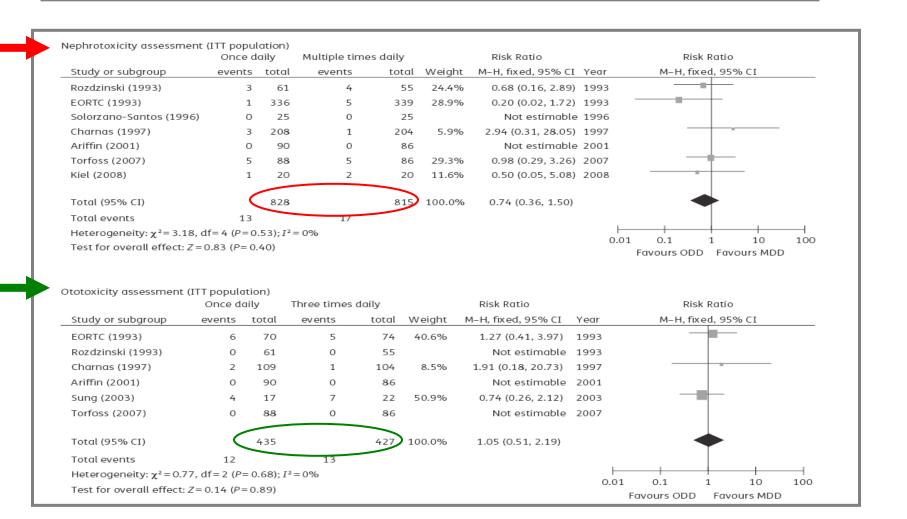
9 méta-analyses entre 95 et 97


- 7 réponses clinique et microbiologique avec DUJ Aucune ne soutient le concept de la DMJ
- Tolérance :
 néphrotoxicité avec la DUJ (7 méta-analyses/9)
 Pas d'influence DUJ sur toxicité cochléaire ?
- Absence d'informations sur la mortalité et la toxicité vestibulaire

Once versus multiple daily dosing of aminoglycosides for patients with febrile neutropenia: a systematic review and meta-analysis

JAC 2011;66 : 251

Michael N. Mavros¹, Konstantinos A. Polyzos¹, Petros I. Rafailidis^{1,2} and Matthew E. Falagas^{1–3*}


9 études contrôlée, randomisées

Once versus multiple daily dosing of aminoglycosides for patients with febrile neutropenia: a systematic review and meta-analysis

JAC 2011;66: 251

Michael N. Mavros¹, Konstantinos A. Polyzos¹, Petros I. Rafailidis^{1,2} and Matthew E. Falagas^{1-3*}

Indications

- Chocs septiques non documentés
- Traitements probabilistes des infections à risque infections nosocomiales tardives, infections sur corps étranger
- Sujets à risque co-morbidités, neutropénies si sepsis sévère, nouveau nés, mucoviscidose
- Certaines infections urinaires
- Endocardites
- Infections documentées ou suspectées à :

 P. aeruginosa, Acinetobacter spp., BGN Case+,
 entérocoques, S. viridans et du groupe B.
- Listérioses et méningites à Listeria monocytogenes

Principes généraux

- Début de traitement (inoculum)
- Association
 - synergie
 - émergence de résistance
 - élargissement du spectre +++
- Durée < 5 jours
 Arrêt à 48-72 h dans la majorité des cas

Administration

- Dose unique journalière (IV 30 minutes)
 - Pk/Pd
 - Gradient tissulaire
 - Toxicité comparable voire inférieure (saturation de la mégaline)
 - Emergence de résistance
- Posologies variables (gravité du tableau clinique, du terrain et du germe identifié ou suspecté)

Gentamicine/tobramycine/netilmicine
3-5 mg/kg/j → 7-8 mg/kg/j

Amikacine 15-20 mg/kg/j → 25-30 mg/kg/j

Optimisation Pk/Pd

Réanimation, hématologie : conditions défavorables

- Risque d'infections avec souches de sensibilité >
- Patients « particuliers »
 - sepsis, choc, ventilation mécanique, oedèmes
 - dysfonction rénale, hépatique, hypo albuminémie
 - interactions médicamenteuses...

Optimisation Pk/Pd

Réanimation, hématologie : conditions défavorables

- Risque d'infections avec souches de sensibilité >
- Patients « particuliers »
 - sepsis, choc, ventilation mécanique, oedèmes
 - dysfonction rénale, hépatique, hypo albuminémie
 - interactions médicamenteuses...

- Diffusion tissulaire altérée
- Modifications Pk
 - Vd 7 (x 2 à 4) → Cmax diminuée
 - demie-vie **7** (x 2 à 3) → Crésiduelle augmentée
 - clearance rénale 7 si sepsis ou 2 si ins rénale
 - → Risque de sous dosage

Variabilités +++

- inter patients
- intra patient au cours du temps, suivant l'évolution clinique

Pharmacokinetic issues for antibiotics in the critically ill patient

Jason A. Roberts, B Pharm (Hons); Jeffrey Lipman FJFICM, MD

Mars 2009

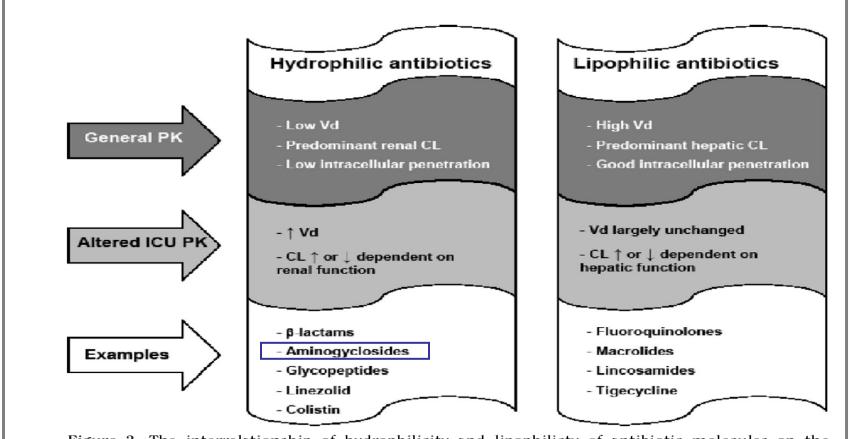
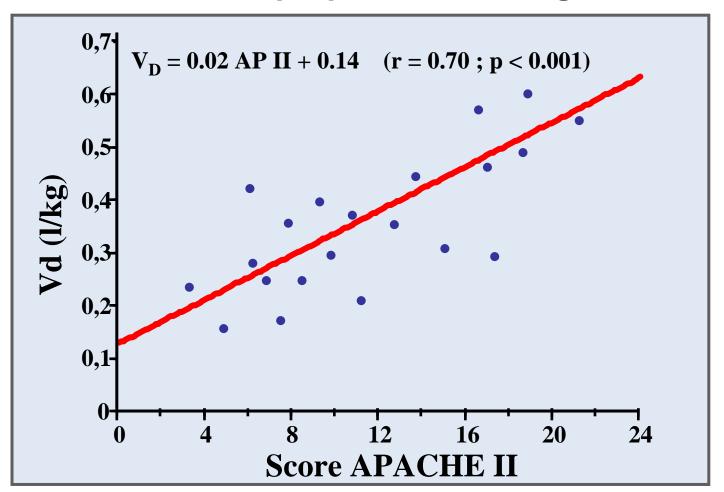



Figure 2. The interrelationship of hydrophilicity and lipophilicity of antibiotic molecules on the pharmacokinetic characteristics in general ward patients (General pharmacokinetic [PK]) and the altered pharmacokinetics observed in critically ill patients in intensive care unit (ICU) (Altered ICU PK). CL, clearance; Vd, volume of distribution.

Pk chez les patients de réanimation

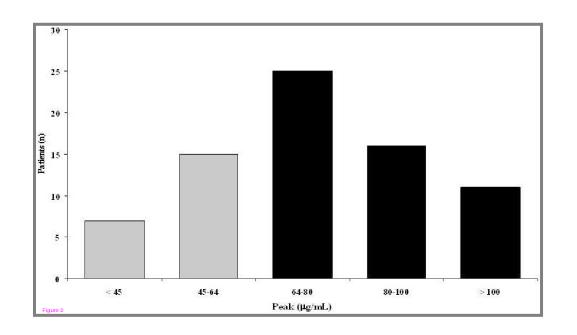
VD de l'AMK : proportionnel à la gravité

En pratique

- Gande majorité des prescriptions = probabiliste (germe et *a fortiori* CMI inconnus)
- Dans toutes les situations où existe un risque de :
 - augmentation du Vd
 - souche avec une CMI augmentée

Utilisation des posologies les plus élevées (permettant atteindre objectif Pk/Pd : 8 à 10 x break point sup)

Gentamicine/tobramycine/netilmicine: 7-8 mg/kg/j


Amikacine: 25-30 mg/kg/j

Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock

Crit Care 2010, 14:R53

Fabio Silvio Taccone¹, Pierre-François Laterre², Herbert Spapen³, Thierry Dugernier⁴, Isabelle Delattre⁵, Brice Layeux⁶, Daniel De Backer¹, Xavier Wittebole², Pierre Wallemacq⁵, Jean-Louis Vincent¹, Frédérique Jacobs^{6,*}

- 74 pts ICU, sepsis sévère ou choc septique
- AMK 25 mg/kg en 30 min calculé sur poids total
- Pic 30 min après fin perfusion

Seuls 70 % des pts Cmax ≥ 64 mg/l (8 x breakpoint sup)

Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock

Crit Care 2010, 14:R53

Fabio Silvio Taccone¹, Pierre-François Laterre², Herbert Spapen³, Thierry Dugernier⁴, Isabelle Delattre⁵, Brice Layeux⁶, Daniel De Backer¹, Xavier Wittebole², Pierre Wallemacq⁵, Jean-Louis Vincent¹, Frédérique Jacobs^{6,*}

Suivant le mode de calcul utilisé/déterminer la posologie si objectif = pic ≥ 60 mg/l

Poids total Objectif atteint

54 % si BMI < 20

64 % si BMI 20-25

89 % si BMI > 30

Simulation/poids idéal

Objectif atteint seulement chez 47 % des pts

Si on utilise le poids corrigé (poids idéal + 0.43 x surcharge)

Persistance du risque de sous dosage

Surveillance

- Durée < 3 jours
 - Aucun dosage même si insuffisance rénale
- Patient sévère
 Dosage du 1^{er} pic
 plasmatique

Probabilité de réponse thérapeutique en fonction du premier Cmax/CMI

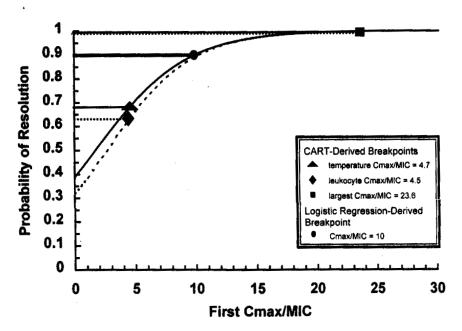


FIG. 3. Probability of therapeutic response by day 7 of aminoglycoside therapy by using first C_{max} /MIC as the predictor variable: comparison of logistic regression- and CART-derived breakpoints. ———, temperature resolution data; ———, temperature resolution and leukocyte count resolution probability as determined by logistic regression analysis.

Surveillance

- Durée < 3 jours
 Aucun dosage même si insuffisance rénale
- Patient sévère
 Dosage du 1^{er} pic
 plasmatique

 Durée > 5 jours
 Dosage de résiduelle après 48h puis deux fois/semaine
 Surveillance fonction rénale

	Pic (mg/L)	Résiduelle (mg/L)
Genta, Tobra, Netil	30-40	<0.5
Amika	60-80	<2.5

Si CMI connue objectif de Pic (mg/l): 8 à 10 x CMI

Posologie et insuffisance rénale

- Utilisation que s'ils sont absolument nécessaires
- Les objectifs Pk/Pd restent les mêmes

La posologie de la 1ère injection est identique à celle du sujet avec une fonction rénale normale, quel que soit le degré d'insuffisance rénale

- Si plusieurs injections:
 - toutes les réinjections sont faites avec la même posologie que celle de la 1^{ère} injection
 - dosages de résiduelle pour ajuster les intervalles entre les injections
- Surveillance fonctions auditives +++

Posologie et insuffisance rénale

HD intermittente ou **DP**

- Traditionnellement injection en fin de dialyse
- Alternative : injection et réinjections (en fonction de la résiduelle) 2 à 4 h avant la séance (permet pour un même pic de diminuer l'exposition et donc le risque d'accumulation)

EER continue

- Techniques, générateurs, membranes très variables
- Réinjections quand résiduelle < seuil de toxicité

Autres adaptations posologiques

- Patients > 75 ans
 - pas de schéma posologique particulier
 - adaptation à la fonction rénale (pré-requis)
 sous-estimée par formule de Cockroft
 sur-estimée par MDMR simplifié
- Obésité
 - aminosides : hydrosolubles et peu liposolubles
 - → Vd rapporté au poids est 🕽
 - posologie à calculer sur la masse maigre

Poids corrigé = poids idéal + 0,43 x surcharge pondérale Suffisant si choc septique ou sepsis sévère ??? (*Taccone CritCare 2010*)

Mars 2011 Version intégrale de la MAP

MISE AU POINT SUR LE BON USAGE DES AMINOSIDES ADMINISTRÉS PAR VOIE INJECTABLE : GENTAMICINE, TOBRAMYCINE, NÉTILMICINE, AMIKACINE

Propriétés pharmacologiques, indications, posologies et modes d'administration, surveillance du traitement

Les raisons pour ne pas s'en priver!

- Bactéricidie très rapide (1ère heure), indépendante de la densité bactérienne (absence d'effet inoculum)
- Modalités d'utilisation standardisées
 - durée courte (< 5 jours le plus souvent)
 - dose unique journalière
- La toxicité n'est plus vraiment un problème