

Tuberculose: quoi de neuf en 2025?

Yousra Kherabi SPLIF

Hôpital Bichat-Claude Bernard – Université de Paris Cité (Paris, France)

L'essentiel

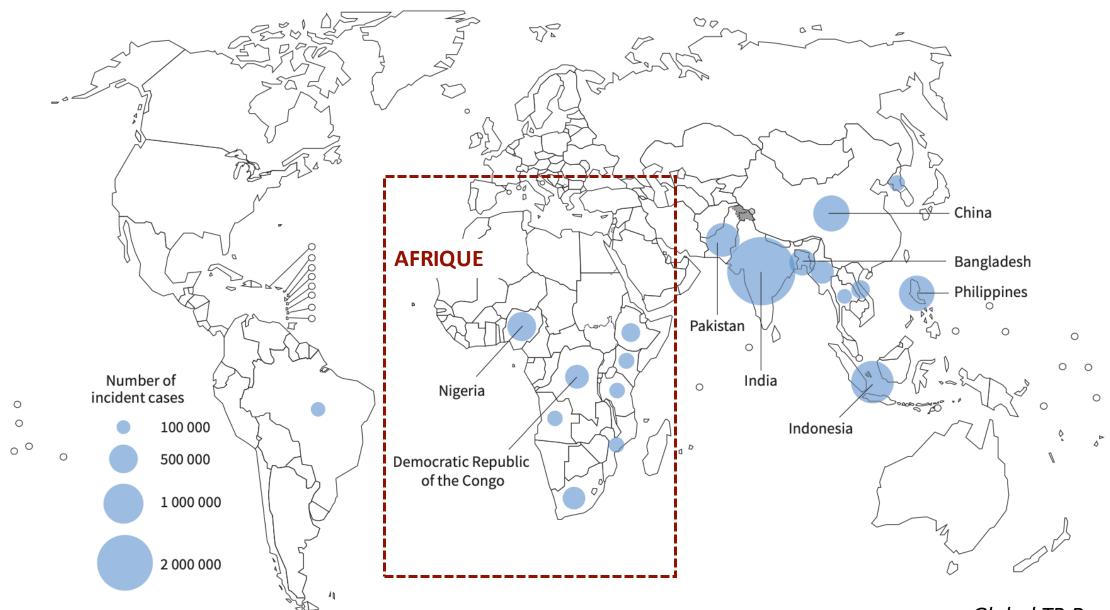
• Epidémiologie de la TB dans le monde et en Afrique : point flash

• Quelques nouvelles ressources précieuses pour la TB sensible

- TB résistante :
 - De nouvelles définitions de résistance validées en 2021 (OMS)
 - De nouvelles recommandations de traitement (OMS)
 - De nouveaux défis : résistance, implémentation, XDR-TB

FLASH EPIDEMIOLOGIE

En 2023


Nouveaux CAS de TB dans le monde

10.8 MILLIONS

MESSAGE

PIC HISTORIQUE

8 pays concentrent 2/3 des cas incidents de TB

Fardeau de la TB, TB/VIH, TB résistante

Brazil Congo* Ethiopia Gabon* Kenya Lesotho* Liberia* Namibia* Thailand Uganda **UR** Tanzania Eswatini Guinea

Central Afr. Rep.*

Botswana Cameroon Guinea-Bissau Malawi **Russian Federation** Zimbabwe

China DR Congo India Indonesia Mozambique Myanmar Nigeria **Philippines** South Africa Zambia*

Angola Bangladesh **DPR Korea** Mongolia* **Pakistan** Papua New Guinea* **Viet Nam**

Azerbaijan Belarus Kazakhstan Kyrgyzstan Nepal Peru Rep. Moldova **Russian Federation** Somalia Tajikistan Úkraine Uzbekistan Zimbabwe

MDR/RR-TB

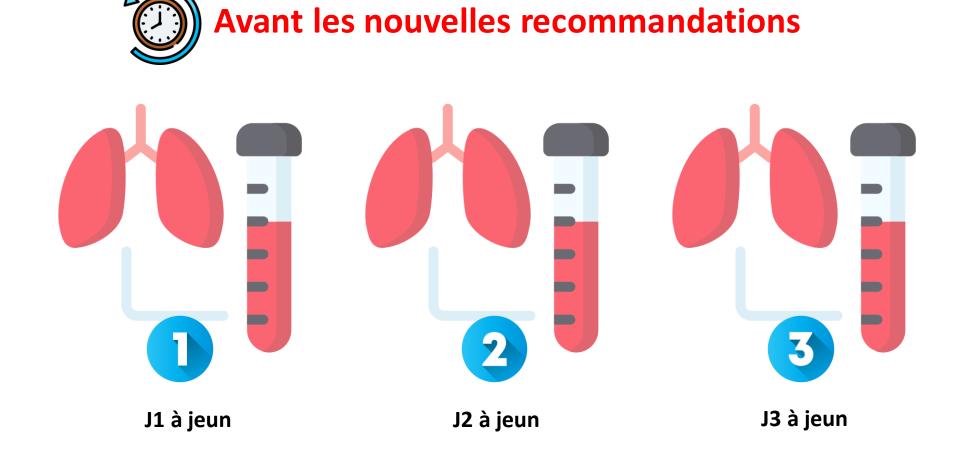
* Indicates the 10 countries included in the TB list based on incidence per 100 000 population in 2019

Sierra Leone*

Mais beaucoup de progrès...

Baisse du nombre de décès de - 42% depuis 2015 :

région OMS avec la plus belle baisse

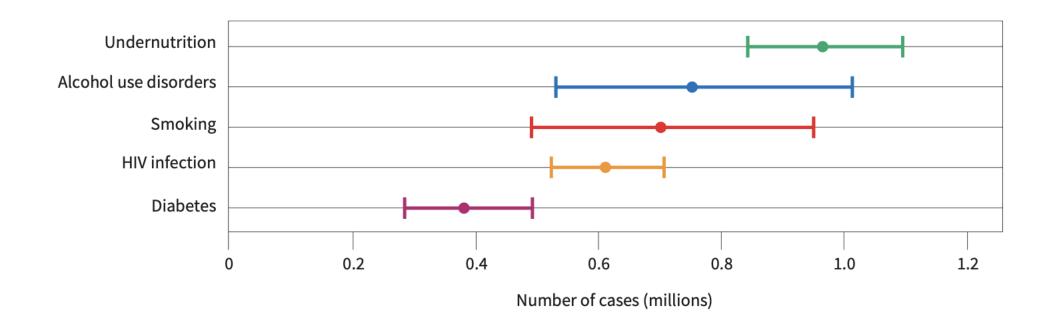


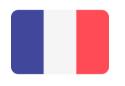
Nouveautés sur la tuberculose sensible

Scoops des nouvelles recommandations SPILF/SPLF (en attente de publication)

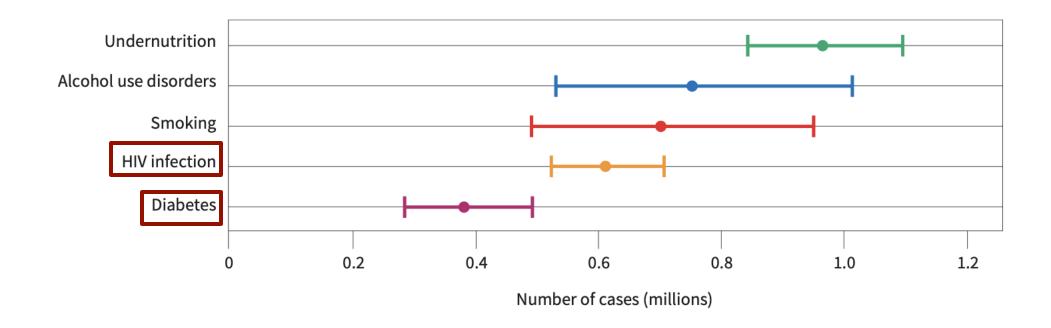
Quelle stratégie diagnostique adopter devant une suspicion de tuberculose maladie ?

Quelle stratégie diagnostique adopter devant une suspicion de tuberculose maladie?

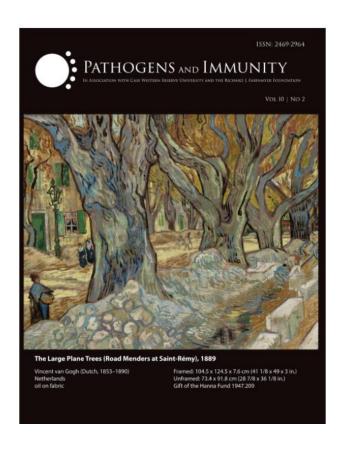



- 2 prélèvements d'expectoration
- Au moins 3 mL non salivaire
- Réaliser les 2 prélèvements le même jour
- Le premier pouvant être réalisé le matin à jeun ou pas

Ca repose sur quoi?


- L'apport du 3^e crachat à un rendement supplémentaire de sensibilité limité, 2 à 7 % selon les études (Mase 2007, Gressens 2021, Maitre 2021, Chiang 2023)
- Les prélèvements de crachats pour recherche de BK peuvent se faire sur un jour plutôt que sur plusieurs jours (Brown 2007, Davies 2017, Gressens 2021)
- Le BK crachat le matin à jeun n'a pas de rendement supérieur au crachat spontané dans la journée (Datta 2017, Murphy 2017)

5 facteurs de risque de TB à rechercher



Rechercher systématiquement VIH et diabète

Deux papiers à ne pas rater cette année

Tout le best of TB en 1 papier

A Year in Review on Tuberculosis and Non-tuberculous Mycobacteria Disease: A 2025 Update for Clinicians and Scientists

Lange et al. 2025

Nouveaux-nés d'une mère infectée par le BK

THE LANCET Child & Adolescent Health

REVIEW · Volume 8, Issue 5, P369-378, May 2024

Management of the infant born to a mother with tuberculosis: a systematic review and consensus practice guideline

Nadia Hasan, MBBS ^{a,b} · Prof Clare Nourse, MD ^{a,c} · Prof H Simon Schaaf, MD ^d · Prof Adrie Bekker, PhD ^d · Marian Loveday, PhD ^e · Betina M Alcântara Gabardo, PhD ^{f,g} · et al. Show more

Pourquoi c'est important de parler de la tuberculose résistante aujourd'hui?

Liste OMS des pathogènes prioritaires sur le plan de l'antibiorésistance Mise à jour de Juin 2024

Priority 1: CRITICAL

- Enterobacterales, carbapenem-resistant
- Enterobacterales, third generation cephalosporin-resistant
- Acinetobacter baumannii, carbapenem-resistant
- Mycobacterium tuberculosis, rifampicin-resistant

Priority 2: HIGH

- Salmonella Typhi, fluoroquinolone-resistant
- Shigella spp., fluoroquinolone-resistant
- Enterococcus faecium, vancomycin-resistant
- Pseudomonas aeruginosa, carbapenem-resistant
- Non-typhoidal Salmonella, fluoroquinolone-resistant
- Neisseria gonorrhoeae, third-generation cephalosporin, and/or fluoroquinolone-resistant
- Staphylococcus aureus, methicillin-resistant

Priority 3: MEDIUM

- Group A Streptococci, macrolide-resistant
- Streptococcus pneumoniae, macrolide-resistant
- Haemophilus influenzae, ampicillin-resistant
- Group B Streptococci, penicillin-resistant

Liste OMS des pathogènes prioritaires sur le plan de l'antibiorésistance Mise à jour de Juin 2024

PRIORITE DE NIVEAU 1 : CRITIQUE

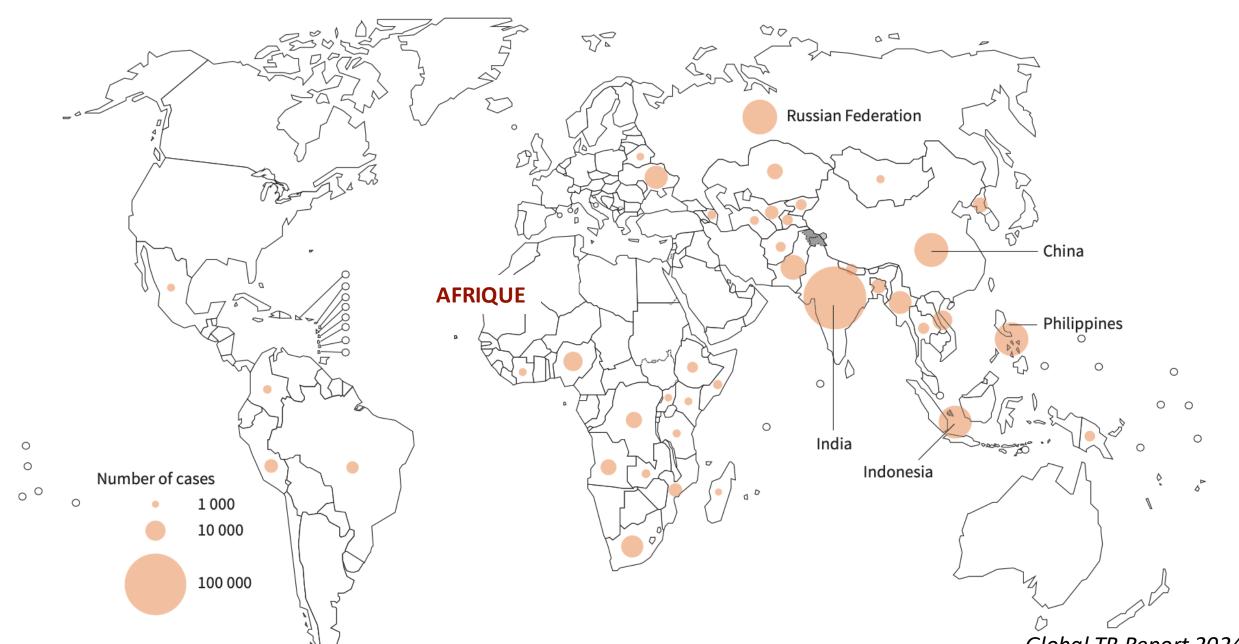
- Enterobacterales, carbapenem-resistant
- Enterobacterales, third generation cephalosporin-resistant
- Acinetobacter baumannii, carbapenem-resistant
- *Mycobacterium tuberculosis*, rifampicin-resistant

En 2023

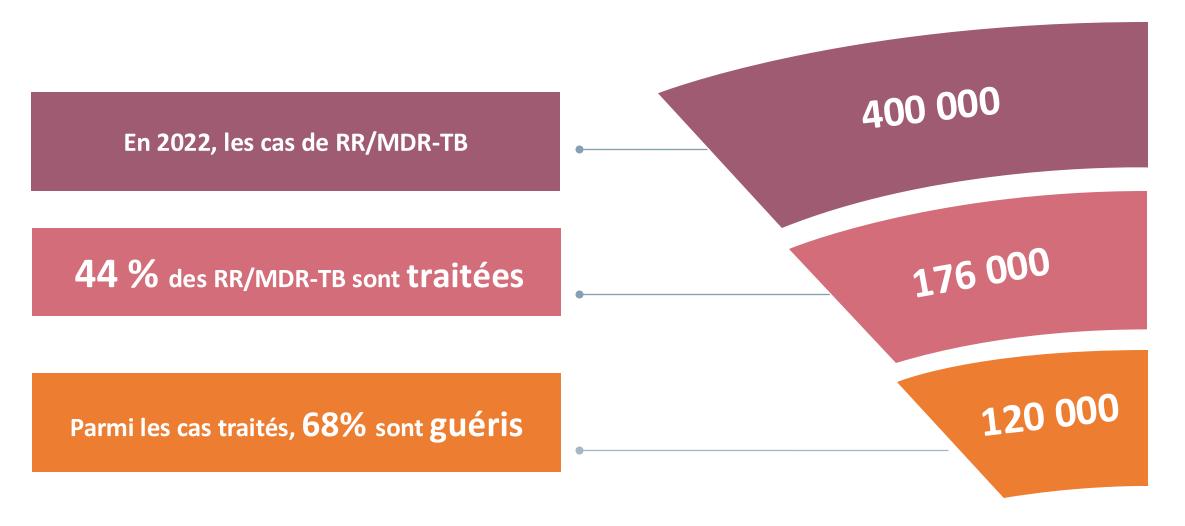
CAS de TB MORTS de TB

10.8 M

1.3 M


RR/MDR-TB

R Rifampicine


O.4 M

H Isoniazide

5 pays concentrent plus de 50% des cas incidents de RR/MDR-TB

En 2023

OMS 2021 : DE NOUVELLES DEFINITIONS DE LA TB RESISTANTE

Tuberculose résistante

 Tuberculose multi-résistante (MDR-TB) : résistance isoniazide + rifampicine

• Molécule de secours : fluoroquinolones (FQ)

- Voie orale
- Efficace

Tuberculose résistante en 2021

RR/MDR-TB + FQ-résistance

XDR avant 2021

XDR-TB = RR/MDR + FQ-R +

Résistance aux SLI

XDR avant 2021

XDR-TB = Pre-XDR-TB

+

Résistance aux SLI

Molécules nouvelles ou repositionnées

Depuis 2006 : linézolide

Depuis 2011 : **bédaquiline**

Plus efficaces, moins toxiques, par voie orale

XDR avant 2021

XDR-TB = Pre-XDR-TB +

Résistance aux SLI

Groups and steps	Medicine and abbreviation	
Group A: Include all three medicines	Levofloxacin <i>or</i> moxifloxacin	Lfx Mfx
	Bedaquiline ^{b,c}	Bdq
	Linezolid ^d	Lzd
Group B:	Clofazimine	Cfz
Add one or both medicines	Cycloserine <i>or</i> terizidone	Cs Trd
Group C:	Ethambutol	Е
Add to complete the regimen, and when medicines from Groups A and B cannot be used	Delamanid ^{c,e}	Dlm
	Pyrazinamide ^f	Z
	Imipenem-cilastatin <i>or</i> meropenem ⁹	Ipm-Cln Mpm
	Amikacin (<i>or</i> streptomycin) ^h	Am (S)
	Ethionamide <i>or</i> prothionamide ⁱ	Eto Pto
	P-aminosalicylic acid ⁱ	PAS

XDR avant 2021

XDR-TB = Pre-XDR-TB

+

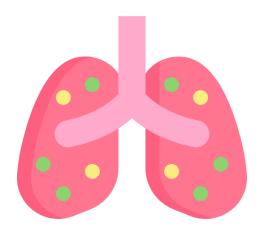
Résistance aux SLI

XDR depuis 2021

XDR-TB = Pre-XDR-TB

+

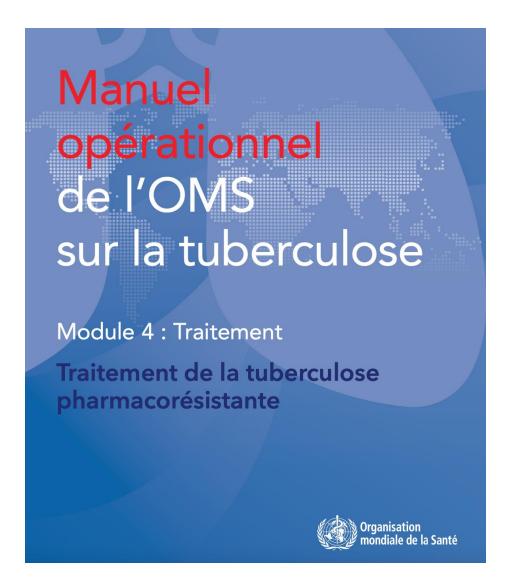
Résistance au linézolide



Et/ou

Résistance à la bédaquiline

DE NOUVELLES RECOMMENDATIONS DE TRAITEMENT PAR L'OMS 2022 - 2024



AVANT 2022

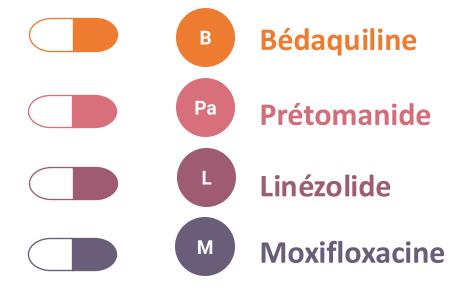
- Traitements longs :
- 9-12 mois en médiane pour MDR-TB
- 18 mois en médiane pour PreXDR-TB
- 18 à 24 mois en médiane pour la XDR-TB

• Traitement compliqués (injectables), effets secondaires très fréquents

EN 2022 : MISE A JOUR DES RECOMMANDATIONS

OMS – 2022 : MDR-TB et PREXDR-TB

REVOLUTION: TRAITEMENT ORAL COURT


3 essais cliniques

Nix-TB trial (Conradie, NEJM 2020): BPaL 6 mois

ZeNix-TB trial (Conradie, NEJM 2022): BPaL 6 mois

TB-Practecal (Nyang'wa, NEJM 2022): BPaLM 6 mois

OMS - 2022 : MDR-TB

DUREE: 6 MOIS

3 essais cliniques

Nix-TB trial (Conradie, NEJM 2020): BPaL 6 mois

ZeNix-TB trial (Conradie, NEJM 2022): BPaL 6 mois

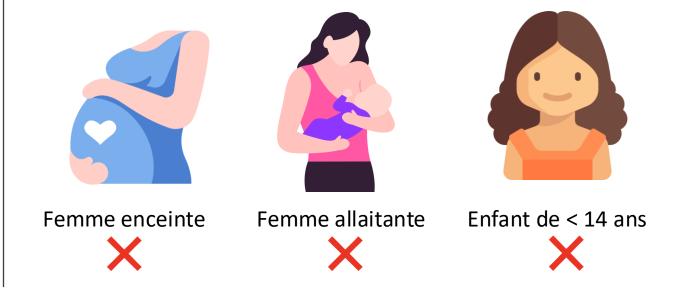
TB-Practecal (Nyang'wa, NEJM 2022): BPaLM 6 mois

OMS - 2022 : PreXDR-TB

DUREE: 6 MOIS

3 essais cliniques

Nix-TB trial (Conradie, NEJM 2020): BPaL 6 mois


ZeNix-TB trial (Conradie, NEJM 2022): BPaL 6 mois

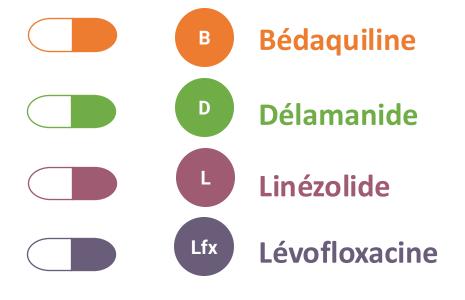
TB-Practecal (Nyang'wa, NEJM 2022): BPaLM 6 mois

PROBLEME

Risques incertains dans les populations exclues des essais cliniques

Key updates to the treatment of drug-resistant tuberculosis

Rapid communication


June 2024

D'autres régimes de 6 mois ne contenant pas de

Prétomanide

DUREE: 6 MOIS

1 essai clinique

BEAT-TB (Padmapriyadarsini, CID 2023)

OMS - 2024 : PreXDR-TB

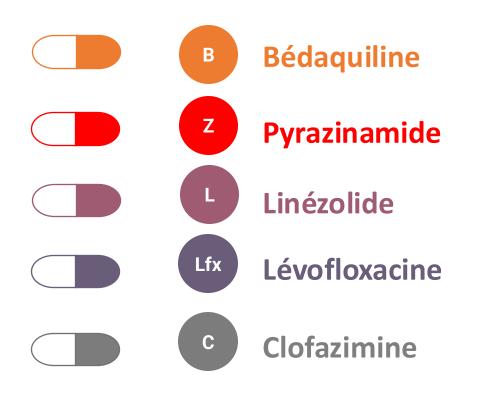
DUREE: 6 MOIS

1 essai clinique

BEAT-TB (Padmapriyadarsini, CID 2023)

D'autres régimes de 9 mois ne contenant pas de

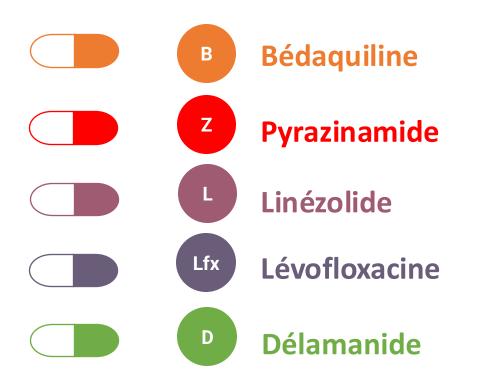
1 essai clinique


EndTB - NEJM 2025

- **B** Bédaquiline
- **Z** Pyrazinamide
- Linézolide
- M Moxifloxacine

DUREE: 9 MOIS

1 essai clinique


EndTB - NEJM 2025

1 essai clinique

EndTB - NEJM 2025


DUREE: 9 MOIS

1 essai clinique

EndTB - NEJM 2025

DUREE: 9 MOIS

Mais pourquoi recommander des régimes de 9 mois quand on recommande déjà des régimes de 6 mois ?

Pourquoi recommander des régimes de 9 mois quand on a des régimes de 6 mois ?

S'adapter aux différents profils de résistance : proposer un maximum de combinaisons « on the shelf » pour un traitement « sur-mesure » en fonction des résistances de la souche de chaque patient

Défi majeur Emergence de la résistance à plusieurs molécules clefs

Emergence de la résistance à la bédaquiline

Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study

Brigitta Derendinger*, Anzaan Dippenaar*, Margaretha de Vos*, Stella Huo, Rencia Alberts, Rebecca Tadokera, Jason Limberis, Frik Sirgel, Tania Dolby, Claudia Spies, Anja Reuter, Megan Folkerts, Christopher Allender, Darrin Lemmer, Annelies Van Rie, Sebastien Gagneux, Leen Rigouts, Julian te Riele, Keertan Dheda, David M Engelthaler, Robin Warren, John Metcalfe, Helen Cox, Grant Theron

47 % des patients avec échec de traitement par bédaquiline ont acquis une résistance à la bédaquiline

Emergence de la résistance aux autres molécules : le prétomanide

International Journal of Antimicrobial Agents

Antimicrobial Agents

Volume 62, Issue 4, October 2023, 106953

Review

Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice

Thi Van Anh Nguyen ^{a †}, Quang Huy Nguyen ^{a †}, Tran Nam Tien Nguyen ^b, Richard M. Anthony ^c, Dinh Hoa Vu ^b, Jan-Willem C. Alffenaar ^{d e f} $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\boxtimes}$

Emergence de la résistance aux autres molécules : le prétomanide

LETTER TO THE EDITOR · Volume 86, Issue 5, P520-524, May 2023

Pretomanid-resistant tuberculosis

Niklas Koehler · Sönke Andres · Matthias Merker · … · Stefan Niemann · Florian P. Maurer · Christoph Lange △ … Show more

Emergence de la résistance aux autres molécules : le délamanide

Clinical Infectious Diseases

Delamanid Resistance: Update and Clinical Management

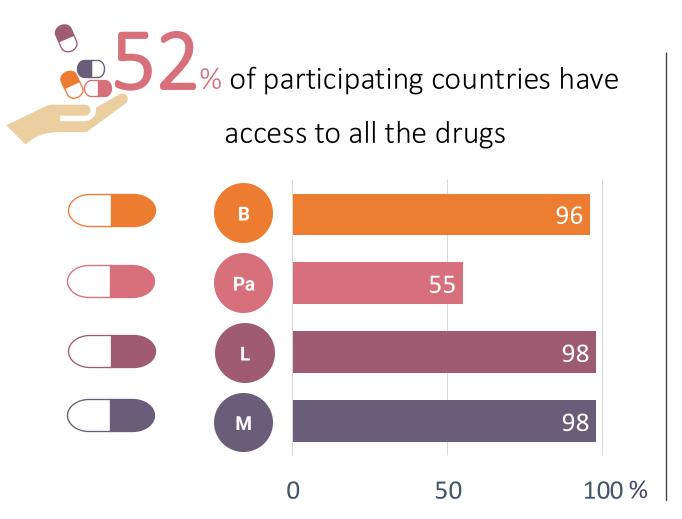
Thi Van Anh Nguyen,^{1,2} Richard M. Anthony,³ Thi Thu Huyen Cao,⁴ Anne-Laure Bañuls,^{2,5} Van Anh Thi Nguyen,⁶ Dinh Hoa Vu,⁴ Nhung Viet Nguyen,⁷ and Jan-Willem C. Alffenaar^{8,9,10}

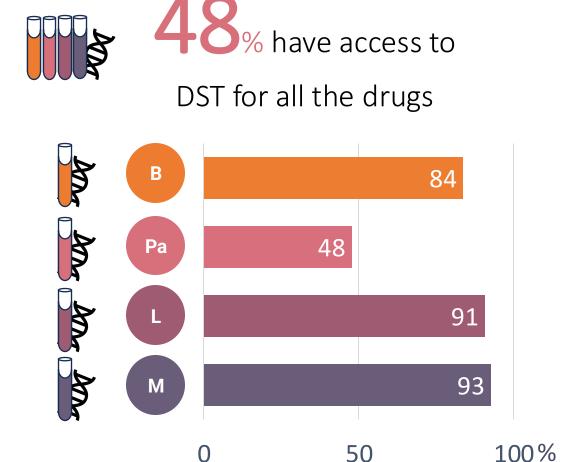
Transmission ++ de la résistance à

Transmission as a Key Driver of Resistance to the New Tuberculosis Drugs

Analyse génomique de > 81 000 souches

- Malgré l'introduction récente de BPaL(M)
- Au moins 27 pays sur 4 continents touchés par la résistance à au moins un des composants
- ¼ de ces souches résistantes à BPaLM sont fortement liées entre elles génotypiquement


Pourquoi recommander des régimes de 9 mois quand on a des régimes de 6 mois ?


- S'adapter aux différents profils de résistance
- S'adapter aux problèmes d'implémentation : en fonction du pays où vous êtes, vous n'avez pas accès à toutes les molécules / à l'antibiogramme

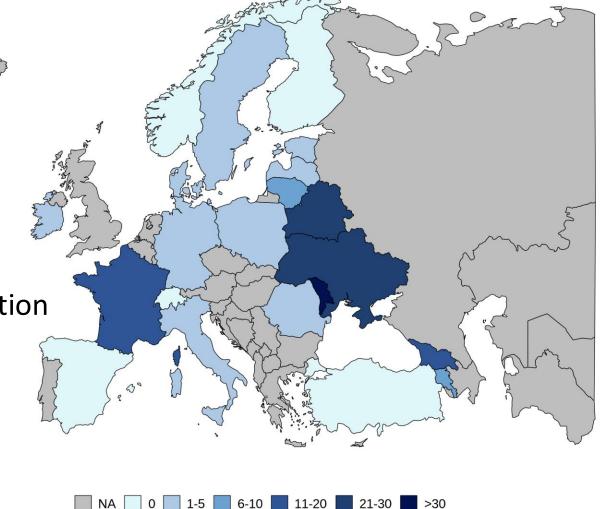
A study including TEnet representatives from 44/54 countries of the WHO Europe region

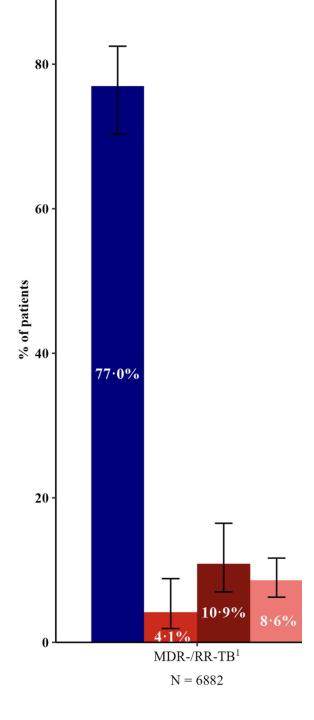
Günther CMI 2024

Nous avons vu les défis que représentent

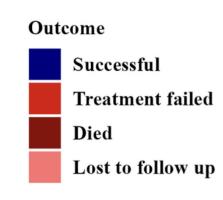
L'émergence de résistance

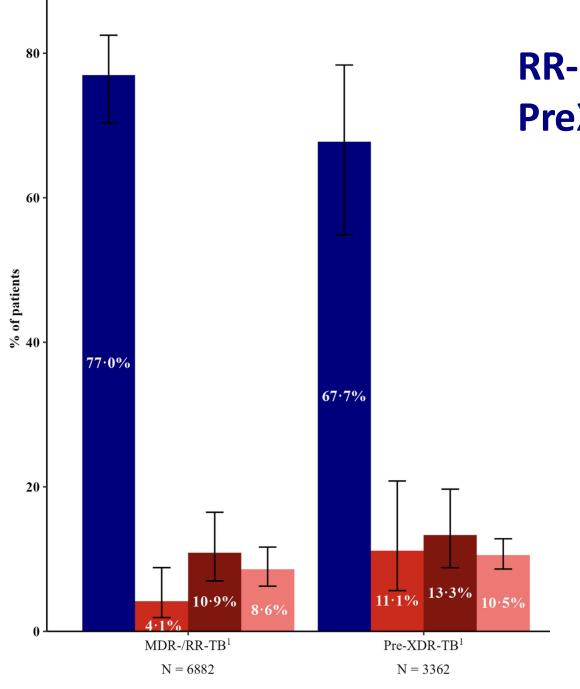
Une implémentation imparfaite de l'accès aux molécules et au testing de sensibilité

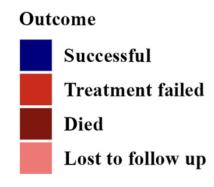

XDR-TB nouvelle définition : La grande inconnue

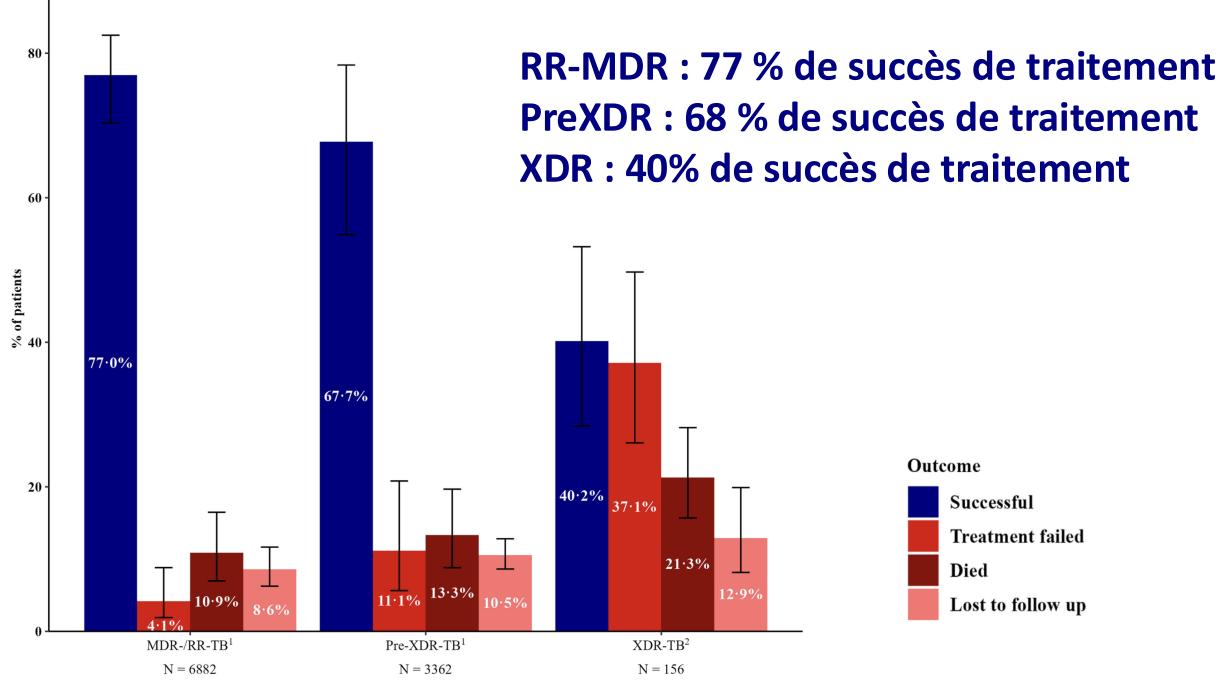

Etude XDR-TB - TBnet/ESGMYC (2017-2023)

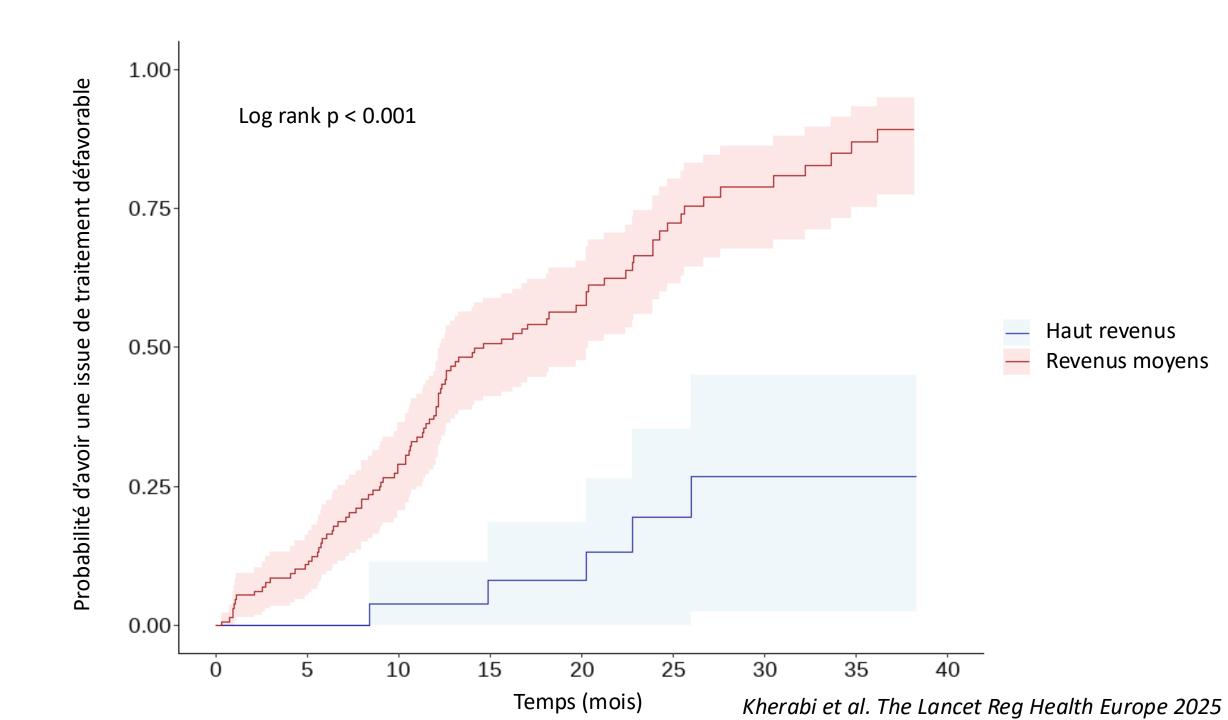
• 16 pays


• 11,003 patients RR/MDR/PreXDR/XDR


Dont 188 patients avec XDR-TB nouvelle définition




RR-MDR: 77 % de succès de traitement



RR-MDR: 77 % de succès de traitement PreXDR: 68 % de succès de traitement

Kherabi et al. The Lancet Reg Health Europe 2025

Résultats (partiels)

- Seulement 40 % des patients avec XDR-TB ont eu des issues de traitement favorables
 - → même taux de guérison de la TB à l'ère pré anti-TB

 Il existe des disparités considérables dans les résultats obtenus par les patients atteints de XDR-TB traités dans les pays à revenus moyens par rapport aux pays à hauts revenus.

Un peu d'espoir ?

13 candidats vaccins, dont un très prometteur

Name	Composition	Most advanced clinical stage	Representative clinical trial number					
TB protein: adjuvant formulations								
H56:IC31	Fusion protein of two antigens: IC31 as adjuvant ^a	Phase IIb ongoing	NCT03512249					
ID93:GLA-SE	Fusion protein of four antigens: GLA-SE as adjuvant ^b	Phase IIb ongoing	NCT03806686					
M72:AS01 _E	Fusion protein of two antigens: ASO1 _E as adjuvant ^c	Phase IIb completed	NCT01755598					
AEC:BC02	Combination of three protein antigens: BC02 as adjuvant ^d	Phase IIa ongoing	NCT05284812					
GamTBvac	Combination of three protein antigens: CpG as adjuvante	Phase III ongoing	NCT04975737					
Mtb-antigen encoding mRNA vaccines								
BNT164a1/BNT164b1	mRNA expressing multiple Mtb antigens in lipid	Phase I ongoing	NCT05547464					
	nanoparticles		NCT 05537038					
TB antigen expressing viral vectors								
ChadOx1.85A/MVA85A	ChadOx1 as carrier for prime, MVA as carrier for boost,	Phase IIa ongoing	NCT00480558					
	both expressing same antigen ^f							
TB/FLU-04L	Non-replicating influenza virus expressing 2 antigens ^g	Phase I completed	NCT02501421					
Inactivated whole cell vaccines								
Immuvac	Killed M. indicus pranii	Phase III ongoing	CTRI/2019/01/017026					
RUTI	Killed detoxified M. tuberculosis	Phase IIb ongoing	NCT04919239					
DAR-901	Killed M. obuense	Phase IIb completed	NCT02712424					
Viable attenuated whole cell vaccines								
MTBVAC	Genetically attenuated M. tuberculosish	Phase III for children and Phase IIa	NCT04975178					
		for adolescents and adults ongoing						
VPM1002	Genetically enhanced BCG ⁱ	Three phase III trials ongoing for	NCT04351685					
		(a) HIV-exposed/unexposed neonates,						
		(b) adolescent and adult household contacts;	Vasiliu CMI 2024					

2024 Global New TB Drug Pipeline¹

Discovery	Preclinical D	evelopment		Clinical Development		
						·
Lead Optimization	<u>Early Stage</u> Development	GMP / GLP Tox	Phase 1	Phase 2	Phase 3	Regulatory Market
Indazole	TBD10 (MK-3854)	OTB-658	TBD09 (MK-7762)	Delpazolid		Approvals
sulfonamides Diarylthiazoles	FIM-3002*		TBI-223	Sutezolid, Tedizolid		
DprE1 Inhibitors	CMZ523*		TD 4 L 507	TPA1 076	Sudapyridine	Bedaquiline*
Direct InhA Inhibitors	MPL-447*	TBAJ-587	IBAJ-587	TBAJ-876		Dedaquillie
Mtb energy metabolism	JSF-3285*	TBD11 (CLB-073)*	GSK-286*	Sanfetrinem	(WX-081)	
Gyrase Inhibitors	CPZEN-45*	(CED 075)	Macozinone*	BTZ-043*		Delamanid*
Arylsulfonamides			(PBTZ-169)			
Inhibitors of MmpL3, Translocase-1, ClpC1,	NTB-3119*		(1 512 103)	TBA-7371*		Pretomanid*
ClpP1P2, PKS13, F-ATP synthase, RNAP	MBX-4888A (1810)*	GSK-839*		Quabodepistat (OPC-		
Oxazolidinones	FNDR-20364*	G2K-929.		167832*)		
DnaE1 / Nargenicin analogs	FNDR-20304			Alpibectir (BVL-GSK098	o*	ine = updates lovember 2024

^{*}New chemical class. Known chemical classes for any indication are color coded: rifamycin, oxazolidinone, nitroimidazole, diarylquinoline, benzothiazinone, imidazopyridine amide, beta-lactam.

Ongoing projects without a lead compound identified: http://www.newtbdrugs.org/pipeline/discovery

Ganfeborole (GSK-656*)

Telacebec* (Q203)
Pyrifazimine (TBI-166)
SQ-109*

www.newtbdrugs.org

Updated: November 2024

¹ New Molecular Entities not yet approved, being developed for TB or only conditionally approved for TB. Showing most advanced stage reported for each. Details for projects listed can be found at http://www.newtbdrugs.org/pipeline/clinical

All eyes on ... quabodepistat

Safety, pharmacokinetics, and early bactericidal activity of quabodepistat in combination with delamanid, bedaquiline, or both in adults with pulmonary tuberculosis: a randomised, active-controlled, open-label trial

Interpretation In this 14-day trial, quabodepistat plus delamanid plus bedaquiline, a novel three-drug combination, appeared to be safe, well tolerated, and provided robust early bactericidal activity in adults with drug-susceptible pulmonary tuberculosis. Further evaluation is warranted.

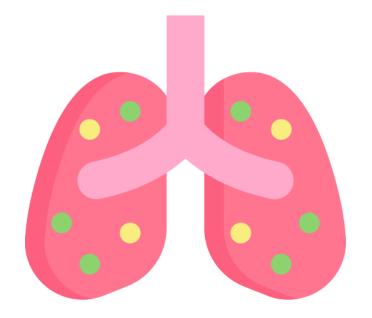
Conclusion et points d'action potentiels

• Facteurs de risque de DR-TB : pays à risque, antériorité de traitement TB (même bien pris !), contact MDR (transmission ++ de la résistance)

• BPaL(M) & cie: un changement de paradigme vers du « TOUT ORAL »

- De nouveaux challenges et points de vigilance majeurs:
- Résistance à la bédaquiline et pas qu'à la bédaquiline
- Problème d'implémentation...même en France
- Le grand défi de la XDR-TB : retour à l'ère pré antibiotique ?

TB résistantes : ressources pour se guider


 RCP nationale MDR-TB. Et dans votre pays ?

 Le « handbook » écrit avec le groupe de travail BETTER

• Les recommandations OMS mises à jour régulièrement

Merci de votre attention

Questions, idées de collaboration : yousra.kherabi@aphp.fr