«BEST OF» INFECTIOLOGIE « Infections Hépatiques »

Gilles PIALOUX

APHP (Tenon)
UPMC (ParisVI)
Vice Pdt SFLS
www.vih.org

14 ème JNI – CLERMONT-FERRAND – 14 JUIN 2013

Déclaration de liens d'intérêts, Gilles Pialoux

Membre de board, d'un conseil scientifique, intervenant ou invité dans un symposium d'un laboratoire pharmaceutique :

Abbott, AbbVie, Boehringer-Ingelheim, BMS, GSK, Gilead, MSD, Pfizer, Roche, Schering-Plough, Nephrotec, Tibotec, ViiVHealthcare

Parts sociales ou actions dans un laboratoire pharmaceutique : Aucune

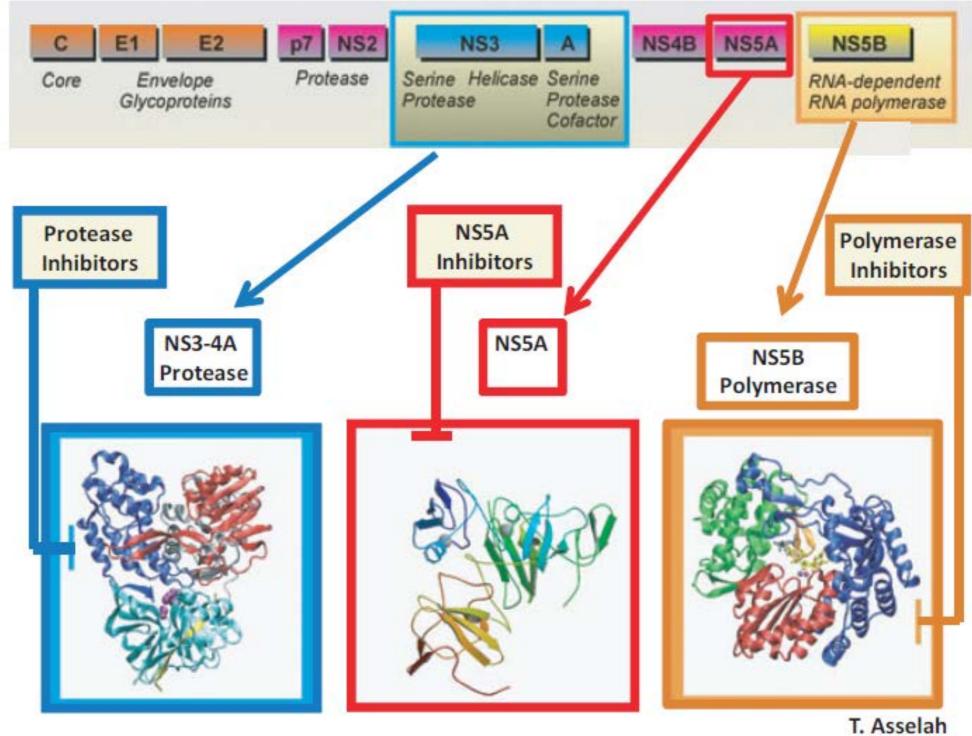
Membre du COS de AIDES Investigateur de ANRS-IPERGAY

Cette présentation n'illustre pas les habitudes de prescription de l'auteur ni de son équipe mais fournit une vue des éléments scientifiques sélectifs issus de la bibliographie.

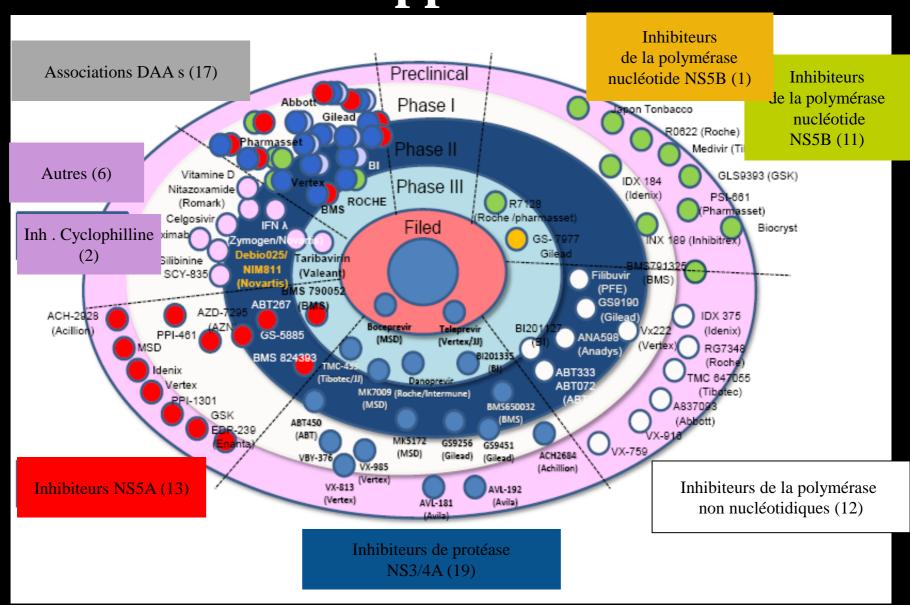
PubMed «hépatitis infection »

3643* publications 2012 **1712 Juin 2013** publications

^{*} record absolu sur 60 889 items


Liver International ISSN 1478-3223

REVIEW ARTICLE


Direct acting antivirals for the treatment of chronic hepatitis C: one pill a day for tomorrow

Tarik Asselah and Patrick Marcellin

Service d'hépatologie, Hôpital Beaujon, APHP, University Paris-Diderot and INSERM CRB3 Clichy, France

Les molécules DAA anti-VHC en développement

Sofosbuvir with pegylated interferon alfa-2a and ribavirin for treatment-naive patients with hepatitis C genotype-1 infection (ATOMIC): an open-label, randomised, multicentre phase 2 trial

Kris V Kowdley, Eric Lawitz, Israel Crespo, Tarek Hassanein, Mitchell N Davis, Michael DeMicco, David E Bernstein, Nezam Afdhal, John M Vierling, Stuart C Gordon, Jane K Anderson*, Robert H Hyland, Hadas Dvory-Sobol, Di An, Robert G Hindes*, Efsevia Albanis*, William T Symonds, M Michelle Berrey, David R Nelson, Ira M Jacobson

Published Online

March 15, 2013 http://dx.doi.org/10.1016/ S0140-6736(13)60247-0

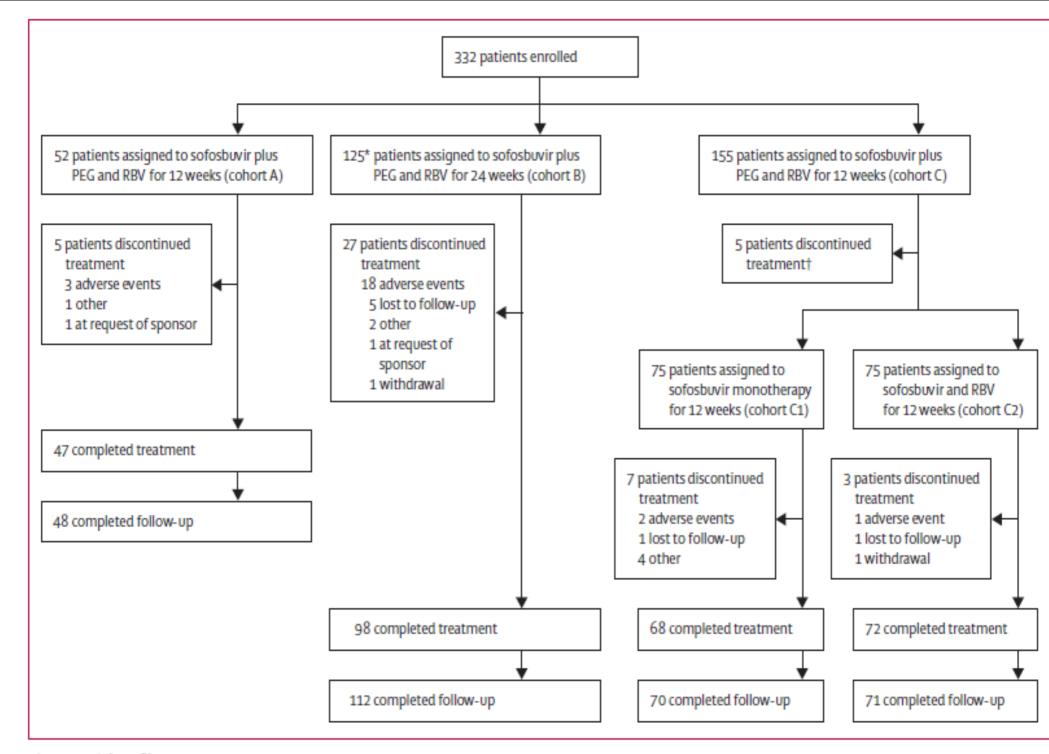


Figure 1: Trial profile

	Cohort A (n=52)	Cohort B (n=109)	Cohort C (n=155)		
RVR	49 (94%; 84–99%)	107 (98%; 94–100%)	151 (97%; 94-99%)		
SVR12	47 (90%; 79–97%)	101 (93%; 86-97%)	141 (91%; 85–95%)		
SVR24 (ITT analysis)	46 (89%; 77-96%)	97 (89%; 82-94%)	135 (87%; 81-92%)		
SVR24 (per-protocol analysis)*	46/48 (96%; 86–100%)	97/99 (98%; 93–100%)	135/139 (97%; 93–99%)		
Virological failure					
During treatment†	0	0	0		
Relapse‡	2 (4%)	1 (1%)	4 (3%)		

Data are n (%; 95% CI), n/N (%; 95% CI), or number (%). RVR=rapid virological response (undetectable hepatitis C virus RNA at week 4). ITT=intention to treat. SVR12=sustained virological response at week 12 after treatment. SVR24=sustained virological response at week 24 after treatment. *Missing data were excluded from analysis. †Includes virological breakthrough, rebound, and non-response. ‡Includes only those patients who completed the full course of assigned treatment.

Table 2: Proportion of patients with HCV genotype 1 and undetectable hepatitis C virus RNA

The NEW ENGLAND CINE

JO

ESTABLIS

Sofosbu

Ira M. Jaco Maribel Rodrigu Gregory E G. Mani Subraman William T. Symon

VOL. 368 NO. 20

or 3 in Patients

, Eric M. Yoshida, M.D., man, M.D., Eric Lawitz, M.D., M. Tarek Al-Assi, M.D., Ily, Ph.D., Diana Brainard, M.D., D., Jordan Feld, M.D., M.P.H., M.D.

1E

ed Chronic

yles, M.D., rt C. Gordon, M.D., id Kayali, M.D., Cowdley, M.D.,

Sofosbuy

Eric Lav Maribel Rodrigu Michael Sch K. Rajende

Lisa Nyberg, M.D., G. Iviani Subramanian, Ivi.D., Fn.D., Kobert H. Hyland, D.Phil., Sarah Arterburn, M.S., Deyuan Jiang, Ph.D., John McNally, Ph.D., Diana Brainard, M.D., William T. Symonds, Pharm.D., John G. McHutchison, M.D., Aasim M. Sheikh, M.D., Zobair Younossi, M.D., M.P.H., and Edward J. Gane, M.D.*

Études Sofosbuvir de Phase III	Population	Groupes de traitement	Taux SVR12
NEUTRINO	Génotype 1/4/5/6 naïf de traitement	Sofosbuvir + RBV + Peg-IFN pendant 12 semaines	90 % (295/327)
FISSION	Génotype 2/3 naïf de traitement	Sofosbuvir + RBV pendant 12 semaines ou Peg-IFN + RBV pendant 24 semaines	67 % (170/253) 67 % (162/243)
POSITRON	Génotype 2/3, intolérant à l'IFN, inéligible ou réticent	Sofosbuvir + RBV pendant 12 semaines ou Placebo pendant 12 semaines	78 % (161/207) 0 % (0/71)
FUSION	Génotype 2/3 prétraités	Sofosbuvir + RBV pendant 12 semaines ou Sofosbuvir + RBV pendant 16 semaines	50 % (50/100) 73 % (69/95)

RBV = Ribavirine

IFN = Interferon

SVR12 = Réponse virologique soutenue 12 semaines après l'arrêt du traitement

Faldaprevir (BI 201335), BI 207127 and ribavirin oral therapy for treatment-naive HCV genotype 1: SOUND-C1 final results

Stefan Zeuzem, Tarik Asselah, Peter Angus, Jean-Pierre Zarski, Dominique Larrey, Beat Müllhaupt, Ed Gane, Marcus Schuchmann, Ansgar W Lohse, Stanislas Pol, Jean-Pierre Bronowicki, Stuart Roberts, Keikawus Arasteh, Fabien Zoulim, Markus Heim, Jerry O Stern, Gerhard Nehmiz, George Kukolj, Wulf Otto Böcher, Federico J Mensa

Antiviral Therapy 2013; 10.3851/IMP2567

Submission date 30th January 2013
Acceptance date 17th March 2013
Publication date 4th April 2013

Dual Therapy With the Nonstructural Protein 5A Inhibitor, Daclatasvir, and the Nonstructural Protein 3 Protease Inhibitor, Asunaprevir, in Hepatitis C Virus Genotype 1b–Infected Null Responders

Kazuaki Chayama, ¹ Shoichi Takahashi, ¹ Joji Toyota, ² Yoshiyasu Karino, ² Kenji Ikeda, ³ Hiroki Ishikawa, ⁴ Hideaki Watanabe, ⁴ Fiona McPhee, ⁵ Eric Hughes, ⁶ and Hiromitsu Kumada ³

(Hepatology 2012;55:742-748)

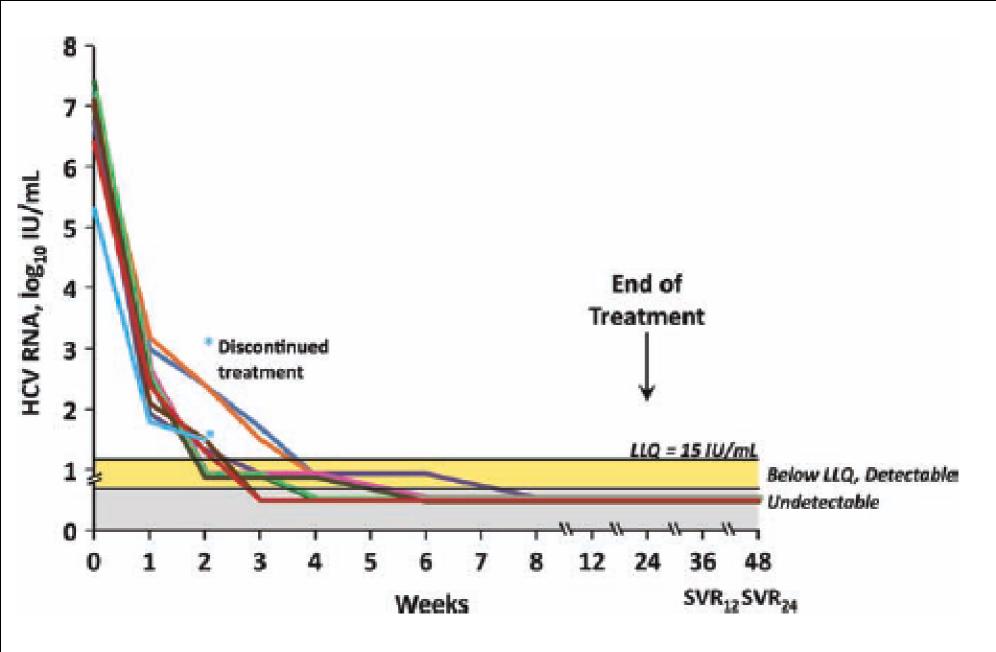


Fig. 2. HCV RNA levels: individual patients. Individual patient plasma HCV RNA levels during 24 weeks of treatment and through 24 weeks post-treatment (week 48) are shown. $LLQ = 15 \, IU/mL$.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Treatment of HCV Infection by Targeting MicroRNA

Harry L.A. Janssen, M.D., Ph.D., Hendrik W. Reesink, M.D., Ph.D., Eric J. Lawitz, M.D., Stefan Zeuzem, M.D., Maribel Rodriguez-Torres, M.D., Keyur Patel, M.D., Adriaan J. van der Meer, M.D., Amy K. Patick, Ph.D., Alice Chen, B.A., Yi Zhou, Ph.D., Robert Persson, Ph.D., Barney D. King, M.D., Sakari Kauppinen, Ph.D., Arthur A. Levin, Ph.D., and Michael R. Hodges, M.D.

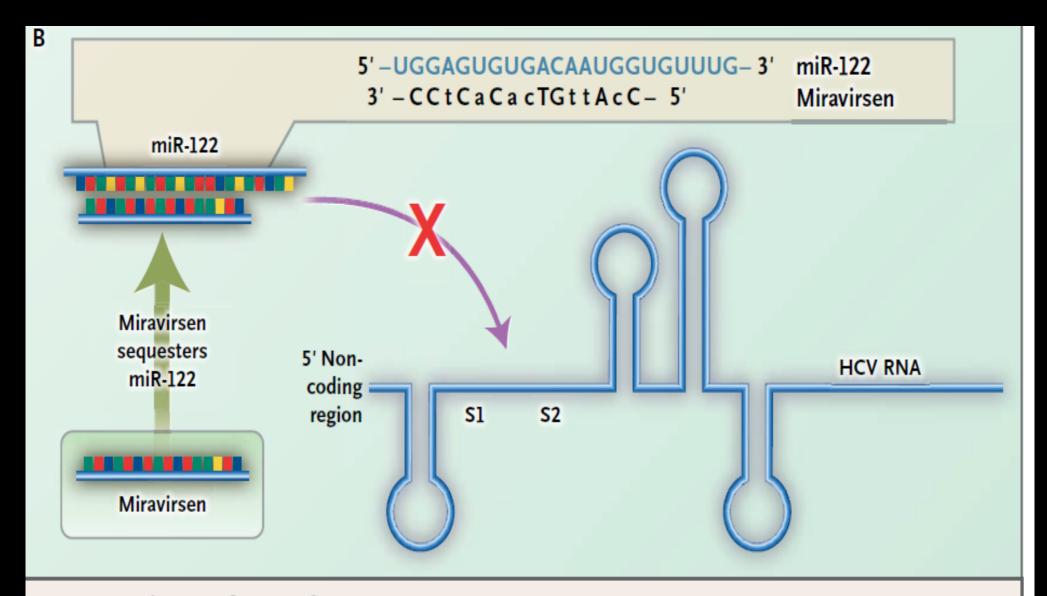


Figure 1. Mechanism of Action of Miravirsen.

In Panel A, microRNA-122 (miR-122) binds to two closely spaced target sites (S1 and S2) in the 5' noncoding region of the HCV genome and thereby promotes the propagation of HCV RNA.¹³ In Panel B, miravirsen, a locked nucleic acid-modified antisense oligonucleotide, sequesters mature miR-122 in a highly stable heteroduplex, which results in the functional inhibition of miR-122.

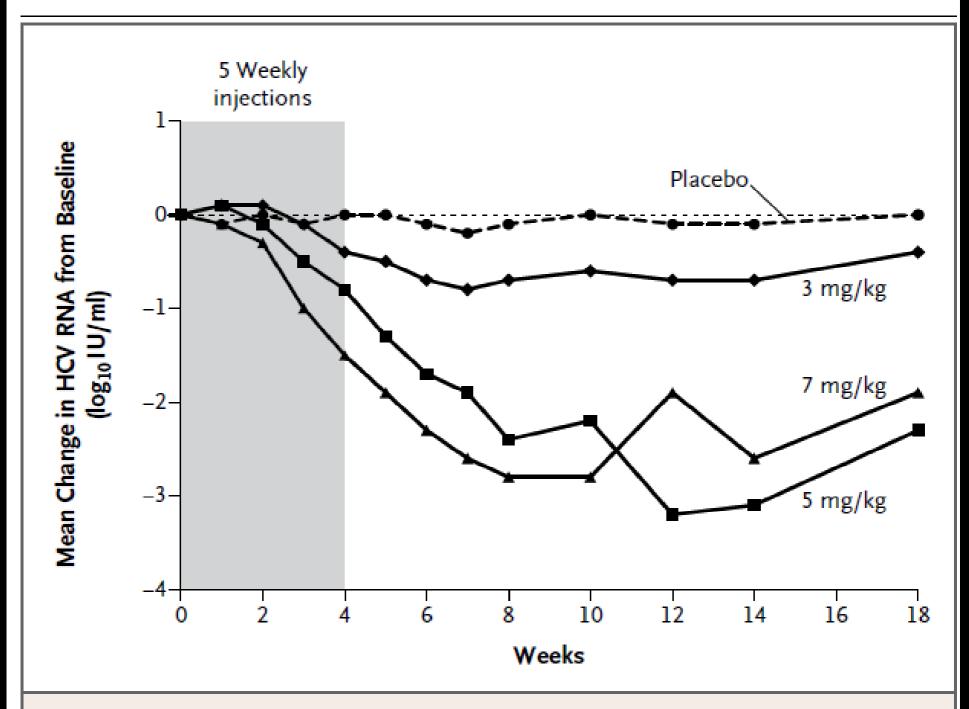


Figure 2. Change from Baseline in HCV RNA Levels.

L'infection à VHC Maladie de système!

MAJOR ARTICLE

Chronic Hepatitis C Virus Infection Increases Mortality From Hepatic and Extrahepatic Diseases: A Community-Based Long-Term Prospective Study

Mei-Hsuan Lee,¹ Hwai-I. Yang,^{1,2,3} Sheng-Nan Lu,⁴ Chin-Lan Jen,¹ San-Lin You,¹ Li-Yu Wang,⁵ Chih-Hao Wang,⁶ Wei J. Chen,⁷ Chien-Jen Chen,^{1,7} and for the R.E.V.E.A.L.-HCV Study Group^a

Table 3. Multivariate-Adjusted Hazard Ratios of Dying From Selected Causes of Death by Serostatus of Antibodies Against Hepatitis C Virus (Anti-HCV) and Serum HCV RNA Level at Study Entry

		Multivariate-adjusted	Multivariate-adjusted Hazard Ratio ^a (95% CI)			
Causes of Death	Anti-HCV Seronegative	Anti-HCV Seropositive With Undetectable Serum HCV RNA Level	Anti-HCV Seropositive With Detectable Serum HCV RNA level	PValue (For Trend)		
All causes	1.00 (referent)	0.97 (.70–1.35)	2.20 (1.90–2.55)	<.0001		
Hepatic diseases	1.00 (referent)	2.19 (.81-5.97)	16.36 (12.09-22.13)	<.0001		
Liver cancer	1.00 (referent)	4.70 (1.68–13.11)	28.02 (18.96-41.41)	<.0001		
Chronic liver disease and cirrhosis ^b	1.00 (referent)	_	7.37 (4.22–12.87)	<.0001		
Extrahepatic diseases	1.00 (referent)	0.90 (.64-1.28)	1.47 (1.23–1.77)	.0002		
Circulatory diseases	1.00 (referent)	1.16 (.62-2.17)	1.53 (1.05–2.23)	.026		
Nephritis, nephrotic syndrome, and nephrosis	1.00 (referent)	1.66 (.40–6.81)	2.98 (1.43–6.22)	.0032		
Esophagus cancer ^b	1.00 (referent)	_	5.86 (1.98–17.35)	.0014		
Prostate cancer ^b	1.00 (referent)	_	5.83 (1.64–20.77	.0065		
Thyroid cancer ^b	1.00 (referent)	_	7.07 (.73–68.35)	.09		

Table 2. Frequency and Rate of Events During Follow-up in 1599 HIV/Hepatitis C Virus-Coinfected Patients With or Without Sustained Virological Response After Therapy With Interferon Plus Ribavirin

	Frequency of Events, No. (%)			Rate of Events/1 (95%		
Event	No SVR (n = 973)	SVR (n = 626)	P	No SVR	SVR	Pa
Loss to follow-up	114 (11.7)	56 (8.9)	.079	2.32 (1.89-2.75)	1.82 (1.35-2.3)	.139
Liver-related events						
Any event	135 (13.9)	10 (1.6)	<.001	2.87 (2.39-3.36)	0.32 (.1253)	<.001
Liver decompensation ^b	113 (11.6)	6 (1.0)	<.001	2.39 (1.95-2.83)	0.19 (.0435)	<.001
Hepatocellular carcinoma	28 (2.9)	3 (0.5)	.001	0.57 (.3678)	0.10 (.0021)	.001
Liver transplantation	21 (2.2)	4 (0.6)	.017	0.43 (.2461)	0.13 (.0026)	.024
HIV-related events						
New AIDS-defining conditions	41 (4.2)	9 (1.4)	.002	0.84 (.59-1.10)	0.29 (.1048)	.003
Mortality						
Deaths overall	90 (9.2)	8 (1.3)	<.001	1.82 (1.45-2.20)	0.26 (.0844)	<.001
Liver-related deaths	55 (5.7)	3 (0.5)	<.001	1.11 (.82-1.41)	0.10 (.0021)	<.001
Non-liver-related deaths	32 (3.3)	5 (.8)	.001	0.65 (.4287)	0.16 (.0230)	.002
AIDS-related	5 (0.5)	0 (0.0)	.072	0.10 (.0119)	0	.071
Non-liver-related, non-AIDS-related	27 (2.8)	5 (0.8)	.006	0.55 (.3475)	0.16 (.0230)	.002
Unknown	4 (0.4)	0 (0.0)		***		

Traitement de l'hépatite C aigüe

Delayed versus immediate treatment for patients with acute (M) 🖡 📵 hepatitis C: a randomised controlled non-inferiority trial

Katja Deterding, Norbert Grüner, Peter Buggisch, Johannes Wiegand, Peter R Galle, Ulrich Spengler, Holger Hinrichsen, Thomas Berg, Andrej Potthoff, Nisar Malek, Anika Großhenniq, Armin Koch, Helmut Diepolder, Stefan Lüth, Sandra Feyerabend, Maria Christina Jung, Magdalena Rogalska-Taranta, Verena Schlaphoff, Markus Cornberg, Michael P Manns, Heiner Wederneyer, for The Hep-Net Acute HCV-III Study Group

Lancet Infect Dis 2013;

13: 497-506

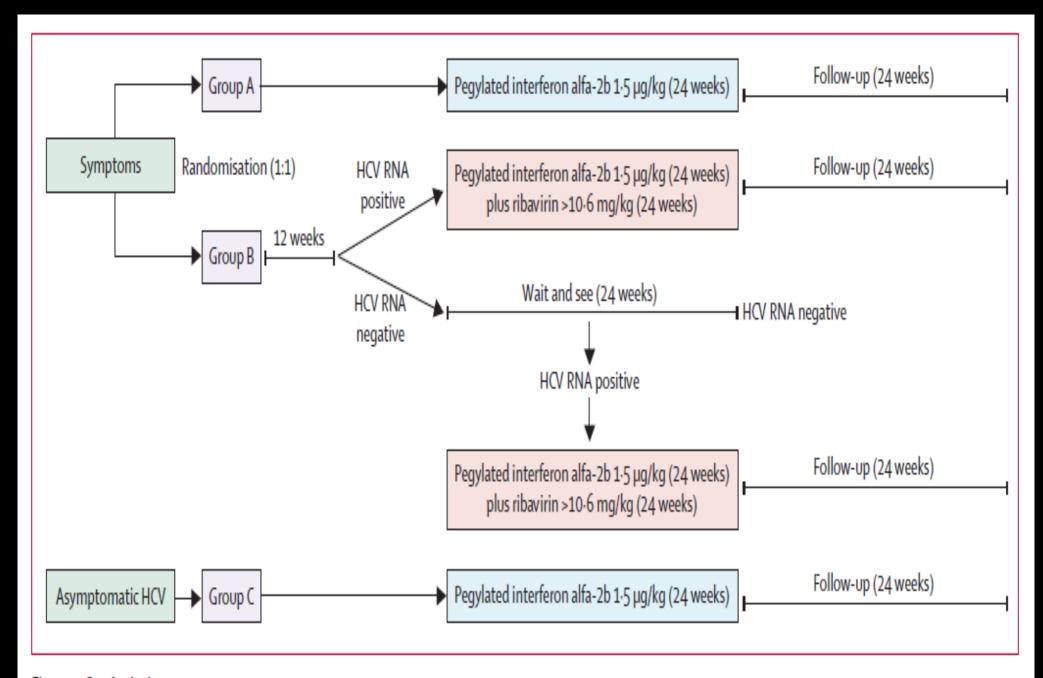


Figure 1: Study design

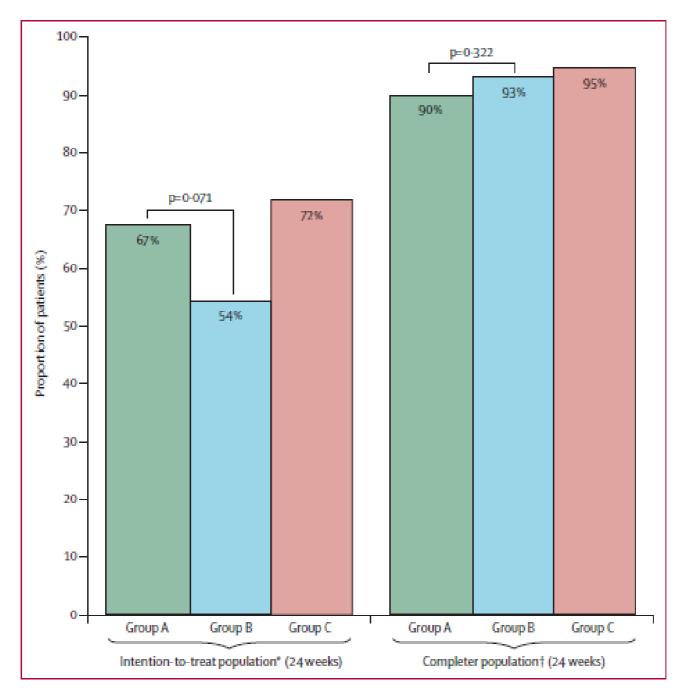


Figure 3: Sustained virological response rates after early or delayed treatment

Percentages show patients who were HCV RNA negative at follow-up week 24 or study week 60. * All randomly
allocated patients minus three screening failures. †Patients who completed 24 weeks of follow-up after end of
pegylated interferon alfa-2b treatment, pegylated interferon alfa-2b plus ribavirin treatment, or who completed
60 weeks of observation.

CONCLUSIONS tt/VHC/aigüe

- 107 hépatites C aigues asymptomatiques et 25 recrutées entre 2004 et 2010
- 37/55 (65%) des symptomatiques ayant un traitement immédiat ont obtenu une SVR; 28/52 (54%) des symptomatiques ayant un traitement différé ont obtenu une SVR (différence 13,7%; IC 95% = -4,6 32; p = 0,71)
- 21% de clairance spontanée dans le groupe différé
- 25 % (immédiat) et 42 % (différé) (p = 0,37) de non rétention >> traitement immédiat ?!

Traitement du VHC et Usagers de Drogues

MAJOR ARTICLE

Determinants of Hepatitis C Virus Treatment Completion and Efficacy in Drug Users Assessed by Meta-analysis

Rositsa B. Dimova, Marija Zeremski, Ira M. Jacobson, Holly Hagan, Don C. Des Jarlais, and Andrew H. Talal^{1,4}

¹Weill Cornell Medical College, ²New York University College of Nursing, ³Beth Israel Medical Center, New York, New York; and ⁴State University of New York at Buffalo

- 36 études
- 2866 patients
- La taux de rétention chez les UD était de 83.4% (95%CI: 77.1%; 88.9%).
- Apres ajustement pour HIV/HCV co-infection, genre, et traitemements de substitution = la taux poolé de SVR était de 55.5% (95%CI: 50.6%; 60.3%).
- Le genotype 1/4 (p=0.0012) et la proportion de HIV co-infectés UD (p=0.0173) influencent le taux de SVR.
- Après ajustement sur le genotype 1/4 et l' HIV/HCV co-infection, le taux de SVR est favorablement influençé par la prise en charge pluridisciplinaire (p<0.0001).

VHB et régression de la fibrose sous tenofovir

Articles

M Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study

Patrick Marcellin, Edward Gane, Maria Buti, Nezam Afdhal, William Sievert, Ira M Jacobson, Mary Kay Washington, George Germanidis, John F Flaherty, Raul Aquilar Schall, Jeffrey D Bornstein, Kathryn M Kitrinos, G Mani Subramanian, John G McHutchison, E Jenny Heathcote

Lancet 2013: 381: 468-75

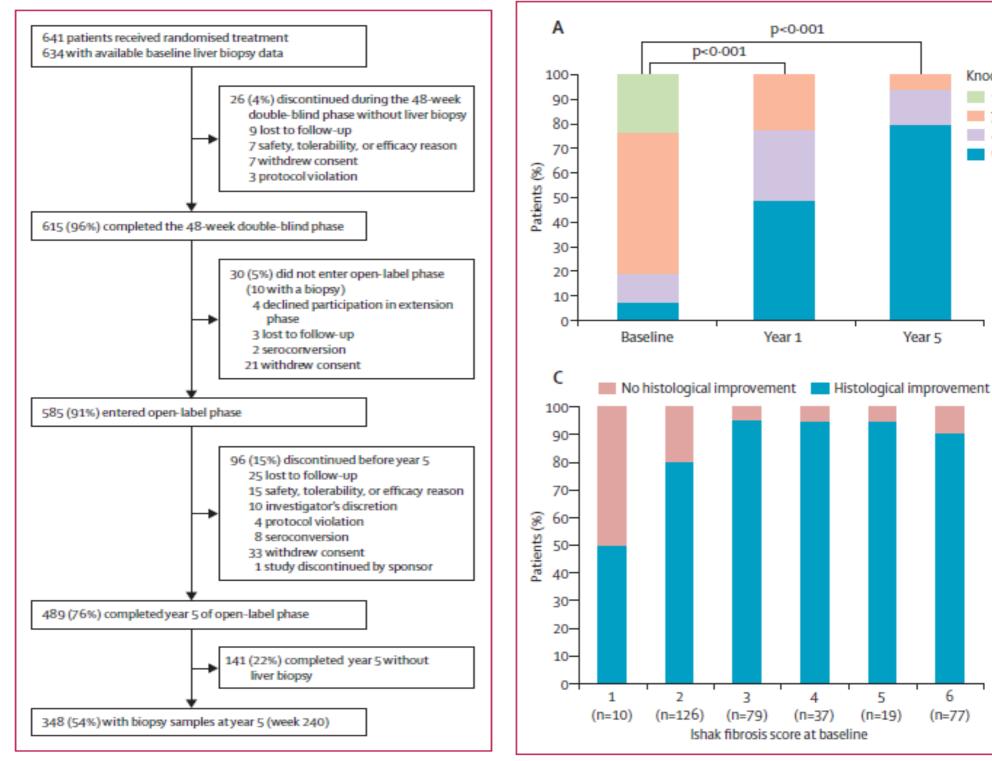


Figure 1: Study disposition and availability of liver biopsy samples

Figure 2: Histology results over 5-year treatment phase

Knodell score

10-14

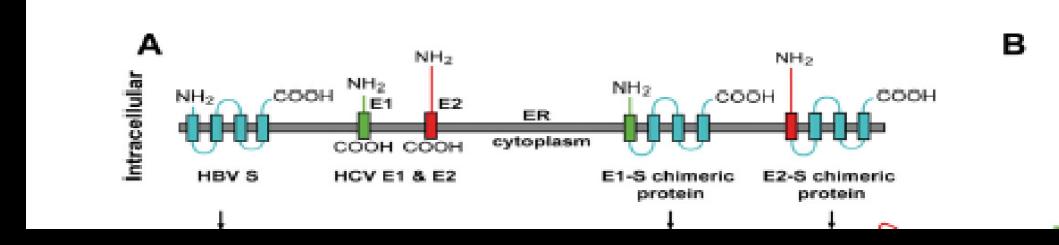
7-9

CONCLUSIONS teno/histo

- Au delà de l'objectif virologique (neg PCR, puis neg Ag Hbs (11 % à 5 ans pour les Hbe+ puis ac anti Hbs (8%) l'amélioration histologique sous tenofovir est une réalité.
- 304/348 (87%) avec PBH ont une amélioration de la fibrose à S 240
- 176/348 (51%) ont une régression de la fibrose à S240
- 71/96 (74%) avec cirrhose n'ont plus de cirrhose (> 1 pt Knodell)
- 91/348 (16%) d'AE et 9 SAE

Recherche vaccin désespérément (1)

HEPATOLOGY



VIRAL HEPATITIS

Chimeric Hepatitis B Virus/Hepatitis C Virus Envelope Proteins Elicit Broadly Neutralizing Antibodies and Constitute a Potential Bivalent Prophylactic Vaccine

Elodie Beaumont, Romuald Patient, Christophe Hourioux, Isabelle Dimier-Poisson, and Philippe Roingeard

HEPATOLOGY, Vol. 57, No. 4, 2013

Modèle de protéines chimériques produites par des cellules ovariennes de hamster et utilisées pour immuniser des lapins de Nouvelle Zélande. Les Ac anti-E1 et anti-E2 obtenus neutralisent les pseudoparticules VHC et les cellules infectées de différentes souches hétérologues 1a, 1b, 2a et 3. Même réponse anti VHB que les vaccins commercialisés.

RESEARCH

Laboratory-based Surveillance for Hepatitis E Virus Infection, United States, 2005–2012

Jan Drobeniuc, Tracy Greene-Montfort, Ngoc-Thao Le, Tonya R. Mixson-Hayden, Lilia Ganova-Raeva, Chen Dong, Ryan T. Novak, Umid M. Sharapov, Rania A. Tohme, Eyasu Teshale, Saleem Kamili, and Chong-Gee Teo

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 19, No. 2, February 2013

Table. Demographic, clinical, travel-related, and virologic characteristics for patients with hepatitis E, United States, 2005–2012*										
Travel history and	Age,	Race/	State of	Transplant		Countries	Anti-HE	V SCR	HEV	HEV RNA
case-patient no.	y/sex	ethnicity	residence	(organ)	Jaundice	visited	IgM	lgG	genotype	viral load†
No recent international travel‡										
NT1	61/M	White	FL	No	Yes	NA	7.5	5.7	3	NA
NT2	45/M	White	CA	No	Yes	NA	3.7	4	_	_
NT3	63/M	White	SD	Yes (kidney)	No	NA	7.2	5.4	3	NA
NT4	61/M	South Asian	IL	Yes (liver)	No	NA	1.9	5.9	3	NA
NT5	67/M	White	FL	No	Yes	NA	6.3	1.3	_	_
NT6	44/F	Hispanic	TX	No	Yes§	NA	3.1	3.7	3	NA
NT7	21/F	Hispanic	TX	No	Yes¶	NA	2.2	1.6	_	_
NT8	67/M	White	IL	Yes (heart and	Yes	NA	3	3.3	_	_
				lungs)						
NT9	42/M	White	WI	No	Yes	NA	6	6.6	_	_
NT10	62/F	White	IL	Yes (kidney)	No	NA	2.9	8.9	-	_
NT11	26/M	White	PA	Yes (kidney)	No	NA	5.3	8.3	3	7.8×10^{2}
NT12	40/F	White	NY	Yes (kidney	No#	NA	7.7	12.9	3	1.4×10^{3}
				and pancreas)						
NT13	64/M	White	CT	Yes (liver)	Yes	NA	9.2	1.3	3	1.4×10^4
NT14	29/F	White	MI	No	No**	NA	6.6	9.8	_	-
NT15	62/M	White	NY	No	No	NA	Neg	9.6	3	1.5×10^{3}
Recent international	ıl travel‡									
T1	35/M	South Asian	DE	No	Yes	India	2.3	4.5	1	1.8×10^{2}
T2	14/F	South Asian	TX	No	Yes	India	7.3	5.8	-	_
T3	32/F	South Asian	TX	No	Yes	India	3.7	5.8	-	_
T4	24/M	South Asian	TX	No	Yes	India	2.3	2	-	_
T5	35/M	White	IL	No	No	India and	2.9	8.9	-	_
						Indonesia				
T6	24/M	White	MD	No	Yes	Afghanistan	6.9	9.4	-	_
						and Dubai				
T7	63/M	White	AL	No	Yes	China	7.9	Neg	4	2.4×10^{2}
T8	23/M	South Asian	ME	No	Yes	Bangladesh	7.6	10.8	-	_
T9	53/M	South Asian	MD	No	Yes††	India	9.2	9.4	_	-
T10	66/M	South Asian	TX	No	Yes	India	5.5	11.7	1	1.8×10^{2}
T11	22/M	South Asian	MD	No	Yes	India	9.9	10.9	1	8.3 × 10 ⁵

Remerciements

PubMed,
Stanislas POL
et Jacques IZOPET