### Sepsis/Choc septique Cas clinique interactif

**Enseignement national DES Maladies Infectieuses** 

28 mars 2023

**P.E. Charles** 

Médecine Intensive Réanimation – CHU DIJON

pierre-emmanuel.charles@chu-dijon.fr

# M. M., 73 ans, se présente aux urgences pour difficultés respiratoires

- Antécédents:
  - Diabète de type 2
  - HTA
  - Insuffisance rénale chronique (néphroangiosclérose: créatininémie habituelle à 150 umol/L)

#### • Traitements habituels:

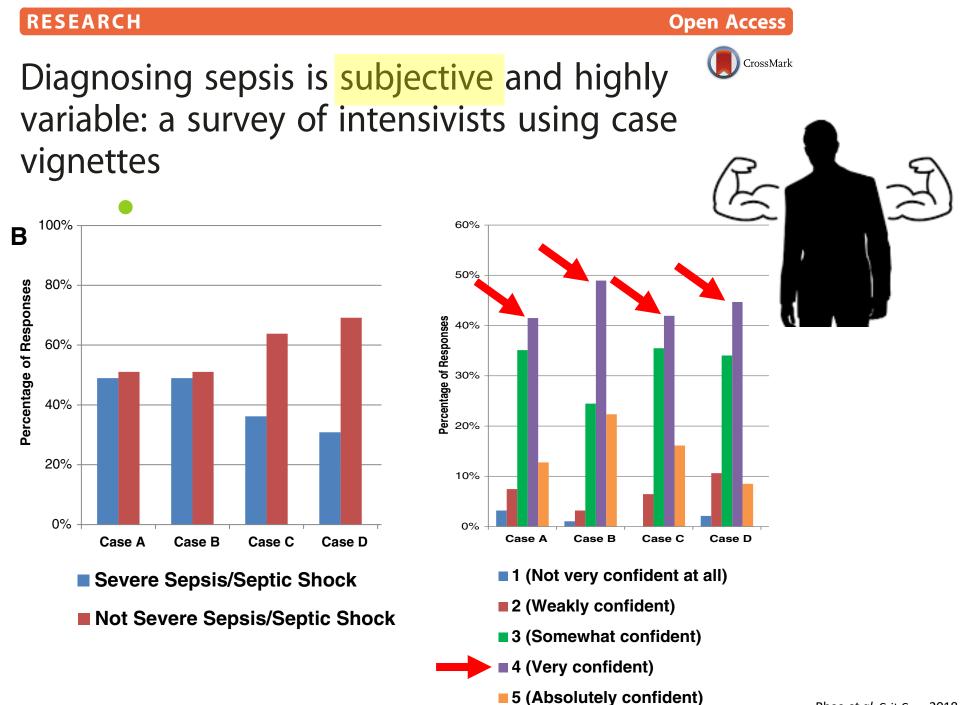
- Amlodipine
- Furosemide
- Repaglinide

### L'histoire commence 5 jours plus tôt...

- Dysurie, constipation inhabituelle, vomissements, « mal au dos »...
- Apparition secondaire d'un essoufflement
- Température non prise
- A la prise en charge au SAU:
  - Fc = 100 bpm
  - TA = 120/67 mmHg
  - FR = 33/min
  - T°=38.6°C
  - SpO2 = 93% sous 2 L/min aux lunettes

### Examen clinique initial...

- CGS 15
- Dyspnée et polypnée: ne finit pas ses phrases
- Pas de marbrure, allongement du temps de recoloration cutané
- Abdomen souple et sensible
- Globe vésical (bladderScan: 700 mL)
- Champs pulmonaires libres




# Q1: comment décrire et prendre en charge le patient selon les recommandations ?

- A. Il existe un sepsis
- B. Il existe un syndrome de réponse inflammatoire systémique donc un sepsis
- C. Le patient présente une suspicion d'infection sans signe de gravité
- D. Un remplissage vasculaire doit être débuté sans délai car le patient est tachycarde
- E. Une antibiothérapie doit être débutée sans délai après prélèvement des hémocultures et d'un ECBU

# Q1: comment décrire et prendre en charge le patient selon les recommandations ?

- A. Il existe un sepsis
- B. Il existe un syndrome de réponse inflammatoire systémique donc un sepsis
- C. Le patient présente une suspicion d'infection sans signe de gravité
- D. Un remplissage vasculaire doit être débuté sans délai car le patient est tachycarde
- E. Une antibiothérapie doit être débutée sans délai après prélèvement des hémocultures et d'un ECBU

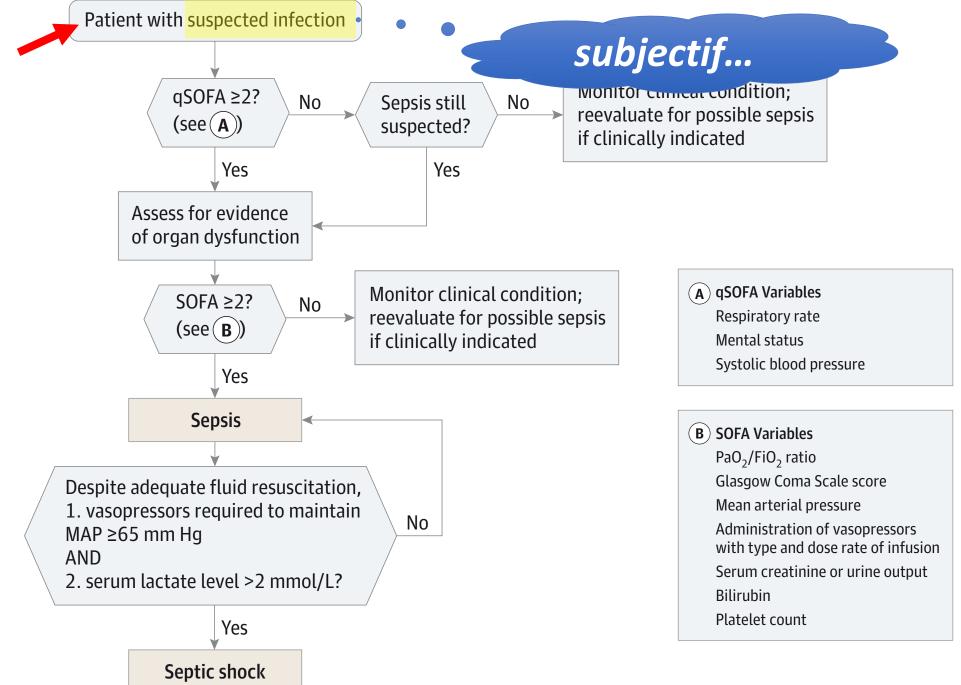


Rhee *et al*. Crit Care 2018

Special Communication | CARING FOR THE CRITICALLY ILL PATIENT

The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

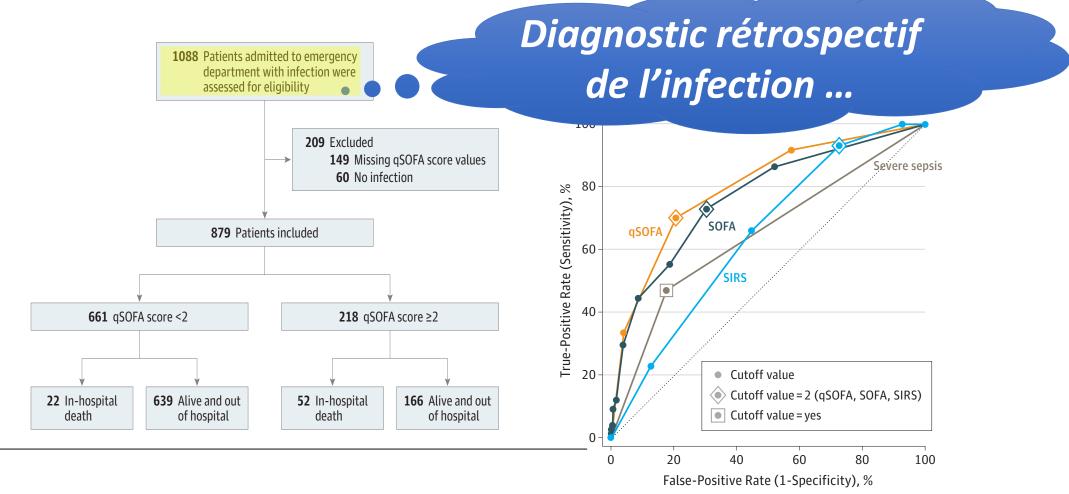



Box 4. qSOFA (Quick SOFA) Criteria

Respiratory rate  $\geq$  22/min

Altered mentation

Systolic blood pressure  $\leq 100 \text{ mm Hg}$ 






Singer M et al. JAMA 2016

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

**Prognostic Accuracy** of Sepsis-3 Criteria for In-Hospital Mortality Among Patients With Suspected Infection Presenting to the Emergency Department



Freund et al. JAMA 2017

A Comparison of the Quick-SOFA and **≋CHEST**<sup>™</sup> k Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality A Systematic Review and Meta-Analysis k Std. Mean Difference IV, Random, 95% CI Sensibilité qSOFA... Std. Mean Difference IV, Random, 95% CI -2 Favors qSOFA Favors SIRS Sepsis diagnosis

#### Recommendation

0.1

-0.05

Favors SIRS

 We recommend against using qSOFA compared with SIRS, NEWS, or MEWS as a single screening tool for sepsis or septic shock.

0.1

0.05

Favors qSofa

Strong recommendation, moderate-quality evidence.

mortality

### Le premier bilan biologique vous parvient...

- Hb = 13.4 g/dL
- GB = 1600/mm3
  - PNN = 780/mm<sup>3</sup>
  - $PNB = 0 / mm^3$
  - $PNE = 0 / mm^3$
  - Lc = 360/mm<sup>3</sup>
  - Monocytes = 100/mm<sup>3</sup>
- Plaquettes = 133,000/mm<sup>3</sup>

Na = 139 Meq/L

- K = 4.3 Meq/L
- CI = 104 Meq/L
- HCO3 = 18 Meq/L
- Glycémie = 12.5 mmol/L
- Urée = 27 mmol/L

Créatininémie = 403 micromol/L

## Des gaz du sang et une RP sont également réalisés...

pH= 7.44 PaO2 = 61 mmHg PaCO2 = 23 mmHg HCO3 = 17 Meq/L SpO2 = 92%



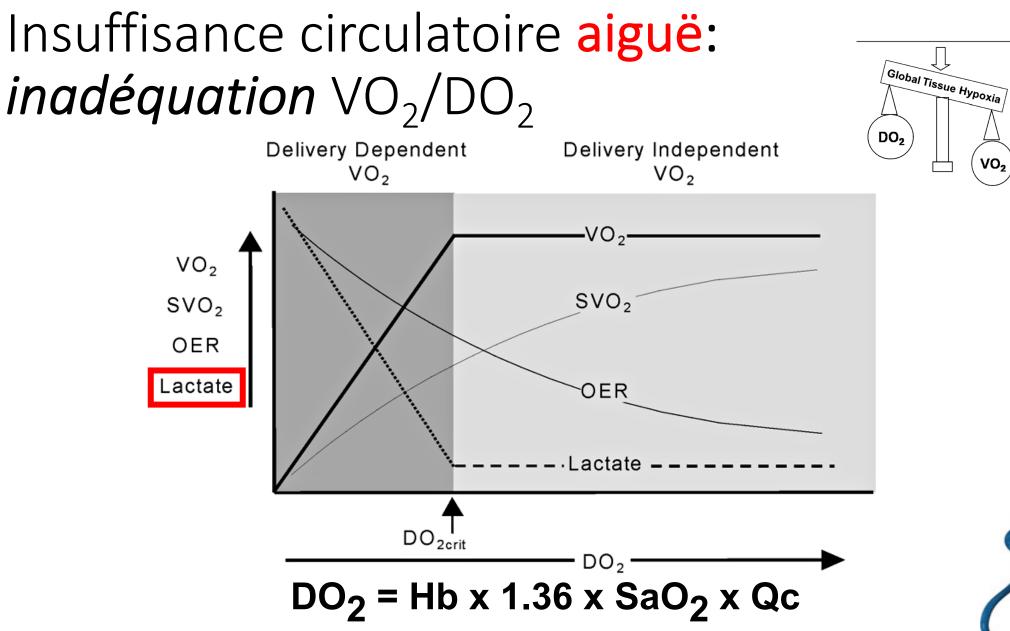
### Ainsi qu'un scanner thoracique...

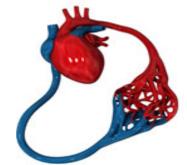


Q2. Avec ces nouveaux éléments, allez vous revoir votre jugement concernant la gravité du patient?

- A. Oui car il existe des critères de gravité selon vous
- B. Oui car il existe des critères de sepsis selon les recommandations
- C. Non car il n'existe pas d'élément de gravité selon vous
- D. Oui car il existe une neutropénie
- E. Non car l'insuffisance rénale est fonctionnelle

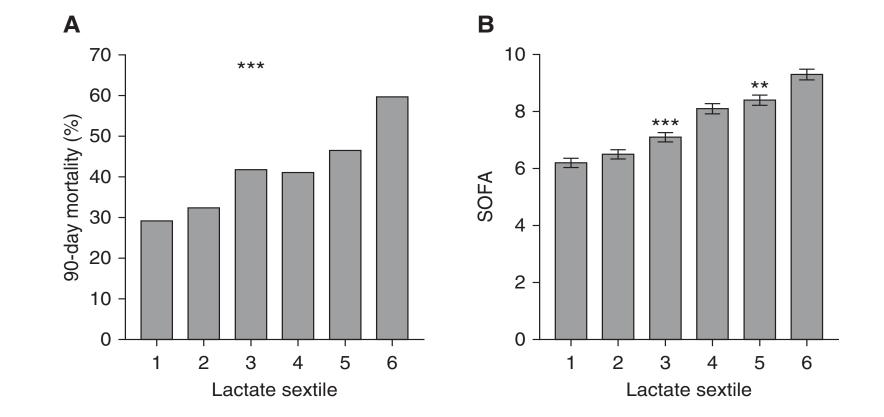
Q2. Avec ces nouveaux éléments, allez vous revoir votre jugement concernant la gravité du patient?


- A. Oui car il existe des critères de gravité selon vous
- B. Oui car il existe des critères de sepsis selon les recommandations
- C. Non car il n'existe pas d'élément de gravité selon vous
- D. Oui car il existe une neutropénie
- E. Non car l'insuffisance rénale est fonctionnelle


### Score SOFA

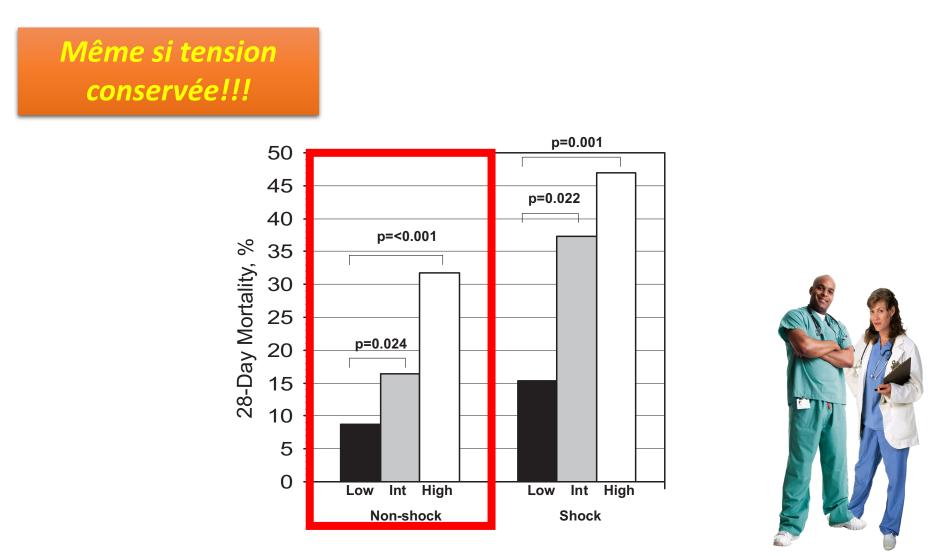
| System                                              | Score         |                   |                                                      |                                                                                  |                                                                            |  |  |
|-----------------------------------------------------|---------------|-------------------|------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
|                                                     | 0             | 1                 | 2                                                    | 3                                                                                | 4                                                                          |  |  |
| Respiration                                         |               |                   |                                                      |                                                                                  |                                                                            |  |  |
| Pao <sub>2</sub> /Fio <sub>2</sub> , mm Hg<br>(kPa) | ≥400 (53.3)   | <400 (53.3)       | <300 (40)                                            | <200 (26.7) with<br>respiratory support                                          | <100 (13.3) with<br>respiratory support                                    |  |  |
| Coagulation                                         |               |                   |                                                      |                                                                                  |                                                                            |  |  |
| Platelets, ×10 <sup>3</sup> /µL                     | ≥150          | <150              | <100                                                 | <50                                                                              | <20                                                                        |  |  |
| Liver                                               |               |                   |                                                      |                                                                                  |                                                                            |  |  |
| Bilirubin, mg/dL<br>(µmol/L)                        | <1.2 (20)     | 1.2-1.9 (20-32)   | 2.0-5.9 (33-101)                                     | 6.0-11.9 (102-204)                                                               | >12.0 (204)                                                                |  |  |
| Cardiovascular                                      | MAP ≥70 mm Hg | MAP <70 mm Hg     | Dopamine <5 or<br>dobutamine (any dose) <sup>b</sup> | Dopamine 5.1-15<br>or epinephrine $\leq 0.1$<br>or norepinephrine $\leq 0.1^{b}$ | Dopamine >15 or<br>epinephrine >0.1<br>or norepinephrine >0.1 <sup>b</sup> |  |  |
| Central nervous system                              |               |                   |                                                      |                                                                                  |                                                                            |  |  |
| Glasgow Coma Scale<br>score <sup>c</sup>            | 15            | 13-14             | 10-12                                                | 6-9                                                                              | <6                                                                         |  |  |
| Renal                                               |               |                   |                                                      |                                                                                  |                                                                            |  |  |
| Creatinine, mg/dL<br>(µmol/L)                       | <1.2 (110)    | 1.2-1.9 (110-170) | 2.0-3.4 (171-299)                                    | 3.5-4.9 (300-440)                                                                | >5.0 (440)                                                                 |  |  |
| Urine output, mL/d                                  |               |                   |                                                      | <500                                                                             | <200                                                                       |  |  |

Q3. Vous considérez désormais que le patient présente un sepsis. Qu'allez vous doser en urgence? (QROC) Q3. Vous considérez désormais que le patient présente un sepsis. Qu'allez vous doser en urgence? (QROC)

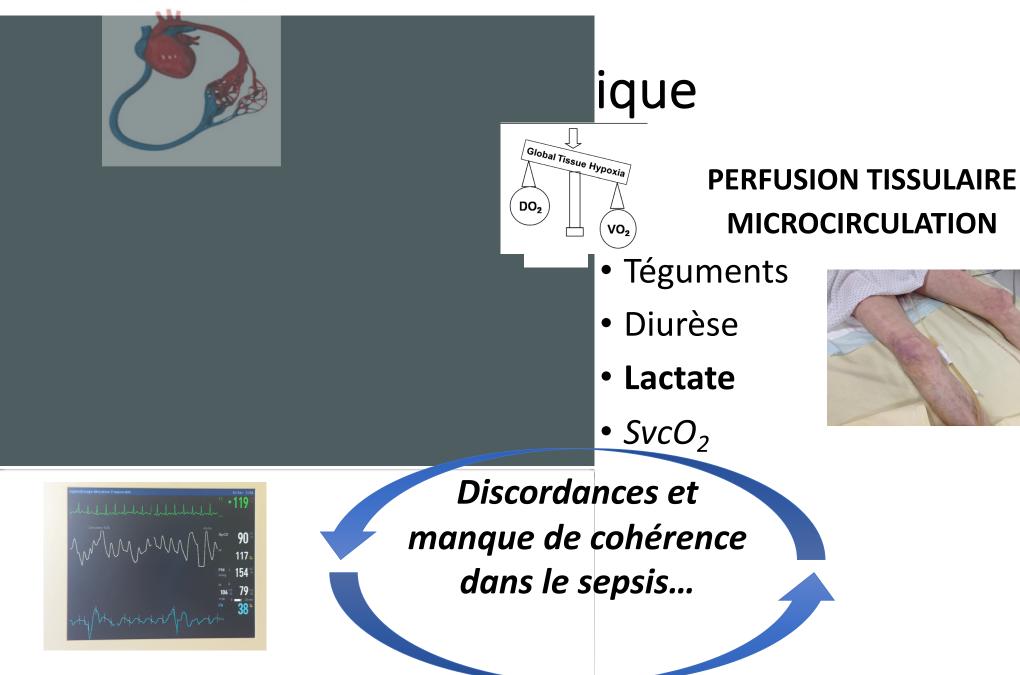

• Lactate (artériel ou veineux)



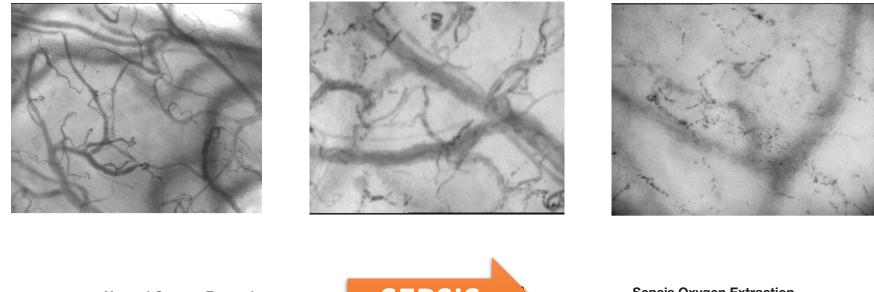


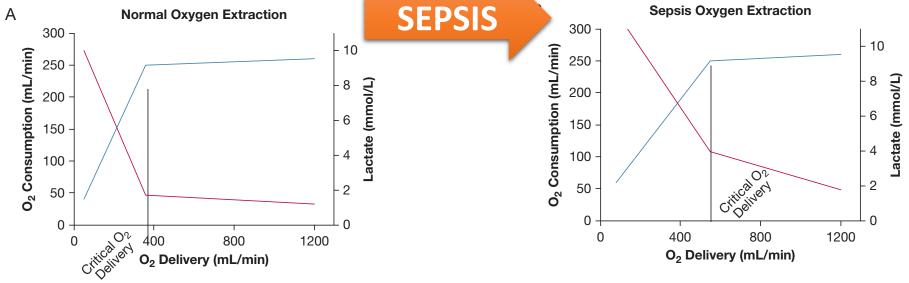

VO<sub>2</sub>

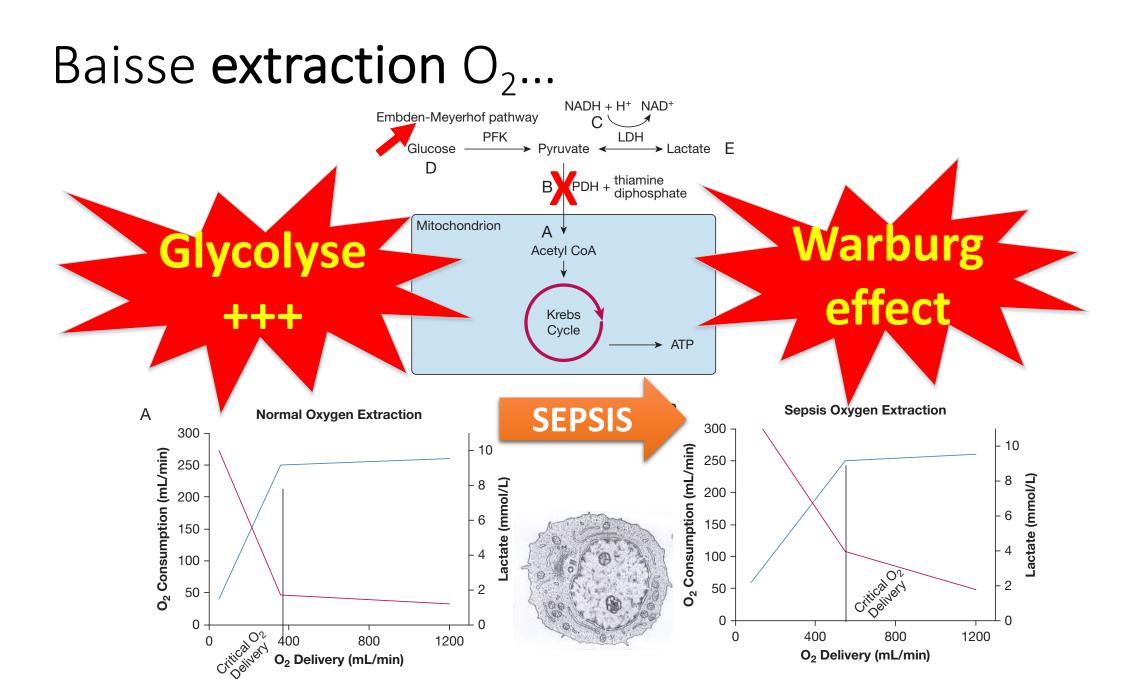
#### Hyperlactatémie et sévérité clinique




Gattinoni et al. Am J Respir Crit Care Med 2019


### Lactate elevation ...risk stratification





Mikkelsen M et al. Crit Care Med 2009



#### Baisse extraction O<sub>2</sub>...







Q4. La lactatémie est à 5.5 mmol/L. Quelle(s) doit(vent) désormais être votre(vos) priorité(s) dans l'heure?

- A. Drainage des urines
- B. Antibiothérapie adaptée
- C. Remplissage vasculaire par soluté colloïde
- D. Remplissage vasculaire par soluté cristalloïde
- E. Mise sous noradrénaline

Q4. La lactatémie est à 5.5 mmol/L. Quelle(s) doit(vent) désormais être votre(vos) priorité(s) dans l'heure?

- A. Drainage des urines
- **B.** Antibiothérapie adaptée
- C. Remplissage vasculaire par solutés colloïdes
- D. Remplissage vasculaire par solutés cristalloïdes
- E. Mise sous noradrénaline

#### **SPECIAL EDITORIAL**

## The Surviving Sepsis Campaign Bundle: 2018 update

- Measure lactate level. Remeasure if initial lactate is >2 mmol/L.
- Obtain blood cultures prior to administration of antibiotics.
- Administer broad-spectrum antibiotics.
- Begin rapid administration of 30ml/kg crystalloid for hypotension or lactate ≥4 mmol/L.
- Apply vasopressors if patient is hypotensive during or after fluid resuscitation to maintain MAP ≥65 mm Hg.

\*"Time zero" or "time of presentation" is defined as the time of triage in the Emergency Department or,

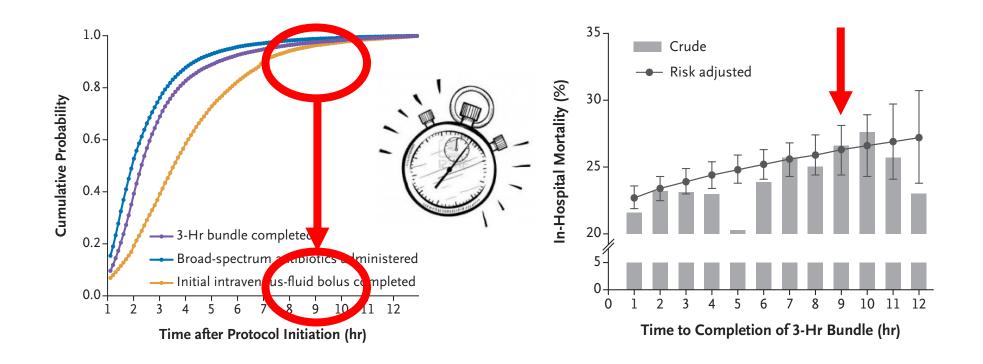
*if presenting from another care venue, from the earliest chart anr sepsis (formerly severe sepsis) or septic shock ascerta.* 

Fig. 1 Hour-1 Surviving Sepsis Campaign Bundle of Care



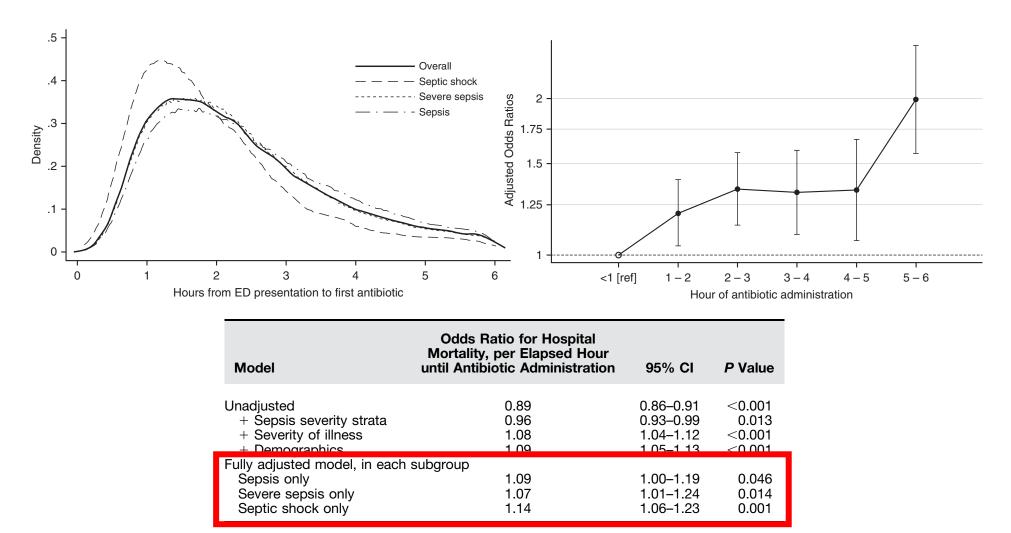
CrossMark

elements of


Dans

l'heure!!!

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Time to Treatment and Mortality during Mandated Emergency Care for Sepsis 3-Hrs Bundle: - Broad spectrum ATB - Blood culture collection - Lactate measurement

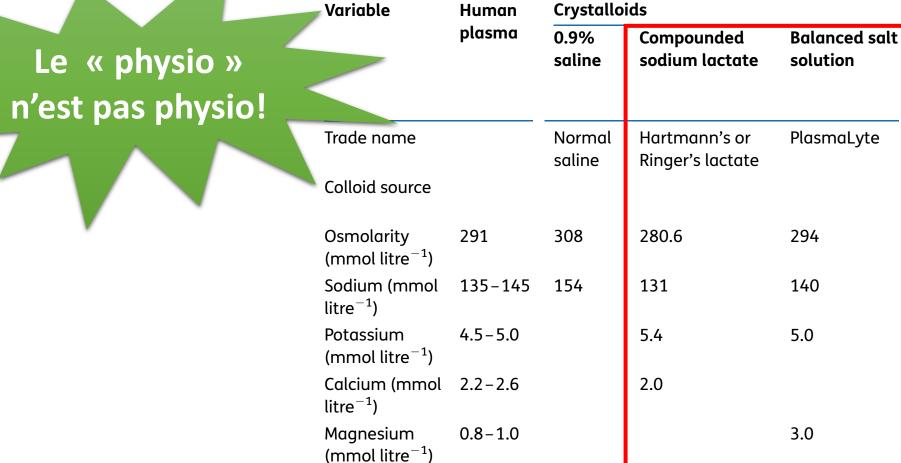


#### **ORIGINAL ARTICLE**

#### The **Timing of Early Antibiotics** and Hospital Mortality in Sepsis



Liu VX et al Am J Respir Crit Care Med 2017

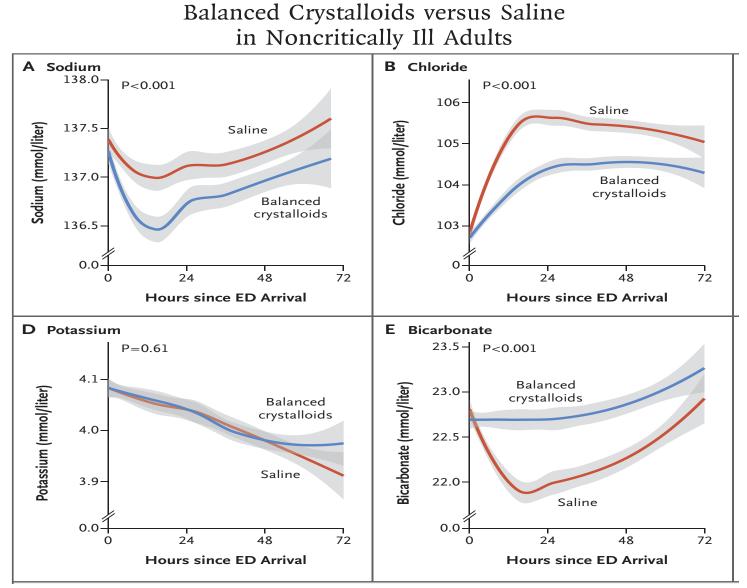

# Q5. Le(s)quel(s) des solutés suivants allez vous utiliser du coup?

- A. Sérum physiologique
- B. Sérum hypersalé
- C. Ringer lactate
- D. Isofundine<sup>®</sup>
- E. Glucosé à 5%

# Q5. Le(s)quel(s) des solutés suivants allez vous utiliser du coup?

- A. Sérum physiologique
- B. Sérum hypersalé
- C. Ringer lactate
- D. Isofundine®
- E. Glucosé à 5%

### Quel soluté cristalloïde?




Chloride (mmol 94-111 154 litre<sup>-1</sup>)

111

98

ORIGINAL ARTICLE



Self WH et al New Eng J Med 2018

#### ORIGINAL ARTICLE

#### **Balanced Crystalloids versus Saline in Sepsis**

A Secondary Analysis of the SMART Clinical Trial

#### Clearance lactate plus rapide

Days since ICU admission

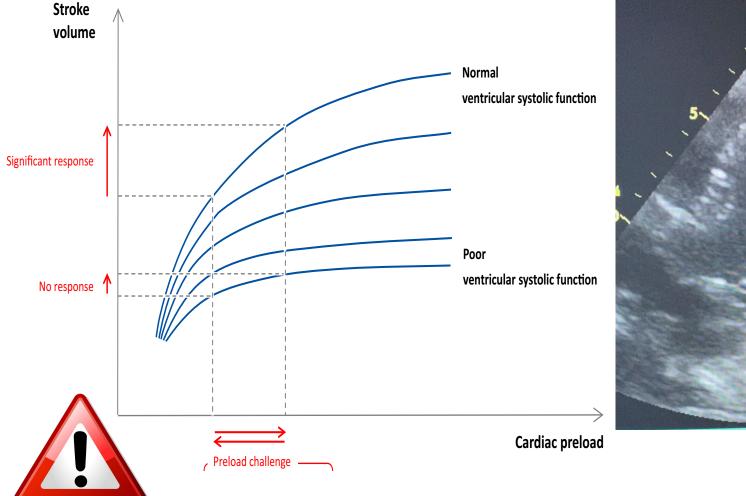
| Outcome*                                                                                                        | n                           | Balanced<br>Crystalloids ( <i>n</i> = 824)                                                               | Saline ( <i>n</i> = 817)                     | Adjusted OR (95% CI) <sup>†</sup> |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|
| Primary outcome<br>30-d in-hospital mortality, <i>n</i> (%)                                                     | 1,641                       | 217 (26.3)                                                                                               | 255 (31.2)                                   | 0.74 (0.59 to 0.93)               |
| Additional renal outcomes <sup>§</sup><br>Major adverse kidney event<br>within 30 d, <i>n</i> (%) <sup>  </sup> | 1,641                       | 292 (35.4)                                                                                               | 328 (40.1)                                   | 0.78 (0.63 to 0.97)               |
| using crystalloids                                                                                              | as first-line               | tic shock, we <b>recommend</b><br>fluid for resuscitation.                                               | 4<br>(T)Journ                                | Saline                            |
| 33. For adults with s                                                                                           | epsis or se<br>crystalloids | te quality of evidence.<br>otic shock, we <b>suggest</b><br>instead of normal saline<br>ity of evidence. | 2 Lactate (mol/l)<br>2 Main effect P value = | Balanced                          |
| Evans L <i>et al</i> . Crit Care Med 2021                                                                       |                             |                                                                                                          | P value for interaction                      |                                   |

Brown et al Am J Respir Crit Care Med 2020

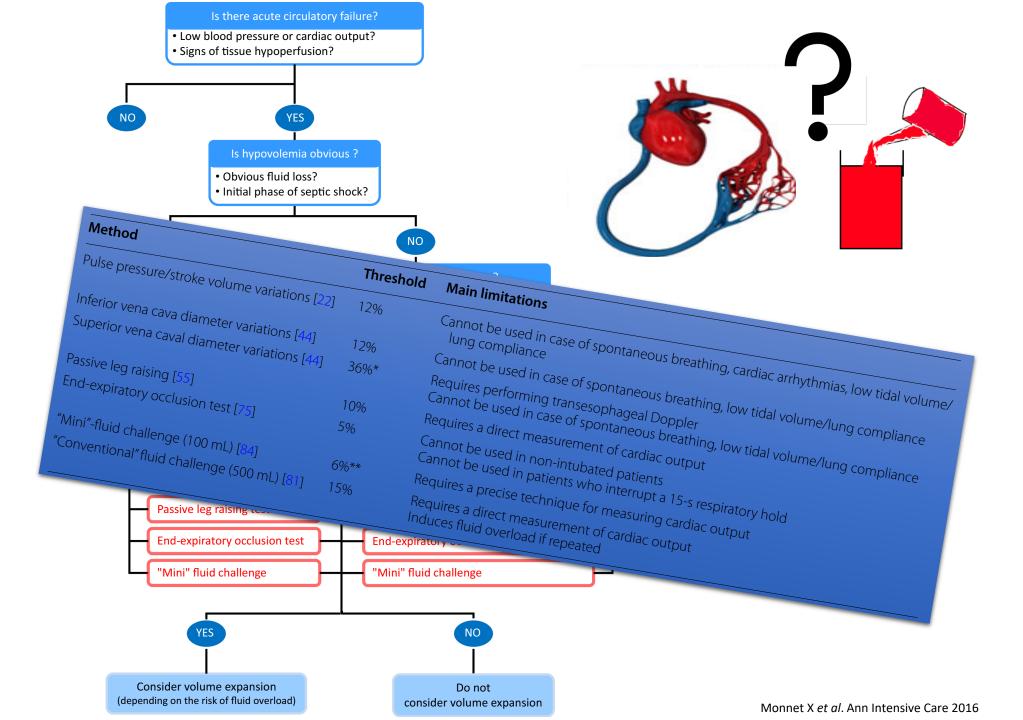
## Vous prenez le temps de réexaminer le patient...





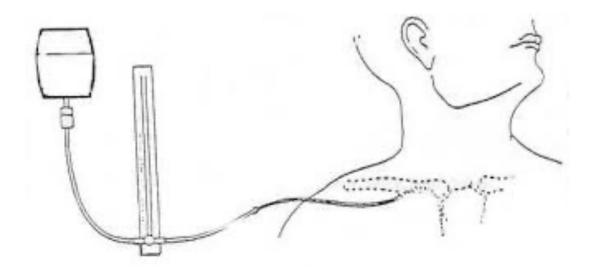

Q6. Quel volume de remplissage allez vous administrer durant les premières heures?

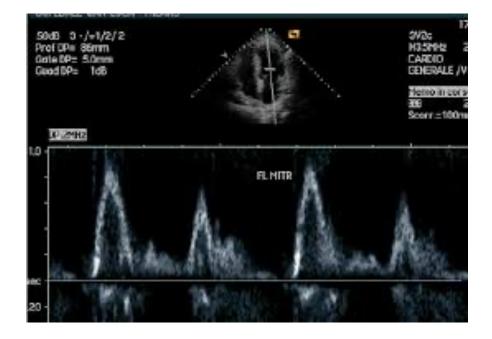
- A. 30 mL/kg de solutés puis arrêt
- B. Selon l'évolution du lactate
- C. Selon des critères de précharge-dépendance
- D. Selon l'augmentation de la pression artérielle
- E. Selon l'évolution du temps de recoloration cutané


Q6. Quel volume de remplissage allez vous administrer durant les premières heures?

- A. 30 mL/kg de solutés puis arrêt
- B. Selon l'évolution du lactate
- C. Selon des critères de précharge-dépendance
- D. Selon l'augmentation de la pression artérielle
- E. Selon l'évolution du temps de recoloration cutané

# Amélioration **DO**<sub>2</sub>: *Précharge*-dépendance?



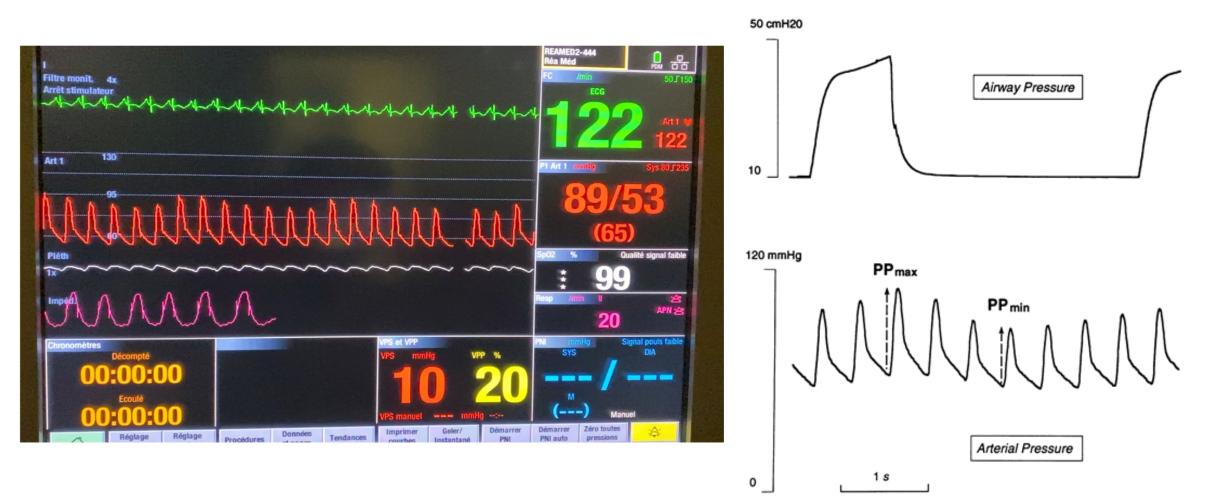






## Indicateurs statiques



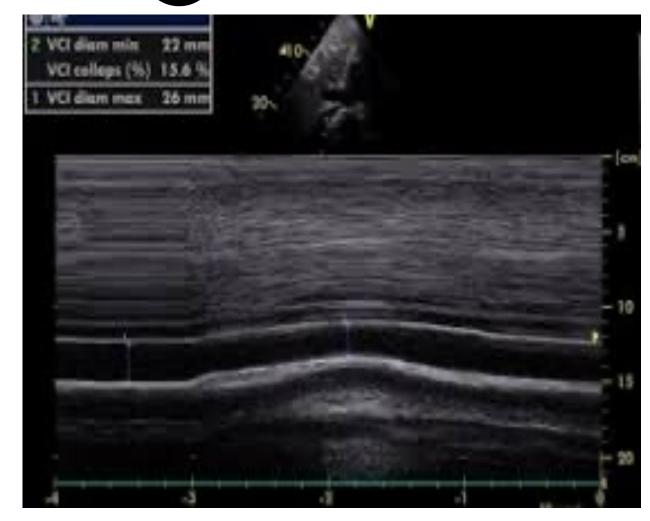





Pression Veineuse Centrale

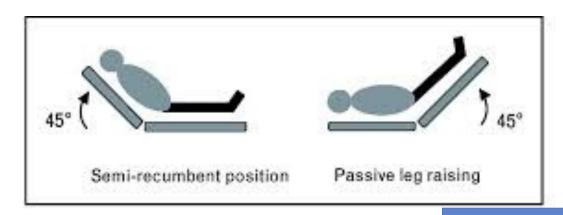
Pressions de remplissage

# Indicateurs dynamiques





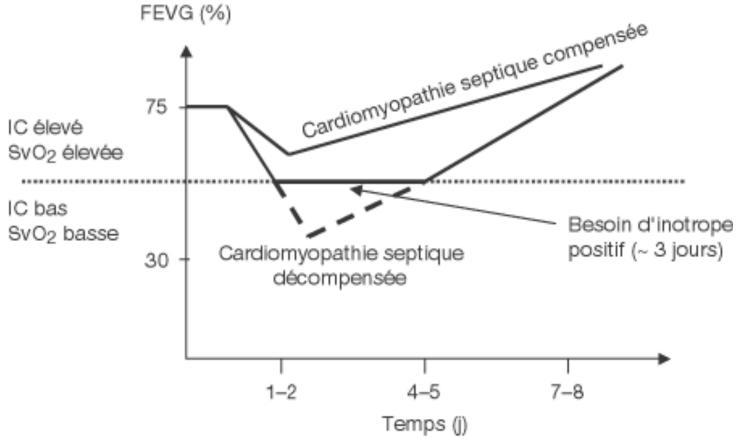

Variations Pression Pulsée

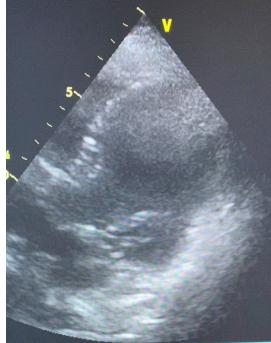

# Indicateurs dynamiques

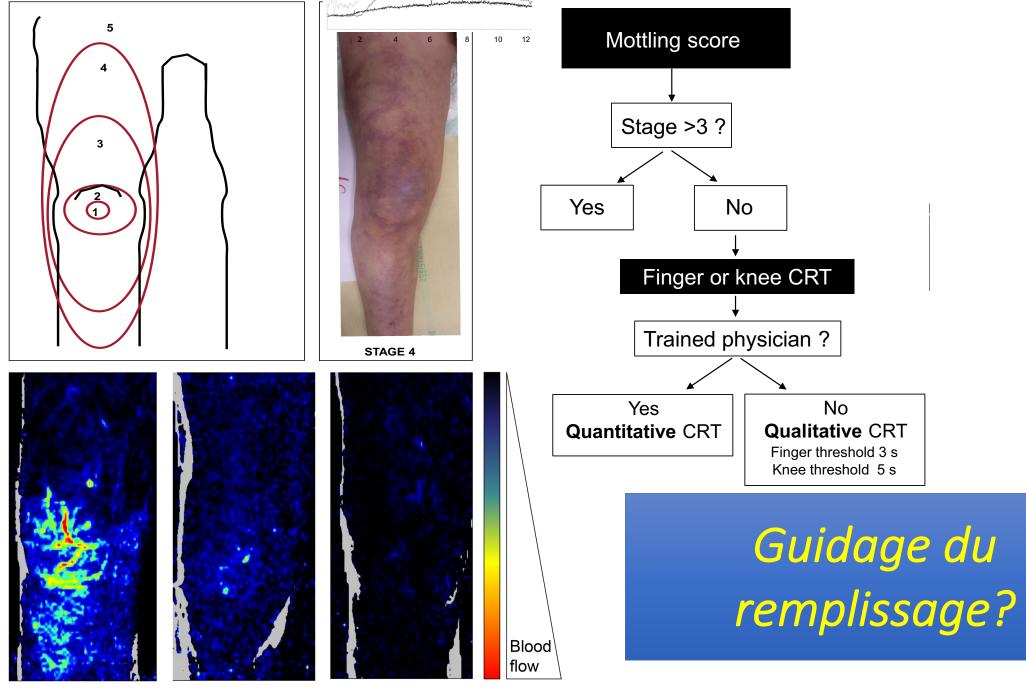
10



Variations Respiratoires VCI (ou VCS)


# Prédire la précharge-dépendance: levé de jambes passif



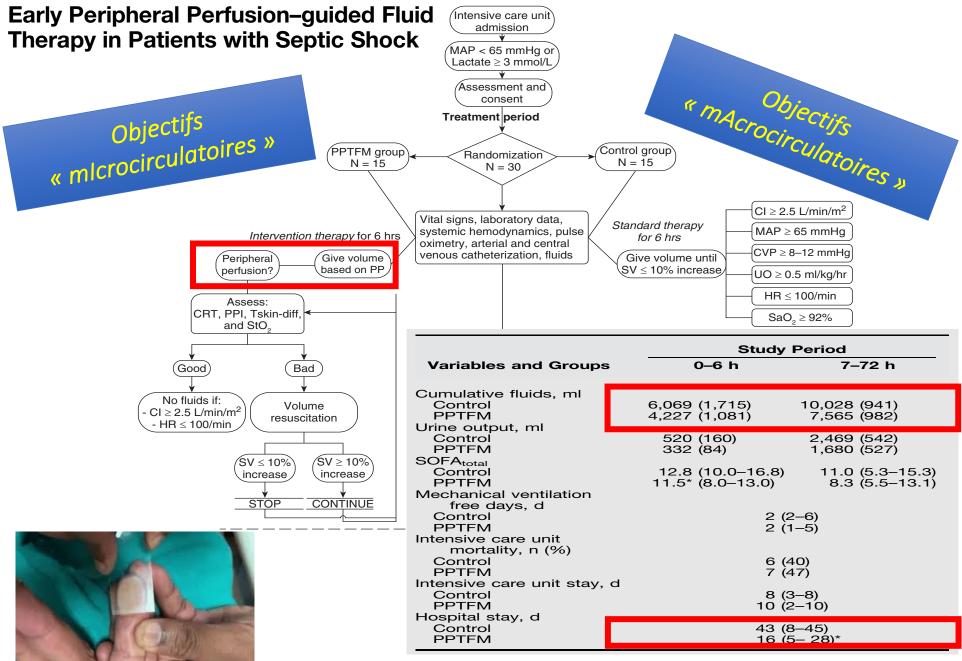

« auto-remplissage » # 250 mL

# Défaillance myocardique *au cours du choc septique*








Stage 0

Stage 3

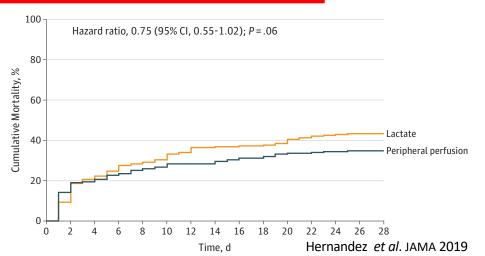
Stage 5

Ait-Houfella X et al. Ann Intensive Care 2019

#### CORRESPONDENCE



Van Genderen et al. Am J Respir Crit Care Med 2015


#### JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

### Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock

#### The ANDROMEDA-SHOCK Randomized Clinical Trial

| Outcome                                                  | Peripheral<br>Perfusion-Targeted<br>Resuscitation<br>(n = 212) | Lactate<br>Level-Targeted<br>Resuscitation<br>(n = 212) | Unadjusted<br>Absolute Difference<br>(95% CI) | Adjusted<br>Relative Measure<br>(95% CI) | P Value |
|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------------------------|---------|
| SOFA at 72 h, No. <sup>d</sup>                           | 165                                                            | 166                                                     |                                               |                                          | .045    |
| Mean (SD)                                                | 5.6 (4.3)                                                      | 6.6 (4.7)                                               | -1.00 (-1.97 to -0.02)                        |                                          |         |
| ICU length of stay, mean (SD), d <sup>e</sup>            | 9.1 (9.8)                                                      | 9.0 (9.6)                                               | 0.1 (-1.7 to 2.0)                             |                                          | .91     |
| Hospital length of stay,<br>mean (SD), d <sup>f</sup>    | 22.9 (28.8)                                                    | 18.3 (19.0)                                             | 4.6 (0.0 to 9.1)                              |                                          | .05     |
| Amount of resuscitation fluids within the first 8 h, No. | 206                                                            | 209                                                     |                                               |                                          |         |
| Mean (SD), mL                                            | 2359 (1344)                                                    | 2767 (1749)                                             | -408 (-705 to -110)                           |                                          | .01     |





#### Recommendations

#### **Quand?**

4. Sepsis and septic shock are medical emergencies, and we **recommend** that treatment and resuscitation begin immediately.

#### Best practice statement.

5. For patients with sepsis induced hypoperfusion or septic shock we **suggest** that at least 30 mL/kg of IV crystalloid fluid should be given within the first 3 hours of resuscitation.

#### Weak recommendation, low-quality evidence.

 For adults with sepsis or septic shock, we suggest using dynamic measures to guide fluid resuscitation over physical examination or static parameters alone.
Weak recommendation, very low-quality evidence.

#### Remarks:

Dynamic parameters include response to a passive leg raise or a fluid bolus, using stroke volume (SV), stroke volume variation (SVV), pulse pressure variation (PPV), or echocardiography, where available.

#### Soluté?

#### Recommendations

- 32. For adults with sepsis or septic shock, we **recommend** using crystalloids as first-line fluid for resuscitation. *Strong recommendation, moderate quality of evidence.*
- 33. For adults with sepsis or septic shock, we **suggest** using balanced crystalloids instead of normal saline for resuscitation.
- Weak recommendation, low quality of evidence.
- 34. For adults with sepsis or septic shock, we **suggest** using albumin in patients who received large volumes of crystalloids over using crystalloids alone.
- Weak recommendation, moderate quality of evidence.
- 35. For adults with sepsis or septic shock, we recommend against using starches for resuscitation.Strong recommendation, high quality of evidence.

#### Combien?

#### Guidage?

7. For adults with sepsis or septic shock, we **suggest** guiding resuscitation to decrease serum lactate in patients with elevated lactate level, over not using serum lactate.

Weak recommendation, low-quality evidence. **Remarks:** 

During acute resuscitation, serum lactate level should be interpreted considering the clinical context and other causes of elevated lactate.

8. For adults with septic shock, we **suggest** using capillary refill time to guide resuscitation as an adjunct to other measures of perfusion.

Weak recommendation, low-quality evidence.

Q7. Parmi les propositions suivantes, la(les)quelle(s) de ces antibiothérapies empiriques vous paraît(aissent)-elle(s) appropriée(s)?

- A. Amoxicilline-Acide clavulanique
- B. Céfotaxime
- C. Imipénème
- D. Céfotaxime + Amikacine
- E. Céfotaxime + Amikacine+ Métronidazole

Q7. Parmi les propositions suivantes, la(les)quelle(s) de ces antibiothérapies empiriques vous paraît(aissent)-elle(s) appropriée(s)?

- A. Amoxicilline-Acide clavulanique
- **B.** Céfotaxime
- C. Imipénème
- D. Céfotaxime + Amikacine
- E. Céfotaxime + Amikacine+ Métronidazole

#### **CONFERENCE REPORTS AND EXPERT PANEL**

CrossMark

**Broad-spectrum** 

is tantalizing!

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

#### **D. ANTIMICROBIAL THERAPY**

1. We recommend that administration of IV antiric crobials be initiated as soon as possible after recognition and within 1 h for both sepsis and septic shock strong recommendation, moderate quality of evidence; grade applies to both conditions).

In addition, the clinician must assess risk factors for infection with multidrug-resistant pathogens including prolonged hospital/chronic facility stay, recent antimicrobial use, prior hospitalization, and prior colonization or infection with multidrug-resistant organisms. The occurrence of more severe illness (e.g., septic shock) may be intrinsically associated with a higher probability of resistant isolates due to selection in failure to respond to earlier antimicrobials.

Rhodes et al. Intensive Care Med 2016

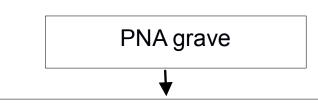
Cédric Bretonnière Marc Leone Christophe Milési **Bernard Allaouchiche** Laurence Armand-Lefevre **Olivier Baldesi** Lila Bouadma **Dominique Decré** Samy Figueiredo **Rémy Gauzit Benoît Guery** Nicolas Joram Boris Jung Sigismond Lasocki Alain Lepape **Fabrice Lesage Olivier Pajot François Philippart Bertrand Souweine Pierre Tattevin** Jean-François Timsit **Renaud Vialet** Jean Ralph Zahar **Benoît Misset** Jean-Pierre Bedos

Strategies to reduce curative in intensive care

### Carbapenems should be avoided except...

CrossM

In terms of empirical antimicrobial treatment, the hospitalacquired severe bacterial infection is suspected, we recommend not prescribing carbapenem solely on the basis of the nosocomial nature of the infection, but rather considering the presence of at least two of the following criteria:


Previous treatment with a third-generation cephalosporin, fluoroquinolones (including a single dose) or a piperacillin– tazobactam combination in the last 3 months, Carriage of extended-spectrum  $\beta$ -lactamase-producing *Enterobacteriaceae* or of ceftazidime-resistant *P. aeruginosa*, determined within the last 3 months, whatever the sampling site,

Hospitalization during the last 12 months,

Patient living in a nursing facility or in a long-term care facility for elderly and carrying an indwelling catheter and/or a gastrostomy tube,

Ongoing epidemic episode of multidrug-resistant bacteria in the healthcare institution for which the only treatment option is carbapenem





#### Traitement probabiliste

• C3G IV (céfotaxime ou ceftriaxone) + amikacine

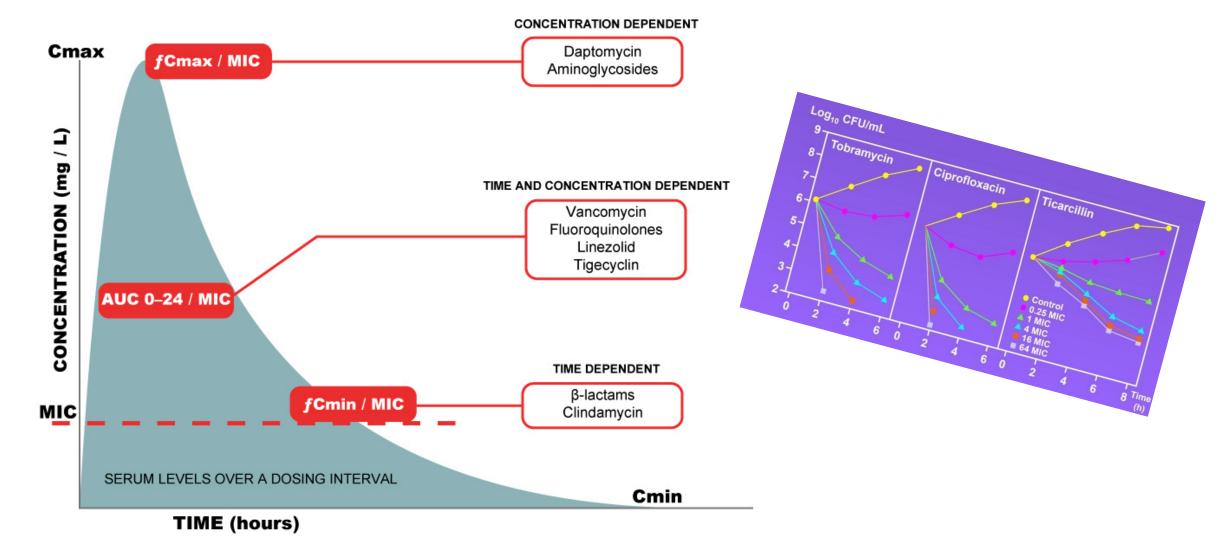
#### - si <u>allergie</u> :

• Relais portraia orale adaptéraux résultats de l'antibiogramme (hors BLSE ; si BLSE : cf tableau

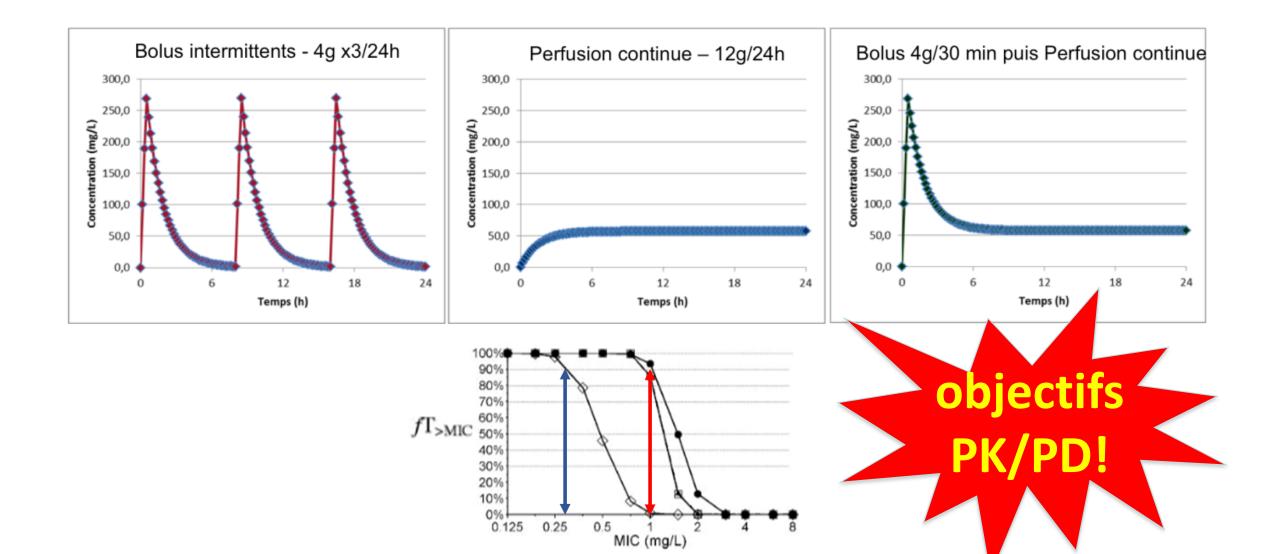
- si <u>antécédent de BLSE (</u>IU ou colonisation urinaire < 6 mois)

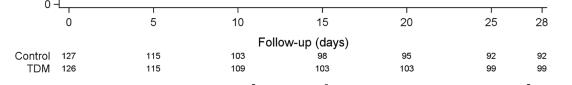
- carbapénème (imipénème, méropénème) + amikacine
- en cas d'allergie aux carbapénèmes : aztréonam + amikacine
- si choc septique, ET présence d'au moins un facteur de risque d'EBLSE\*
  - carbapénème (imipénème, méropénème) + amikacine
  - en cas d'allergie aux carbapénèmes : aztréonam + amikacine

**Relais par voie orale adapté aux résultats de l'antibiogramme** (hors BLSE ; si BLSE : cf tableau \* Facteurs de risque d'EBLSE : colonisation urinaire ou IU à EBLSE < 6 mois, antibiothérapie par pénicilline+inhibiteur,

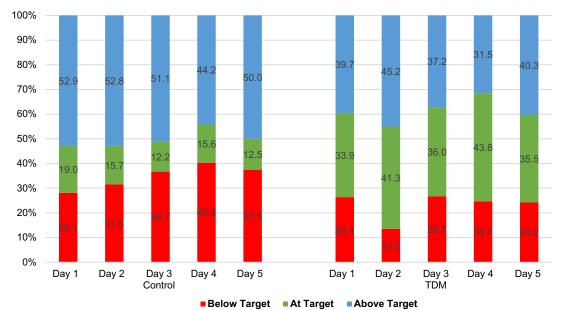

céphalosporine de  $2^{eme}$  ou  $3^{eme}$  génération, ou fluoroquinolone< 6 mois, voyage récent en zone d'endémie d'EBLSE, hospitalisation < 3 mois, vie en long-séjour




# **Optimisation** des doses!


| ong-established antibiotics |                                                                 |                                                  |      |
|-----------------------------|-----------------------------------------------------------------|--------------------------------------------------|------|
| Piperacillin/tazobactam     | 4.5 g every 6 h Cl                                              | BSI, HAP, VAP, UTI, CIAL                         |      |
| Ceftazidime                 | 6 g every 24 h Cl                                               | BSI, HAP, VAP, UTI                               |      |
| Cefepime                    | 2 g every 8 h or Cl                                             | BSI, HAP, VAP, UTI                               |      |
| Aztreonam                   | 1 g (2 g) every 8 h                                             | BSI, HAP, VAP, UTI, SSTI                         | lus! |
| lmipenem/cilastatin         | 500 mg (1 g) every 6 h                                          | BSI, HAP, VAP, UTI, cIAI                         |      |
| Meropenem                   | 1 g (2 g) every 8 h or Cl                                       | BSI, HAP, VAP, UTI, cIAI                         |      |
| Tigecycline                 | 100–200 mg loading those, then<br>50–100 mg every 12 h          | cIAI                                             |      |
| Old"antibiotics             |                                                                 |                                                  |      |
| Gentamicin                  | 7 mg/kg/day every 24 h                                          | In combination for BSI, UTI, c HAP, cIAI,<br>VAP |      |
| Amikacin                    | 25–30 mg/kg/day every 24 h                                      | In combination for BSI, UTI,VA HAP, VAP          |      |
| Colistin                    | 9 MU loading dose, 4.5 MU every<br>8–12 h                       | In combination for BSI, UTI, HAP, VAP            |      |
| Fosfomycin                  | 4–6 g every 6 h Cl                                              | In combination for BSI, UTI, HAP, VAP            |      |
| Vancomycin                  | 15–30 mg/kg loading dose, 30–60 mg/<br>kg every 12 h, 6 h or Cl | BSI, HAP, VAP                                    |      |
| Linezolid                   | 600 mg every 12 h                                               | BSI, HAP, VAP, SSTI                              |      |

# Objectifs PK/PD... concentrations vs. bactéricidie

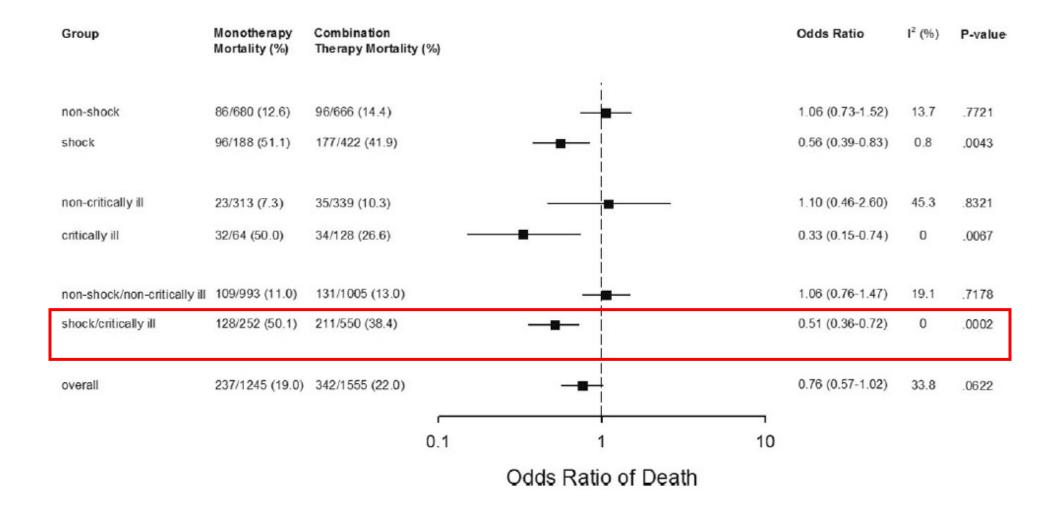



### Exemple des Beta-lactamines... (TAZO)





### Exemple des Beta-lactamines...






| Study or Subgroup                 | CI<br>Events | Total  | ll<br>Events            | Total | Weight | Risk Ratio<br>M-H, Fixed, 95% Cl |     |        |     | isk Ra<br><sup>:</sup> ixed, | itio<br>95% C | I      |    |
|-----------------------------------|--------------|--------|-------------------------|-------|--------|----------------------------------|-----|--------|-----|------------------------------|---------------|--------|----|
| Abdul-Aziz 2016                   | 20           | 70     | 28                      | 70    | 33.3%  | 0.71 [0.45, 1.14]                |     |        | _   |                              |               |        |    |
| Dulhunty 2015                     | 39           | 212    | 52                      | 220   | 60.7%  | 0.78 [0.54, 1.13]                |     |        | _   |                              |               |        |    |
| Dulhunty 2013                     | 2            | 30     | 5                       | 30    | 5.9%   | 0.40 [0.08, 1.90]                |     |        |     |                              |               |        |    |
| Total (95% CI)                    |              | 312    |                         | 320   | 100.0% | 0.73 [0.55, 0.98]                |     |        |     |                              |               |        |    |
| Total events                      | 61           |        | 85                      |       |        |                                  |     |        |     |                              |               |        |    |
| Heterogeneity: Chi <sup>2</sup> = | 0.69. df =   | 2 (P = | 0.71): l <sup>2</sup> : | = 0%  |        |                                  | 0.1 | 0.2    | 0.5 | 1                            | 2             | 5      | 10 |
| Test for overall effect:          |              |        |                         |       |        |                                  |     | Favors | CI  |                              |               | Favors | II |

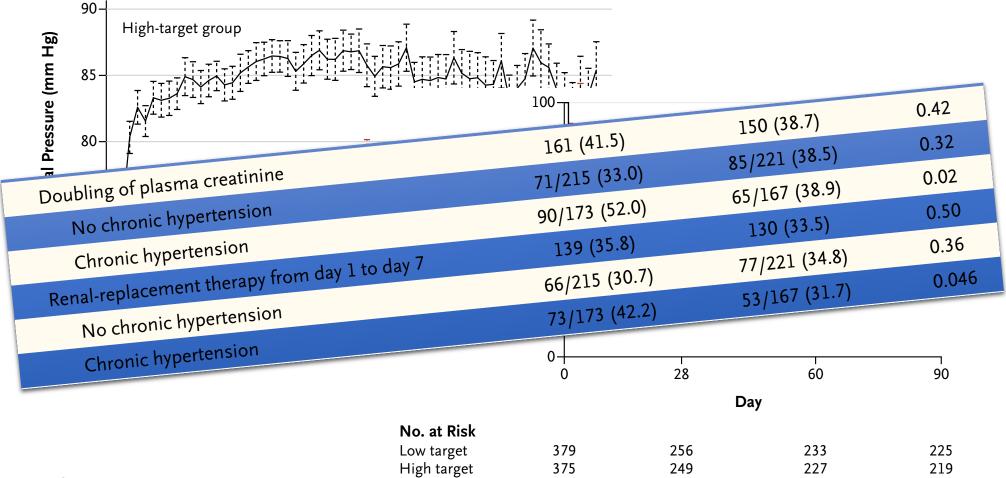
#### Roberts JA et al. Am J Respir Crit Care Med 2016

# Bithérapie?



Kumar et al. Crit Care Med 2010

Q8. Malgré le remplissage, la pression artérielle a chuté à 72/41 mmHg. Quelle est votre attitude thérapeutique à présent?

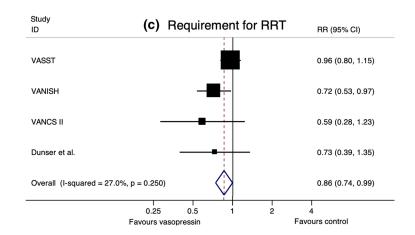

- A. Mise sous noradrénaline sur VVP avec un objectif de PAM à 65 mmHg
- B. Mise sous terlipressine
- C. Mise sous noradrénaline sur VVP avec un objectif de PAM à 75 mmHg
- D. Mise sous noradrénaline sur VVC avec un objectif de PAM à 75 mmHg
- E. Mise sous noradrénaline sur VVC avec un objectif de PAM à 65 mmHg

Q8. Malgré le remplissage, la pression artérielle a chuté à 72/41 mmHg. Quelle est votre attitude thérapeutique à présent?

- A. Mise sous noradrénaline sur VVP avec un objectif de PAM à 65 mmHg
- B. Mise sous terlipressine
- C. Mise sous noradrénaline sur VVP avec un objectif de PAM à 75 mmHg
- D. Mise sous noradrénaline sur VVC avec un objectif de PAM à 75 mmHg
- E. Mise sous noradrénaline sur VVC avec un objectif de PAM à 65 mmHg



High versus Low Blood-Pressure Target in Patients with Septic Shock




Asfar et al N Eng J Med 2014

#### SYSTEMATIC REVIEW

# Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials





| Outcome                               | Vasopressin    | Norepinephrine | ARD <sup>a</sup> (95% CI) |
|---------------------------------------|----------------|----------------|---------------------------|
| Serious adverse events, no./total (%) | 124/735 (16.9) | 120/718 (16.7) | 0.2 (- 3.7 to 4.0)        |
| Digital ischaemia                     | 21/735 (2.9)   | 8/718 (1.1)    | 1.7 (0.3–3.2)             |
| Mesenteric ischaemia <sup>b</sup>     | 14/727 (1.9)   | 18/711 (2.5)   | -0.6 (-2.1 to 0.9)        |
| Acute coronary syndrome               | 18/735 (2.5)   | 17/718 (2.4)   | 0.1 (— 1.5 to 1.7)        |
| Arrhythmia                            | 39/735 (5.3)   | 58/718 (8.1)   | - 2.8 (- 0.2 to - 5.3)    |

Check for updates

# Quand dégainer la noradré plus tôt???

| Problem                                                  | Effect                                                        | Setting               | Potential benefit of early start of vaso-<br>pressors                                                                                                                                                                                                          |  |
|----------------------------------------------------------|---------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time of hypotension and outcomes                         | Prolonged hypotension is related with worse clinical outcomes | Clinical              | Shortening time of hypotension                                                                                                                                                                                                                                 |  |
| Low preload / low myocardial contractil-<br>ity          | Decreased cardiac output                                      | Clinical/experimental | Mobilization of blood volume from the<br>non-stressed to the stressed circulatory<br>compartment<br>Increasing myocardial contractility<br>Optimization of ventriculo-arterial<br>coupling                                                                     |  |
| Low diastolic pressure                                   | Altered myocardial perfusion                                  | Clinical              | Severe hypotension derived from serious vasodilation is unlikely to be reversed by simple fluid administration                                                                                                                                                 |  |
| Low microcirculatory driving pressure                    | Altered convective microcirculatory blood flow                | Clinical              | Correcting hypotension improves micro-<br>circulatory blood flow<br>Nevertheless, increasing vasopressor dose<br>can derange microcirculatory blood<br>flow when baseline microcirculation is<br>already corrected                                             |  |
| Altered splanchnic flow                                  | Decreased splanchnic perfusion                                | Experimental          | Early combination of fluids and vasopres-<br>sors might be superior at restoring<br>mesenteric blood flow and tissue oxy-<br>genation compared to fluid resuscita-<br>tion alone<br>Nevertheless, isolated use of vasopressors<br>might worsen splanchnic flow |  |
| Using a pre-defined fixed volume of resuscitation fluids | Paradoxical increase in vasopressor requirements              | Experimental          | A very early vasopressor start might decrease subsequent need for fluid therapy                                                                                                                                                                                |  |

## Prise en charge

du patient septique aux urgences

- Remplissage du patient septique démarre le plus souvent aux urgences
- Simultanément avec l'antibiothérapie
- La précocité impacte fortement sur le devenir des patients (préserver les <u>organes vulnérables</u>)
- **Objectifs**: clinique (**TRC**), **lactate**, *SvcO*<sub>2</sub>
- Choix du soluté: cristalloïdes (sol. balancées+++)
- Introduction « *rapide* » de la **noradrénaline**