Vaccine against shigellosis: dream or reality?

Armelle Phalipon, PhD
Group Leader « Adaptive immunity and vaccine development »

Molecular Microbial Pathogenesis Unit
INSERM U786
Headed by Professor Philippe Sansonetti

Eau et maladies infectieuses/ Enjeux du 21ème siècle CEMI 15 Paris Mai 2010

Significant efforts to prevent diarrhoeal diseases

Water

87% population improved drinking water sources

Sanitation

72% population improved sanitation facilities

Breastmilk
Nutrition
Vit A, Zn

2008

WHO-UNICEF/ CHILDINFO www.childinfo.org
Diarrhoea: second leading cause of child deaths worldwide

Children under 5 yr old

- 37% Neonatal causes
- 4% Injuries
- 2% AIDS
- 4% Measles
- 7% Malaria
- 13% Others
- 16% DIARRHOEA
- 17% Pneumonia

(3% DIARRHOEAL DISEASES)

Source: WHO Global burden of diseases/ update 2008
WHO/UNICEF www.childinfo.org

Incidence of diarrhoeal diseases

Thousands of deaths

Worldwide distribution of deaths caused by diarrhea in children under 5 years in 2000.

Significant decrease of mortality rate:
- 13.6 deaths per 1,000 children per year (1954-1979)
- 4.9 deaths per 1,000 children per year (1992-2000)

From Von Seidlein L. et al. 2006
Kotloff K et al. Bull. WHO, 1999
Kosek M. et al. 2003, Bull. WHO
Morbidity linked diarrhoeal diseases

3-4 diarrhoea episodes per child per year
(active surveillance between 1992-2000)

Lasting disability effects

Early childhood diarrhea cuts 8 cm growth, 10 IQ pts and 12m schooling
(favela children, Brazil)

DALYs: HIGH
Disability adjusted life years [Yrs of life lost + Yrs lost to disability]

Diarrhea

Malnutrition

Petri et al. JCI, 2008; Guerrant et al. Nutr Rev. 2008;
Checkley et al. Int’l J Epi, 2008; Copeland et al. JWH, 2009

Diarrhea: vaccine-preventable diseases

2.1 million annual deaths
1.5 million <5yr

Vibrio cholerae
Cases/year: 5,000,000
Deaths/year: 120,000

ETEC
Cases/year: 650,000,000
Deaths/year: 380,000

Salmonella typhi
Cases/year: 17,000,000
Deaths/year: 600,000

Rotavirus
Cases/year: 130,000,000
Deaths/year: 650,000

Shigella
Cases/year: 163,000,000
Deaths/year: 700,000

The « big five »

From Von Seidlein L. et al. 2006 Kotloff K et al. Bull. WHO
Kosek M. et al. 2003, Bull. WHO

INSTITUT PASTEUR
Shigella: the causal agent of shigellosis or bacillary dysentery

*Gram negative enteroinvasive bacterium

*Rectocolitis

*Dysentery with fever, intestinal cramps, and mucoid bloody stools

Acute inflammation
Neutrophil infiltration
Massive tissue destruction

Type III secretion system
Invasive and pro-inflammatory phenotype

Injection of virulence effectors to subvert host cell functions

Shigella: issue of serotype diversity

S. flexneri
S. sonnei
S. boydii

S. dysenteriae

From Levine M. et al., 2007

Protective immunity to shigellosis

Protection serotype-specific mediated by anti-LPS Abs

O-Ag polysaccharide = the major protective Ag

Justification of vaccine-based prevention

*1-Multiresistance to “first-line” antibiotics
sulfonamides/trimethoprim, tetracyclin, ampicillin, chloramphenicol, nalidixic acid.

*2- Poor benefit of oral rehydration therapy

*3- Acute complications (often cause of death).
- Bacteriemia / Septicemia (50% Shigella, malnourished children).
- Hypoglykemia
- Toxic megacolon: perforation, peritonitis, septis chock
- Hemolytic uremic syndrome (HUS).

Targeted population:
* Toddlers
* Travelers

The two main vaccine strategies

Live, rationally attenuated, orally administered, vaccine strains

* Induction of local anti-LPS S-IgA
 and serum IgG
* Several kinds of attenuation

- One oral dose of live, specifically attenuated vaccine strains:
 proof of concept in western volunteers (safe and protective)
- Disappointing results on the field: safe but non immunogenic

Phalipon and Sansonetti 2003; Nataro 2004; Vankatesen and Ranallo 2006;
Girard et al. 2006; Levine et al. 2007; Phalipon et al. 2008
The two main vaccine strategies

Subunit vaccines parenterally administered

- Induction of anti-LPS serum IgG
- Several strategies

Conjugate vaccines/ J. Robbins

Capsular polysaccharides coupled to a carrier protein

Efficient pneumo, meningitis, Hib vaccines in young children

Gram negative bacteria

Detoxified LPS

Shigella glycoconjugate vaccine candidates

*S. sonnei / S. flexneri 2a (SF2a) detoxified LPS-protein conjugates**

- Protection induced in adults
 - Phase III randomized, controlled, double blind efficacy trial *S. sonnei* conjugate single dose in Israeli soldiers:
 - 74% protection related to the level of conjugate-induced anti-LPS IgG

- Safe and immunogenic in 1-4 yr-old children
 - Phase II *S. sonnei* and SF2a/ 2 doses spaced 6wks apart/ Israeli 1-4 year-old
 - High Ab titers 2yrs after vaccination

- Protection in 1-4 yr-old children unpublished data
- Lower level of protection in < 1 yr-old children unpublished data

Main limitation: detoxification step

- Loss of immunogenicity
- Lack of reproducibility

Vankatesen and Ranallo 2006; Girard et al. 2006; Levine et al. 2007; Phalipon et al. 2008; Kaminski and Oaks, 2009

To identify synthetic oligosaccharides mimicking the protective serotype-specific determinants as surrogates to induce protective anti-LPS antibodies.

A modular approach: 3 levels of flexibility

serotype-specific haptens
selectivity

spacer (chemistry, length, valence)

activated carrier

Characterization of the serotype 2a specific determinants

1- Synthetic oligosaccharides

2- Recognition by the protective mAbs (Inhibition ELISA- IC50 measurement)

Results

*ECD: minimal sequence required for recognition

*Additional flanking residues leading to B(E)CD and B(E)CDA or AB(E)CD: optimal recognition

*Elongating the sequence significantly improves the recognition

Obtention of different chemically defined semi-synthetic glycoconjugates

Trisaccharide: ECD-TT
Tetrasaccharide: B(E)CD-TT
Pentasaccharide (1 UR): AB(E)CD-TT
Decasaccharide (2UR): AB(E)CDAB(E)CD-TT
Pentadecasaccharide (3UR): AB(E)CDAB(E)CDAB(E)CD-TT

Synthetic oligosaccharide

Tetanus toxoid (TT)

The pentadecasaccharide-conjugate induces the highest anti-SF2a IgG titer

Immunization protocol:
10 µg/oligosaccharide without adjuvant
3 immunizations at 3 week-interval + one boost one month later
The pentadecasaccharide-conjugate induces protective anti-SF2a LPS Abs

Reduction factor: control group receiving pre-immune serum

Reduction of bacterial load upon passive immunization in mice

$$[\text{AB(E)CD}]_3 = 3\text{RUs} = \text{Pentadecasaccharide} = \text{functional mimic of LPS O-Ag}$$

Phalipon et al. 2009

Recognition of SF2a LPS by Abs induced by the pentadecasaccharide-conjugate

SDS-PAGE

Mode A

Mode B

Ladder

n UR

core

LPS

S. flexneri 2a silver-stained

Anti-SF2a Abs

Abs induced by pentadecasaccharide

SDS-PAGE + Western blot

Mode B

Mode A

core

Phalipon et al. 2009
The pentadecasaccharide is a structural mimic of the SF2a O-Ag

\[\text{SF2a } \text{dLPS} \]

\[\text{SF2a } \text{O-Ag} \]

\[\text{1H NMR anomeric region} \]
\[(600 \text{ MHz, } \text{D}_2\text{O, }50^\circ\text{C}) \]

Right-handed helix
pitch ~23 Å, diameter ~15 Å
Close to three RUs per turn

Vulliez-Le Normand B. et al. PNAS, 2008
Theillet F et al. JMB 2009

Optimal Ab response induced by the pentadecasaccharide-conjugate

Ratio oligosaccharide/protein

Optimal immunizing dose: 1 \(\mu \)g

Classical glycoconjugates in humans: 2.5 \(\mu \)g

First synthetic oligosaccharide-protein conjugate against SF2a

\[
\text{SF2a-TT15} \quad R = \{AB(E)CD\}_3 \\
\text{14/protein}
\]

*Characterization of the products: requirements for regulatory agencies
*Feasibility of the synthesis at an industrial scale and at an acceptable cost

Proof of concept in humans? Phase I clinical trial

STOPENTERICS Consortium

<table>
<thead>
<tr>
<th>EU Call 2010</th>
<th>Institut Pasteur</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Université de Bergen</td>
<td>Norvège</td>
</tr>
<tr>
<td></td>
<td>Imperial College</td>
<td>Angleterre</td>
</tr>
<tr>
<td></td>
<td>Nederlands Vaccine Institut</td>
<td>Hollande</td>
</tr>
<tr>
<td></td>
<td>Université Libre de Bruxelles</td>
<td>Belgique</td>
</tr>
<tr>
<td></td>
<td>Université de Rome La Sapienza</td>
<td>Italie</td>
</tr>
<tr>
<td></td>
<td>Université de Goteborg</td>
<td>Suède</td>
</tr>
<tr>
<td></td>
<td>Genome Research Limited</td>
<td>Angleterre</td>
</tr>
<tr>
<td></td>
<td>Health Sciences eTraining Foundation</td>
<td>Suisse</td>
</tr>
<tr>
<td></td>
<td>ICDDR,B Dhaka</td>
<td>Bangladesh</td>
</tr>
<tr>
<td></td>
<td>Université de Tel Aviv</td>
<td>Israel</td>
</tr>
<tr>
<td></td>
<td>Université Ghana</td>
<td>Ghana</td>
</tr>
<tr>
<td></td>
<td>Sanofi Pasteur</td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Novartis Institute for Global Health</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Centre Pasteur-Cochin de Vaccinologie</td>
<td>France</td>
</tr>
</tbody>
</table>

15 Equipes
12 million euros
4yr project

IP Coordonateur: Philippe Sansonetti
STOPENTERICS Consortium:

Objectives

1/ Proof of concept for new vaccine candidates
 Phase 1 clinical trials with *Shigella* vaccine candidates ready to be evaluated in humans
 2 subunit vaccines to be tested

2/ To identify new protein antigens that induce protection across a variety of *Shigella* serotypes
 (and across serotypes and CFs in ETEC)

Conclusion/Perspectives
Pathogénie Microbienne Moléculaire
(P. Sansonetti)

A. Phalipon team
C. Costachel
M. Tanguy
A. Thuizat
F. Thouron

Chimie des Biomolécules
(L. Mulard)
F. Bélot
C. Costachel
J. Boutet
C. Grandjean
C. Guerreiro
T.H. Kim
F. Segat-Dioury
K. Wright

RMN des Biomolécules
(M. Delepierre)
C. Simenel
F. Theillet

Immunologie Structurale
(G. Bentley)
B. Vulliez-Le Normand
F. Saul

PF5, IP
F. Nato

D. Cohen
Sackler Faculty of Medicine
Tel Aviv University

Financial Support

Credit of TT

INSTITUT PASTEUR

sanofi pasteur

The Vaccine Business of Sanofi-Aventis Group