Epidemiology of sequelae following infectious encephalitis

And the role of the infectious diseases specialists

Alexandra Mailles - October 2014

Why talk about post-encephalitis sequelae in a course of the ESCMID?

- Because sequelae are frequent and may be invisible
- Because an early assessment is important
- Because rehabilitation has to be anticipated....
 during the infectious course of the disease

Sequelae and Outcome

- Individual aspects
 - Objective symptoms and subjective complaints
 - Impairment, disability and handicap
 - Different consequences according to the occupation, way of life and environment
- Public health aspect
 - Sequelae participate in the burden of encephalitis
 - Access to rehabilitation
 - Availability of specific facilities and HCW
 - → Public Health policies

Data about post-encephalitis sequelae

- Few case-series, many case-reports
- Important limitations
 - Relevance of assessment tools
 - Neuro-invasive vs encephalitis
 - Evaluation limited to those evaluable
 - Not all domains evaluated in all case-series
 - Various delays between onset and assessment
- → Crude figures to be taken cautiously

Herpes simplex encephalitis sequelae

- Dramatic improvement thanks to Aciclovir (ACV) since the early 80's
 - Lower case-fatality rate
 - Still severe long-term persisting symptoms
- Survival and sequelae directly correlate with early ACV treatment

HSV: cognitive sequelae

- Major issue : > 70 % of patients affected (Utley 1997)
- Memory
 - Impaired in 30- 70 % (Mc Grath 1997, Mailles 2012)
 - Disorientation in space and time
 - Anterograde and retrograde memory
 - All domains : visual, verbal, delayed memory
- Attention disorders, lack of concentration 67% (Mailles 2012)
- Executive functions impaired in 41% (Utley 1997)

HSV: cognitive sequelae (2)

- Language: 30-40% patients (Utley 1997, Mailles 2012)
 - Aphasia
 - Dysarthria
 - Anosmia

- Intelligence
 - Full scale IQ: 23% with mild deficit (Utley 1997)
 - Children: mental retardation in 50% after 5 years (Michaeli 2014)

HSV: neuropsychiatric sequelae

- Major issue
- Behavioral changes: 45-50 % (Mc Grath 1997, Mailles 2012)
 - Possible denial from patients and caregivers
 - Irritability
 - Aggressiveness: violent outbursts, physical violence
 - Disinhibition, inappropriate laughs or speech
 - Emotional lability
 - Children: ADHD 66%, tic disorders 50% (Michaeli 2014)

HSV: neuropsychiatric sequelae (2)

- Depression, Anxiety 17% (Mc Grath 1997)
 - Sleeping disorders
 - Lack of motivation or commitment
 - Suicide attempt (rare)
- Most severe cases
 - Indifference
 - Kluver-Bucy syndrome
 - Spatial neglect
- Consequences on care-givers

HSV: neurological sequelae

- Unfrequent compared to other agents, and compared to cognitive and behavioral sequelae following HSE
- Motor deficit
 - Paresis 6% (Mailles 2012)
 - Limb paralysis
 - Weakness
- Ataxia: 2 of 4 patients (Berlit 1988)
- Seizures 3% to 5%

HSV: functional outcome

 Severe presentations with patients in vegetative state still reported despite ACV

- Post ACV data
 - Severe disability: 13 to 20% (Raschilas 2002, Sili 2014, Mc Grath 1997)
 - Return to work 75% after 3 years (Mailles 2012)
 - Children: learning issues (Mc Grath 1997)

Flaviviruses

- Tick-Borne Encephalitis virus
- West Nile virus
- Japanese Encephalitis virus
- Tropism for thalamus, basal ganglia, brainstem
- Most studies enrolled encephalitis, encephalomyelitis, meningitis, non neuroinvasive infections

Tick-Borne Encephalitis (TBE)

Reports about sequelae in case-series patients since
 USSR → possible different management over time

TBE: cognitive sequelae

- Globally: cognitive impairment in up to 42% (Czupryna 2011)
 - some patients described as Alzheimer-like patients (Gustav-Rothenberg 2008)
 - no significant differences between encephalitis and other presentations on a long term in children (Fowler 2013)
- Intelligence in children (Fowler 2013)
 - global IQ significantly lower than the average
 - decreased ability to solve problems
 - problems with organization of the environment and time

TBE: cognitive sequelae (2)

- Memory impairment: 20 to 35 % (Lämmli 2000, Gustav-Rothenberg 2008, Mickiene 2002)
 - Specifically: working memory significantly below the average in children (p<0.001) (Fowler 2013)
- Attention and concentration disorders: 20 to 42% (Lämmli 2000, Mickiene 2002, Laursen 2003, Karelis 2012)
 - → improvement after 1 year for concentration disorders but not for memory (Mickiene 2002)

TBE: neuropsychiatric sequelae

- Up to 44% patients with severe presentation require psychiatric therapy after discharge (Czupryna 2011)
- Depression and anxiety (Lämmli 2000, Czupryna 2011, Karelis 2012)
 - Depression 29%
 - Anxiety 6% to 11%
 - Sleep disorders 13% to 42%
- Behavioral disorders
 - Mood disorders in 47 % (Karelis 2012)
 - Irritability 16% (Lämmli 2000)
 - Emotional instability 19% (Mickiene 2002)

TBE: neurological sequelae

- Focal deficit 24%-27% (Kaiser 1999, Lammli 2000, Mickiene 2002, Karelis 2012, Czupruna 2011)
 - Up to 14% shoulder girdle paralysis
 - Visual accommodation deficit 19%
 - Facial palsy 5%
 - Paresis in the extremities of limbs 20%
 - Hemiparesis 3%
 - Spinal nerve paralysis 2%
- Parkinsonism, tremors 5% to 10% (Lammli 2000, Laursen 2003, Mickiene 2002)
 - significant improvement over the first year

TBE: neurological sequelae (2)

- Balance disorders
 - Ataxia 21 to 24% (Lammli 2000, Czupryna 2011)
 - Diziness up to 40% (Lammli 2000, Karelis 2012)
- Movement coordination disorders 39% (Karelis 2012)
- Sensory disorders (Lammli 2000)
 - photophobia 18%
 - hearing loss 11%
- Muscle wasting and weakness 16 to 20% (Lammli 2000, Laursen 2003, Karelis 2012)

TBE: post-encephalitis subjective complaints and functionnal outcome

- Subjective complaints
 - Fatigue 49% (Lammli 2000, Mickiene 2002)
 - Headache up to 58% (Karelis 2012)

Functionnal outcome

- 50 60% full recovery after 1 year (Gunther 1997, Mickiene 2002)
- Need for everyday assistance 14% (Karelis 2012)
- Walking troubles 18%, writing difficulties 14% (Lammli 2000)

West Nile virus

 Most papers published following North-American outbreak, and more recently Greece

WNV: cognitive sequelae

- Subjective cognitive complaints: no difference according to clinical presentation (WNM, WNE, WNF)
- Objective assessment of cognitive decline (Sejvar 2008)
 - encephalitis > meningitis but no significant difference after
 18 months
 - 56% patients impaired in at least one cognitive domain after 1 year
- Worst cognitive disorders in patients with neurological sequelae, correlation with age

WNV: cognitive sequelae

- Memory impairment
 - 40% in unselected patients
 - 40 to 60% in WNND after 18 months (Klee 2004, Carson 2006, Anastasiadou 2013)
 - Persistence over time: 11% at 1 year, 9% at 8 years (all clinical presentations, Murray 2014)
- Attention/concentration:
 - Lower scores than controls and higher latency to response (Sejvar 2003)
 - 38% at 18 months (Klee 2004, Sadek 2010)

WNV: cognitive sequelae

• Executive functions impaired in 36%, severely impaired in 15% (Carson 2006, Sadek 2010)

- Cognitive slowness in 56% (Sadek 2010)
 - tasks processing following visual recognition
 - reasoning and planning : longer delay in solving problems tests

WNV: neuropsychiatric sequelae

- Depression, anxiety
 - 21 to 31% after 1 year, major depression for half of them (Murray 2007)
 - 47% at 8 years (Nolan 2012)
 - Sleep disorders: 47% after 18 months (κIee 2004)
- Personality change 45% (Klee 2004, Murray 2007)
 - Increased irritability, anger
 - Decreased social life
 - Increased sensitivity

WNV: neurological sequelae

- Ataxia: 43% at 18 months (Klee 2004)
- Tremors, « parkinsonism » 23% (Sadek 2010)
- Motor deficit: 48% (Sadek 2010, Anastasiadou 2013, all WNND)
 - Paraparesis, tetraparesis
 - General muscle motor weakness
 - Limb paresis or paralysis
 - irreversible when denervation or motor neuron loss
- Hearing loss 13% in Greek patients (Anastasiadou 2013)

WNV: neurological sequelae

Possible improvement over time (Murray 2014, all WNND)

Ataxia15% at 1 year, 4% at 8 years

Limb paralysis
 9% at 1 year, none at 8 years

Tremors5% at 1 year, none at 8y

Dizziness5% at 1 year, none at 8y

Japanese Encephalitis sequelae

- Children +++, elderly
- More data than other agents, up to 27 years after onset
- Sequelae are more disabling in rural settings

JE : cognitive sequelae

- Short-term memory impaired in 30% of children 6 months after onset (00i 2008)
 - Still present in 5% by 5 years (Sarkari 2012)
- Inappropriate judgement and reasonning
- Inability to count and use currency (Sarkari 2012)
- Intelligence:
 - 28% subnormal, 18% with global IQ < 70 (Ding 2007)
 - Significant improvement in most patients by 5 years (Sarkari 2012)

JE: neuropsychiatric sequelae

- Behavioral disorder
 - 70% at discharge (Sarkari 2012)
 - 38 to 50% after a couple of months (Maha 2009, Ooi 2008)
 - Psychosis
 - Social withdrawal
- Depression in a third of patients, but 99% recovered by 5 years
- Emotional instability in 40%, but 98% cured by 5 years

JE: neurological sequelae

- Motor deficits
 - At discharge 21% to 38% (Kakoti 2013, Rayamajhi)
 - Limb paralysis in 31% → 93% recovered by 14y (Sarkari 2012)
 - Cortical-spinal deficits in 69% → 95% recovered by 14y
- Movements disorders (Kalita 2009, Sarkari 2012)
 - Hyperkinetic movements 21% → all improved but not recovered by 14 years
 - Parkinsonism, tremors, dystonia 56% → 97% improved but not recovered by 14 years

JE: neurological sequelae (2)

- Speech disorders (Sarkari 2012)
 - Mixed cognitive and neurological deficits in 78% at discharge
 - Constant improvement in most patients over time but
 - Persisting dysarthria and monotonous speech in 44% by 14 years, and
- Seizures 6%-8% (Ding 2009, Ooi 2008)

JE: Functional outcome

• 25% patients dependant on caregivers after 1 year (Maha 2009)

15% abnormal ADL scores,
 6% near incapacitation several years after discharge (Ding 2007)

Nipah

- Emergence in the late 90s
- Malaysia and Bengladesh

Nipah virus: Malaysia outbreak, 1999

- At discharge: 14/91 (15%) had cognitive impairment (Goh 2000)
- 2 years after discharge (Ng 2004)
 - Attention deficit 3/8,
 - Impaired immediate and delayed memory 5/8 ,
 - Back to premorbid intellectual function: 5/8, below expected level: 3/8
- Neuropsychiatric sequelae (after 2 y)
 - Major depression 5/9, difficulties coping with uncertainty 4/9
 - Personality change 2/9,
 - Chronic fatigue syndrome 2/9
- 5% of all patients remained vegetative (8% of survivors) (Goh 2000)

Nipah virus: data from Bengladesh

- Neurological sequelae (Sejvar 2007)
 - Cranial nerves palsies 4/22,
 - Myoclonus 3/22,
 - Ataxia or gait problems 3/22,
 - Delayed -onset abnormalities up to 1 year : oculomotor dysfunction in 3, cervical dystonia in 1.
- Subjective complaints (Sejvar 2007)
 - subjective cognitive complaint 10/22 (memory, attention)
 - mood problems 13/22,
 - fatigue 15/22

Outcome in cohorts of unselected patients

- Sweden, 2000/2004, 71 children (Fowler 2010)
 - Sequelae in 54% after 5 years
- England, 2005/2006, 198 patients (Granerod 2010)
 - Poor outcome in 35% after 6 months (*M. tuberculosis*, HSV,
 VZV ++)
- France 2010, 176 patients (Mailles 2012)
 - Poor outcome 39% after 3 years (HSV +++++++)

Perspective: rehabilitation

- Start early
- Complete assessment (challenging)
- Need for patient's participation
- Define the objective with the patient
- Take into account the caregiver
- Emphasize any improvement to maintain the patients' commitment

Conclusions and perspectives

- High burden during acute infectious phase of encephalitis
- Long-term severe sequelae are common

 close monitoring and follow-up
- Need for close collaboration between ID, neurology and rehabilitation specialists since the onset of the disease