CMV EN TRANSPLANTATION RÉNALE: TRAITEMENT PRÉVENTIF OU PRÉEMPTIF ET NOUVELLES ALTERNATIVES

Hannah Kaminski
STRUCTURE, TRANSMISSION

Herpesvirus
Double strain DNA
235 KB et 165 genes
180-200 nm
Icosahedral capsid
Transmission: exclusively inter-human
83% (95%UI: 78-88) in the general population, 86% (95%UI: 82-89) in donors of blood or organs, 86% (95%UI: 82-89) in women of childbearing age, and European region 66% (95%UI: 56-74).
POPULATIONS AT RISK OF CMV DISEASE

Solid-Organ Transplant Recipients
► 126,670 transplanted organs in 2015 (+5.8%) worldwide

Hematopoietic-Cell Transplant Recipients
► more than 50,000 transplants each year

AIDS Patients
► 36.7 million

Newborns (congenital infections)

www.transplant-observatory.org
www.wbmt.org
ANTI-CMV IMMUNE RESPONSE

Healthy individuals

Dissemination and CMV disease in immunocompromised individuals
DEFINITIONS OF CMV INFECTION

- **CMV antigenemia** is defined as the detection of CMV pp65 antigen in PBMC.

- **CMV DNAemia** is defined as the detection of CMV DNA in samples of plasma, serum, whole blood.

Ljungman, Clin Infect Dis. 2017;64(1):87-91 (CMV Drug Development Forum)
CMV QUANTITATIVE ACID NUCLEIC TESTING (QNAT)

- Must be calibrated with the **WHO International Standard** for **Human CMV**
- Reported as **IU/ml**, and termed as **DNAemia** rather than viremia.
- **Highly sensitive QNAT** : < 200 IU/ml (results given as \log_{10} IU/ml)
- Sensitivity: whole blood > plasma

- **In our center** : whole-blood : sensitivity for positivity : 250 IU/ml (WHO: since June 19, 2012)

Kotton, Transplantation. 2018 Jun; 102(6): 900-931
DEFINITIONS OF CMV INFECTION AND DISEASE

- **CMV infection** is defined as virus isolation or detection of viral proteins (antigens) or nucleic acid in any body fluid or tissue specimen, regardless of symptoms (i.e., CMV DNAemia ± symptoms)

- **CMV disease**: Evidence of CMV infection with attributable symptoms. CMV disease can be further categorized as:
 - Viral syndrome
 - Tissue-invasive disease

Ljungman, Clin Infect Dis. 2017;64(1):87-91 (CMV Drug Development Forum)
DEFINITIONS OF CMV DISEASE:
TISSUE INVASIVE (OR END-ORGAN) DISEASE

- CMV retinitis
- CMV cholecystitis
- CMV colitis
- CMV encephalitis
- CMV pneumonia
- CMV pancreatitis
RISK FACTORS OF CMV DISEASE

- **Risk of cytomegalovirus (CMV) infection** in solid organ transplant recipients is defined by:
 - Donor and recipient **CMV serostatus**
 - $D^+R^- > D^+R^+ > D^-R^+ > D^-R^-$

- **The transplanted organ**
 - **Lung** > others

- **Additional immunosuppressive therapy**
 - **Induction:** ATG > anti-IL2R in R+ patients but not in D+R-
 - *Webster, The Cochrane Database of Systematic Reviews, 2010*
 - Kaminski, J Inf Dis, 2019, 220(5):761-771

- **Rejection**
 - Santos, Transplantation. 2014;98(2):187-194
Risk of CMV infection in solid organ transplant recipients is defined by:

- donor and recipient **CMV serostatus**
- the **transplanted organ**
- and **additional immunosuppressive therapy**.

- These parameters are used to design the preventive strategy.
CMV PREVENTION: FOUR STRATEGIES

1. UNIVERSAL PROPHYLAXIS
2. PREEMPTIVE STRATEGY
3. HYBRID APPROACH
4.ailORi?
CMV PREVENTION: UNIVERSAL PROPHYLAXIS

No CMV QNAT

- **Universal prophylaxis**
- **VGCV 900 mg/day**
- **VGCV 900 mg/day**

D0 M3 M6 M12

- **Valganciclovir**: most commonly used
- **High-dose valacyclovir** (=valganciclovir)

Humar, Am J Transplant. 2010 May;10(5):1228-37

VGCV : Valganciclovir; GCV : Ganciclovir
CMV PREVENTION: PREEMPTIVE THERAPY

Preemptive strategy

CMV QNAT 1/week J0-M3, 1/month M3-M12

IV GCV / VGCV IF CMV PCR +

D0 M3 M6 M12

Kotton, Transplantation. 2013 Aug 27;96(4):333-60

VGCV : Valganciclovir; GCV : Ganciclovir
SUMMARY ON THE RATE OF INFECTION/DISEASE FOLLOWING STRATEGY

<table>
<thead>
<tr>
<th></th>
<th>No treatment</th>
<th>Universal prophylaxis</th>
<th>Preemptive strategy</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D+R-</td>
<td>D+R+</td>
<td>D-R+</td>
<td>(1, 2, 3, 5, 8)</td>
</tr>
<tr>
<td>Infection/Disease</td>
<td>68 %</td>
<td>63 %</td>
<td>50 %</td>
<td>(1, 2, 3, 5, 6, 9)</td>
</tr>
<tr>
<td>Universal prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td>(1, 6, 9)</td>
</tr>
<tr>
<td>Infection</td>
<td>3 month : 51 %</td>
<td>3 mois : 25 %</td>
<td>3 mois : 23 %</td>
<td>(1, 2, 3, 5, 6, 9)</td>
</tr>
<tr>
<td></td>
<td>6 month : 37 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>3 month : 37 %</td>
<td>3 mois : 7 %</td>
<td>3 mois : 2 %</td>
<td>(1, 6, 9)</td>
</tr>
<tr>
<td></td>
<td>6 month : 16 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preemptive strategy</td>
<td></td>
<td></td>
<td></td>
<td>(1, 2, 3, 5, 8)</td>
</tr>
<tr>
<td>Infection</td>
<td>68 %</td>
<td>63 %</td>
<td>50 %</td>
<td>(1, 2, 3, 5, 8)</td>
</tr>
<tr>
<td>Disease</td>
<td>20 %</td>
<td>5 %</td>
<td>2 %</td>
<td>(1, 3, 6, 7, 8)</td>
</tr>
</tbody>
</table>

5. Van der Beek, Transplantation. 2010, 3:320-6
6. Couzi, Am J Transplant. 2012, 1:202-
UNIVERSAL PROPHYLAXIS VERSUS PREEMPTIVE THERAPY

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>Pre-emptive therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early CMV DNAemia/infection</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Prevention of CMV disease</td>
<td>Good efficacy</td>
<td>Good efficacy</td>
</tr>
<tr>
<td>Late CMV (infection/disease)</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>Resistance</td>
<td>Uncommon</td>
<td>Uncommon (with weekly testing)</td>
</tr>
<tr>
<td>Ease of implementation</td>
<td>Relatively easy</td>
<td>More difficult</td>
</tr>
<tr>
<td>Prevention of other herpes viruses</td>
<td>Prevents HSV, VZV</td>
<td>Does not prevent</td>
</tr>
<tr>
<td>Other opportunistic infections</td>
<td>May prevent</td>
<td>Unknown</td>
</tr>
<tr>
<td>Costs</td>
<td>Drug costs</td>
<td>Monitoring costs</td>
</tr>
<tr>
<td>Safety</td>
<td>Drug side effects</td>
<td>Less drug toxicity</td>
</tr>
<tr>
<td>Prevention of rejection</td>
<td>May prevent</td>
<td>Unknown</td>
</tr>
<tr>
<td>Graft survival</td>
<td>May improve</td>
<td>May improve</td>
</tr>
</tbody>
</table>

CMV PREVENTION: FOUR STRATEGIES

1. UNIVERSAL PROPHYLAXIS
2. PREEMPTIVE STRATEGY
3. HYBRID APPROACH
4. mTORi?
SURVEILLANCE AFTER PROPHYLAXIS (OR “HYBRID APPROACH”)

Surveillance after prophylaxis

VGCV 900 mg/day

CMV QNAT

D0 M3 M6 M12

VGCV : Valganciclovir; GCV : Ganciclovir
SURVEILLANCE AFTER PROPHYLAXIS
(OR “HYBRID APPROACH”)

- No RCT to support the use of a surveillance after prophylaxis approach

- Use of surveillance after prophylaxis may be considered in patients at increased risk for post-prophylaxis CMV disease. The value is probably greatest if done weekly for 8-12 weeks.

Kotton, Transplantation. 2018 Jun;102(6):900-931
RCT : randomized control trial
CURRENT EPIDEMIOLOGY OF CMV INFECTION IN KIDNEY TRANSPLANT PATIENTS

CMV Mutant: 6%

Clinical relapse: 20.7%

Persistence: 28.5%

CMV requiring treatment: 17.5%

N= 1207 /2004 -2015/at least two years of follow-up. Personal unpublished data
P.Pfimmann-B.Taton-H.Kaminski

313 events among 1792 KTR 2004-2017
Personal unpublished data
M.Acquier-H.Kaminski-L.Couzi
CMV PREVENTION: COULD IMMUNOMONITORING HELP?

1. UNIVERSAL PROPHYLAXIS
2. PREEMPTIVE STRATEGY
3. HYBRID APPROACH
4. mTORi?
CELLULAR IMMUNITY TO PREDICT THE RISK OF CMV INFECTION IN R+ KIDNEY TRANSPLANTATION

CMV-specific T cell response

No CMV-specific T cell response

15-day post-transplant

CMV PREVENTION: FOUR STRATEGIES

1. UNIVERSAL PROPHYLAXIS
2. PREEMPTIVE STRATEGY
3. HYBRID APPROACH
4. mTORi?
First randomised, multicenter, open-label, parallel group study in CMV R+ kidney transplant recipients, comparing everolimus versus mycophenolic acid, with CMV DNAemia as a primary end-point.

First draft : 2012...
Main inclusion criteria:
- CMV R+ recipients
- No DSA

Basiliximab + Ciclosporin and Steroids

EVEROLIMUS

<table>
<thead>
<tr>
<th>CsA C₀: 100–200 ng/mL</th>
<th>CsA C₀: 75–150 ng/mL</th>
<th>CsA C₀: 50–100 ng/mL</th>
<th>CsA C₀: 25–50 ng/mL</th>
</tr>
</thead>
</table>

MYCOPHENOLIC ACID

<table>
<thead>
<tr>
<th>CsA C₀: 150–220 ng/mL</th>
<th>CsA C₀: 100–150 ng/mL</th>
</tr>
</thead>
</table>

Time post-Tx:
- D0
- M2
- M3
- M4
- M6
- M12

Primary endpoint

End of study

Inclusion: May 2014 - October 2017

Preemptive therapy for CMV (n=186)
PRIMARY ENDPOINT AT 6 MONTHS POST-TRANSPLANTATION

Kaminski et al, in prep.
7.4% of patients with ONGOING EVR undergo CMV DNAemia requiring treatment

Kaminski et al, in prep.
CMV PREVENTION: ALTERNATIVE DRUGS

1. UNIVERSAL PROPHYLAXIS
2. PREEMPTIVE STRATEGY
3. HYBRID APPROACH
4. mTORi?
LETTERMOVIR FOR CMV PROPHYLAXIS IN HEMATOPOIETIC-CELL TRANSPLANTATION (PHASE II)

n=133

Failure of prophylaxis against CMV infection
- Virologic failure (detectable CMV antigen/DNA)
- Any other reason

LETTERMOVIR FOR CMV PROPHYLAXIS IN HEMATOPOIETIC-CELL TRANSPLANTATION (PHASE III)

Clinically significant infection

\[P < 0.001 \text{ by log-rank test} \]

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>170</th>
<th>169</th>
<th>135</th>
<th>96</th>
<th>85</th>
<th>77</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letermovir</td>
<td>325</td>
<td>320</td>
<td>299</td>
<td>279</td>
<td>270</td>
<td>254</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>

\[n = 565 \text{ but } 495 \]

With undetectable CMV DNAemia at day 9

PHASE III in Kidney transplant recipients (MK-8228-002)

Sample size: 600 patients

Recruiting D+R-

ClinicalTrials.gov NCT03443869
MARIBAVIR: PROPHYLAXIS IN LIVER TRANSPLANTATION

- Oral maribavir (n= 147, 100 mg twice daily) – 14 days
- Vs Oral ganciclovir (n=156, 1 g three times daily) - 14 days
- D+R-

MARIBAVIR FOR PREEMPTIVE TREATMENT OF CYTOMEGALOVIRUS REACTIVATION (PHASE 2 STUDY)

MARIBAVIR FOR PREEMPTIVE TREATMENT OF CYTOMEGALOVIRUS REACTIVATION (PHASE 2 STUDY)

UPDATE OF CMV GUIDELINES 2018

<table>
<thead>
<tr>
<th>Organ</th>
<th>Serostatus</th>
<th>Risk Level</th>
<th>RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>D-/R-</td>
<td>Low</td>
<td>Monitoring for clinical symptoms; consider antiviral prophylaxis against other herpes infections</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+/R-</td>
<td>High</td>
<td>6 months of GCV/VGCV OR Preemptive therapy</td>
<td></td>
</tr>
<tr>
<td>R+</td>
<td>Intermediate</td>
<td>3 months of VGCV OR Preemptive therapy</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>D+R-</td>
<td>High</td>
<td>3 -6 months of VGCV OR Preemptive therapy</td>
</tr>
<tr>
<td></td>
<td>R+</td>
<td>Intermediate</td>
<td>3 months of VGCV (VGCV not FDA approved in liver) OR Preemptive therapy</td>
</tr>
<tr>
<td>Pancreas</td>
<td>D+R-</td>
<td>High</td>
<td>3 -6 months of VGCV</td>
</tr>
<tr>
<td></td>
<td>R+</td>
<td>Intermediate</td>
<td>3 months of VGCV OR Preemptive therapy</td>
</tr>
<tr>
<td>Islet</td>
<td>D+R-</td>
<td>Intermediate</td>
<td>3 months of VGCV</td>
</tr>
<tr>
<td></td>
<td>R+</td>
<td>Intermediate</td>
<td>3 months of VGCV OR Preemptive therapy</td>
</tr>
</tbody>
</table>

Kotton, Transplantation. 2018 Jun;102(6):900-931
UPDATE OF CMV GUIDELINES 2018

<table>
<thead>
<tr>
<th>Organ</th>
<th>Serostatus</th>
<th>Risk Level</th>
<th>RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>D+/R-</td>
<td>High</td>
<td>3-6 months of GCV/VGCV</td>
</tr>
<tr>
<td></td>
<td>R+</td>
<td>Intermediate</td>
<td>3 months of GCV/VGCV OR Preemptive therapy</td>
</tr>
<tr>
<td>Lung</td>
<td>D+/R-</td>
<td>High</td>
<td>6-12 months of GCV/VGCV</td>
</tr>
<tr>
<td></td>
<td>R+</td>
<td>Intermediate</td>
<td>Minimum 6 months of GCV/VGCV</td>
</tr>
<tr>
<td>Intestinal, composite tissue</td>
<td>D+/R-</td>
<td>High</td>
<td>Minimum 6 months GCV/VGCV + surveillance after prophylaxis</td>
</tr>
</tbody>
</table>

CMV Ig is not generally recommended for use, although there may be specific circumstances, especially in thoracic organs, when used in combination with antivirals, in which some benefit has been demonstrated.

Kotton, Transplantation. **2018** Jun;102(6):900-931
The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation

THANK YOU FOR YOUR ATTENTION!
MARIBAVIR: INHIBIT UL97

Activities of the UL97 kinase:
- stimulate the cell cycle to support viral DNA synthesis
- enhance the expression of viral genes
- promote virion morphogenesis
- facilitate the egress of mature capsids from the nucleus

Frange, Med Mal Infect. 2018 Dec;48(8):495-502
LETTERMOVIR (AIC246): IMPACT ON HERPESVIRUS DNA REPLICATION

Formation of long, branched, head-to-tail DNA concatemers

\[p_{ac} \] indicates the terminase cleavage site at the genome terminus

The HCMV terminase complex is responsible for the cleavage of concatemeric progeny DNA to unit-length genomes and the packaging of those genomes into preformed procapsids.

Essential for virus replication