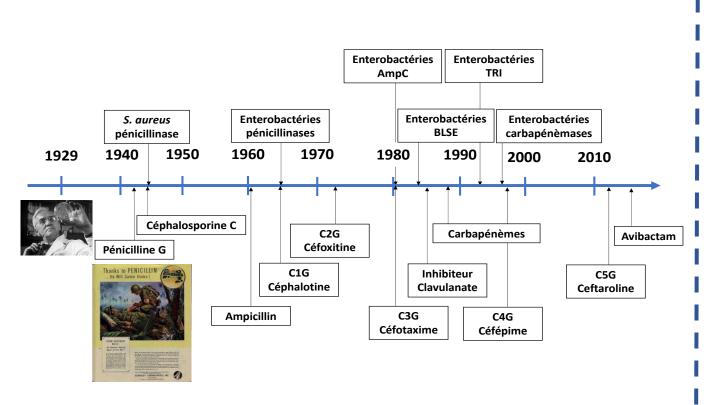
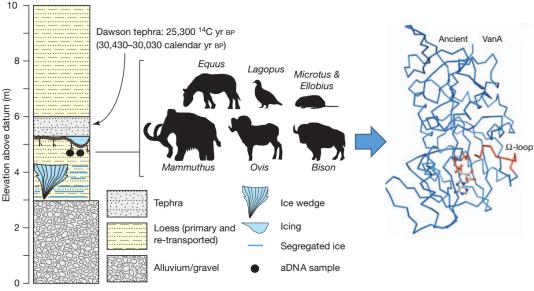


Bactériémies à entérobactéries résistantes aux céphalosporines de 3^{ème} génération


Plan

- 1. Données épidémiologiques
- 2. Peut-on prédire qui va s'infecter ?
- 3. Les infections à entérobactéries productrices de BLSE
- 4. Les infections à entérobactéries productrices de carbapénèmases


Données épidémiologiques

Histoire de l'antibiorésistance

Antibiotic resistance is ancient

Vanessa M. D'Costa^{1,2*}, Christine E. King^{3,4*}, Lindsay Kalan^{1,2}, Mariya Morar^{1,2}, Wilson W. L. Sung⁴, Carsten Schwarz³, Duane Froese⁵, Grant Zazula⁶, Fabrice Calmels⁵, Regis Debruyne⁷, G. Brian Golding⁴, Hendrik N. Poinar^{1,3,4} & Gerard D. Wright^{1,2}

D'Costa et al. Nature 2011

Evolution de l'antibiorésistance

Surveillance des résistances bactériennes en établissement de santé en 2019

- 991 établissements participants collaborant avec 660 laboratoires de microbiologie et couvrant 49% des JH en 2019
- Antibiogrammes de 528 953 souches bactériennes recueillis

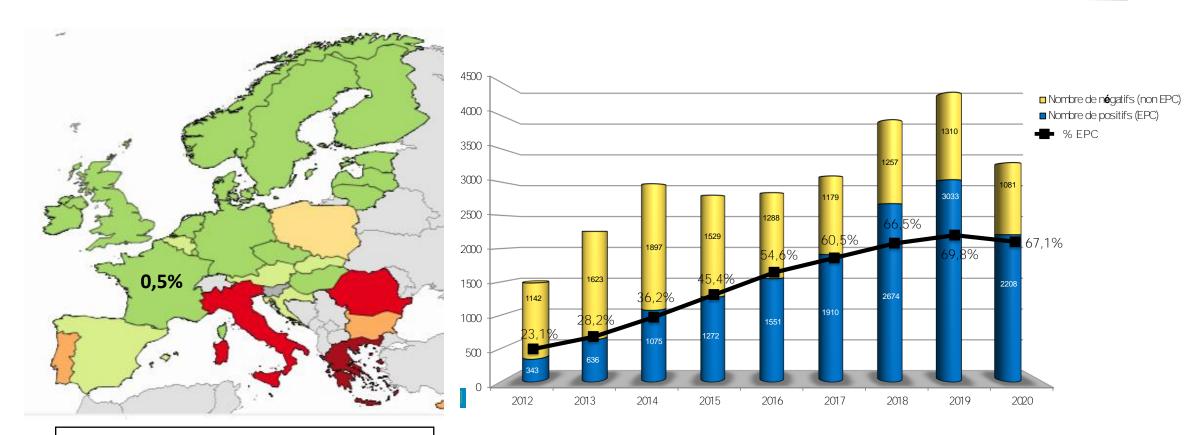
Evolution de l'antibiorésistance – BLSE

	Escherichia coli N = 221 135		Klebsiella pneumoniae N = 43 837		Enterobacter cloacae complex N = 23 169	
	Nb de souches	% (R-I)	Nb de souches	% (R-I)	Nb de souches	% (R-I)
Amoxicilline-acide clavulanique	192 220	31,7	38 794	36,8	19 933	100
C3G	218 159	8,9	43 207	27,9	22 120	47,2
Imipénème	116 924	0,2	28 037	1,3	17 943	1,4
Ertapénème	192 134	0,2	38 828	1,9	20 199	13,4
Ciprofloxacine	122 547	14,3	28 672	28,8	17 710	26,8
Gentamicine	195 851	5,7	38 784	16,1	20 756	20,4
Amikacine	201 408	1,4	40 222	3,7	21 115	4,6
Cotrimoxazole	185 368	24,8	36 996	26,7	20 030	25,4

Evolution de l'antibiorésistance – BLSE

	Escherichia coli N = 221 135		Klebsiella pneumoniae N = 43 837		Enterobacter cloacae complex N = 23 169	
	Nb de souches	% (R-I)	Nb de souches	% (R-I)	Nb de souches	% (R-I)
Amoxicilline-acide clavulanique	192 220	31,7	38 794	36,8	19 933	100
C3G	218 159	8,9	43 207	27,9	22 120	47,2
Imipénème	116 924	0,2	28 037	1,3	17 943	1,4
Ertapénème	192 134	0,2	38 828	1,9	20 199	13,4
Ciprofloxacine	122 547	14,3	28 672	28,8	17 710	26,8
Gentamicine	195 851	5,7	38 784	16,1	20 756	20,4
Amikacine	201 408	1,4	40 222	3,7	21 115	4,6
Cotrimoxazole	185 368	24,8	36 996	26,7	20 030	25,4
\setminus						

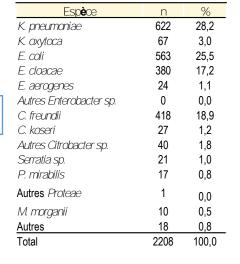
BLSE

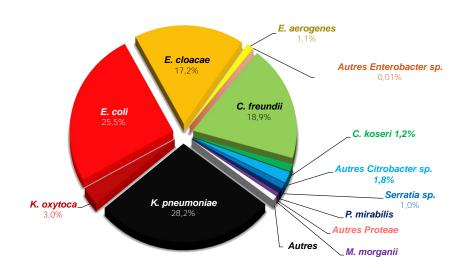

Evolution de l'antibiorésistance – BLSE

	Escherichia coli N = 221 135		Klebsiella pneumoniae N = 43 837		Enterobacter cloacae comp N = 23 169	
	Nb de souches	% (R-I)	Nb de souches	% (R-I)	Nb de souches	% (R-I)
Amoxicilline-acide clavulanique	192 220	31,7	38 794	36,8	19 933	100
C3G	218 159	8,9	43 207	27,9	22 120	47,2
Imipénème	116 924	0,2	28 037	1,3	17 943	/ _{1,4}
Ertapénème	192 134	0,2	38 828	1,9	20 199	13,4
Ciprofloxacine	122 547	14,3	28 672	28,8	17 710	26,8
Gentamicine	195 851	5,7	38 784	16,1	20 756	20,4
Amikacine	201 408	1,4	40 222	3,7	21 115	4,6
Cotrimoxazole	185 368	24,8	36 996	26,7	20 030	25,4

Céphalosporinase +++
18,9% de BLSE

Etude REPIAS - SPF 2019

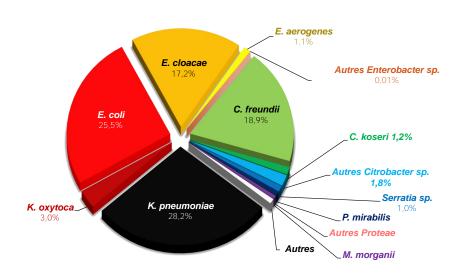

Evolution de l'antibiorésistance



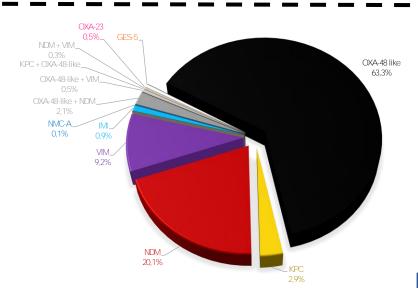
K. pneumoniae résistant carbapénèmes

Evolution de l'antibiorésistance - Carbapénèmases

Par espèce



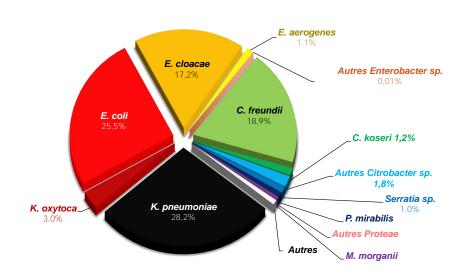
Evolution de l'antibiorésistance - Carbapénèmases


Par espèce

Esp è ce	n	%
K. pneumoniae	622	28,2
K. oxytoca	67	3,0
E. coli	563	25,5
E. cloacae	380	17,2
E. aerogenes	24	1,1
Autres Enterobacter sp.	0	0,0
C. freundii	418	18,9
C. koseri	27	1,2
Autres Citrobacter sp.	40	1,8
Serratia sp.	21	1,0
P. mirabilis	17	0,8
Autres Proteae	1	0,0
M. morganii	10	0,5
Autres	18	0,8
Total	2208	100,0

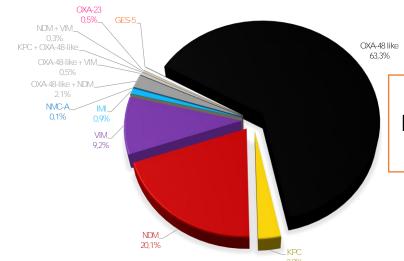
Par enzyme

Type de carbapenemase	n	%
OXA-48-like	1398	63,3
KPC	65	2,9
NDM	443	20,1
VIM	204	9,2
IMI	20	0,9
NMC-A	2	0,1
OXA-48-like + NDM	46	2,1
OXA-48-like + VIM	10	0,5
KPC + OXA-48-like	1	0,05
NDM + VIM	6	0,3
OXA + NDM + VIM	1	0,05
OXA-23	11	0,5
GES-5	1	0,05
Total	2208	100

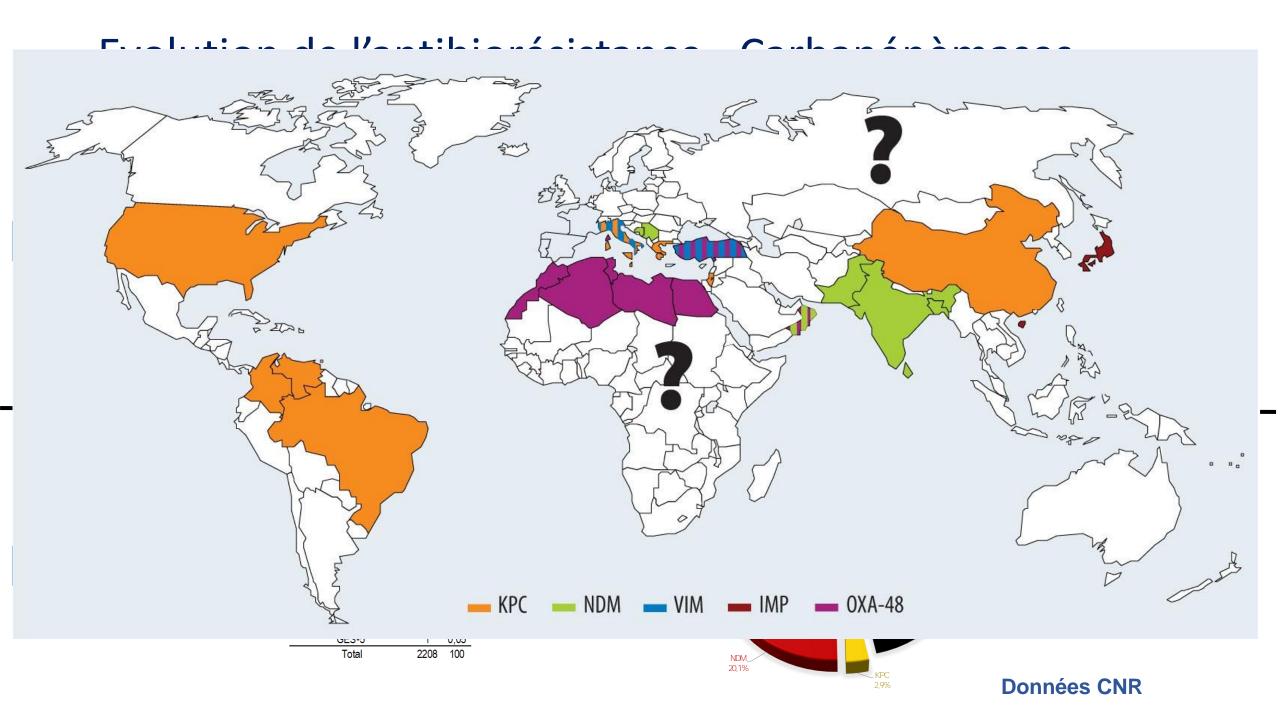

Données CNR

Evolution de l'antibiorésistance - Carbapénèmases

Par espèce


		70
K. pneumoniae	622	28,2
K. oxytoca	67	3,0
E. coli	563	25,5
E. cloacae	380	17,2
E. aerogenes	24	1,1
Autres Enterobacter sp.	0	0,0
C. freundii	418	18,9
C. koseri	27	1,2
Autres Citrobacter sp.	40	1,8
Serratia sp.	21	1,0
P. mirabilis	17	0,8
Autres Proteae	1	0,0
M. morganii	10	0,5
Autres	18	0,8
Total	2208	100,0

Esp**è**ce


Par enzyme

Type de carbapenemase	n	%
OXA-48-like	1398	63,3
KPC	65	2,9
NDM	443	20,1
VIM	204	9,2
IMI	20	0,9
NMC-A	2	0,1
OXA-48-like + NDM	46	2,1
OXA-48-like + VIM	10	0,5
KPC + OXA-48-like	1	0,05
NDM + VIM	6	0,3
OXA + NDM + VIM	1	0,05
OXA-23	11	0,5
GES-5	1	0,05
Total	2208	100

Attention dans l'interprétation des études: KPC +++

Données CNR

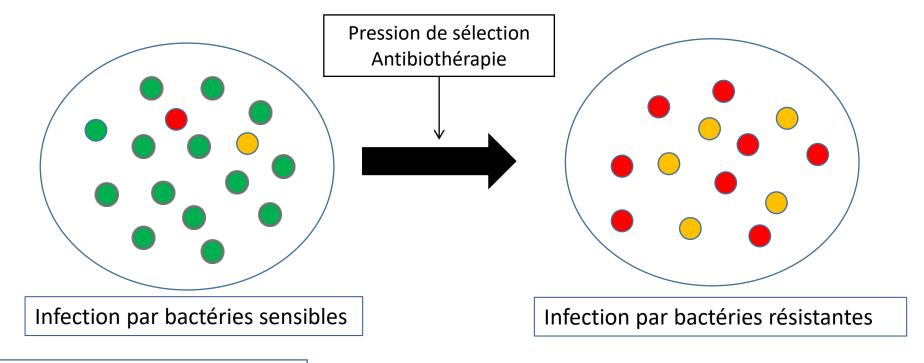
Peut-on prédire l'infection?

Etape de colonisation = pré-requis

RESEARCH ARTICLE

Relationship between digestive tract colonization and subsequent ventilatorassociated pneumonia related to ESBL-producing Enterobacteriaceae

Marion Houard^{1,2}, Anahita Rouzé¹, Geoffrey Ledoux¹, Sophie Six^{1,2}, Emmanuelle Jaillette¹, Julien Poissy^{1,2}, Sébastien Préau¹, Frédéric Wallet³, Julien Labreuche⁴, Saad Nseir^{1,2}*, Benoit Voisin¹


Variables	OR	95% CI	P-value
Sexe féminin	0,90	0,39 – 2,07	0,80
Hospitalisation en médecine	0,61	0,23 – 1,66	0,33
Exacerbation BPCO	0,13	0,02 - 1,12	0,06
SDRA	1,76	0,59 – 5,29	0,31
Choc	1,43	0,62 – 3,33	0,40
Antibiothérapie préalable	1,10	0,44 - 2,71	0,84
Colonisation digestive préalable	23,32	9,89 – 54,97	< 0,01

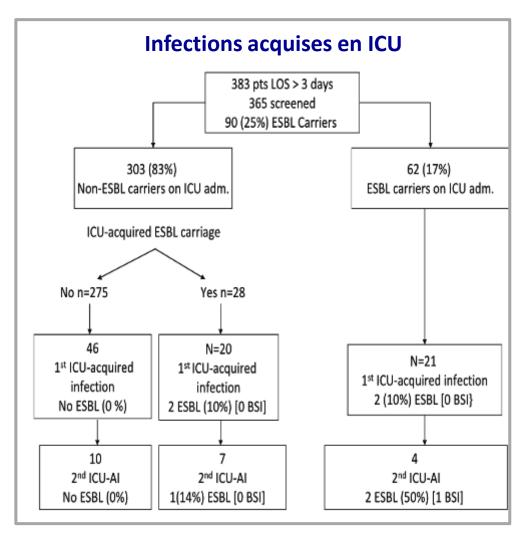
Risk factors for developing ESBL *E. coli*: can clinicians predict infection in patients with prior colonization?

Variables	OR	95% CI	P-value
Sondes urinaires	5,188	1,984 – 13,569	0,008
BLBLI	3,25	1,073 – 9,864	0,0371
Céphalosporines	2,46	0,801 – 7,6	0,1155
Aminoglycosides	2,35	0,574 – 9,625	0,235
Cotrimoxazole	1,954	0,755 – 5,06	0,1675

Asymptomatic rectal carriage of *bla*_{KPC} producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected?

Variables	OR	95% CI	P-value
Réanimation	7,45	1,32 – 42,13	0,023
KT veineux central	5,70	1,39 – 23,39	0,016
Antibiothérapie Fluoroquinolones	3,32 3,04	1,14 – 9,69 1,07 – 8,68	0,028 0,037
Diabète	2,79	0,755 – 5,06	0,030

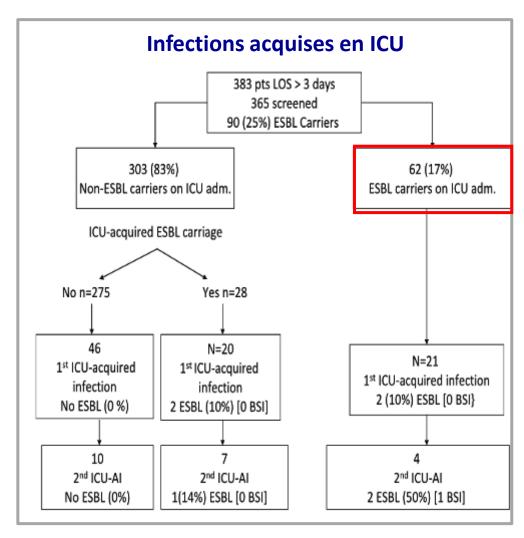
- Bactéries sensibles
- Bactéries naturellement résistantes (dont *Clostridium difficile*)
- Bactéries résistantes par mutation/acquisition


Etude prospective de 8 mois en réanimation à l'hôpital Henri Mondor

Identifier les facteurs associés aux infections à entérobactéries productrices de BLSE

610 patients hospitalisés plus de 72 heures

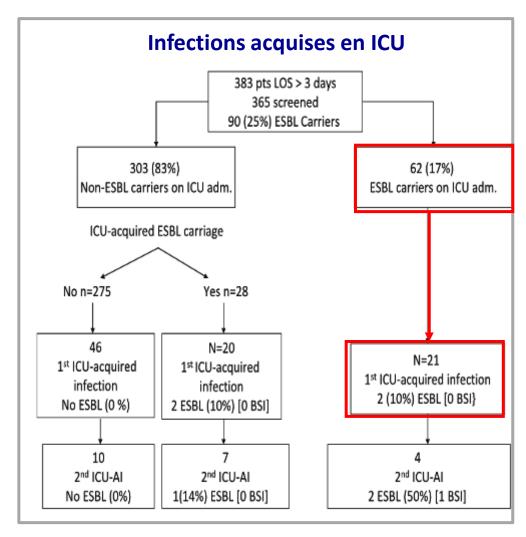
15% de patients porteurs de BLSE


Etude prospective de 8 mois en réanimation à l'hôpital Henri Mondor

Identifier les facteurs associés aux infections à entérobactéries productrices de BLSE

610 patients hospitalisés plus de 72 heures

15% de patients porteurs de BLSE


Etude prospective de 8 mois en réanimation à l'hôpital Henri Mondor

Identifier les facteurs associés aux infections à entérobactéries productrices de BLSE

610 patients hospitalisés plus de 72 heures

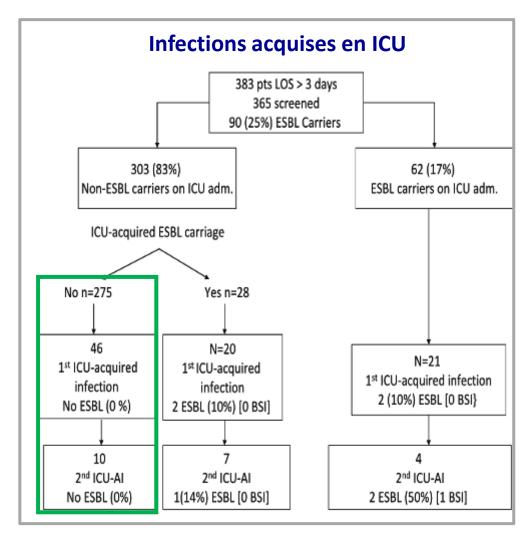
15% de patients porteurs de BLSE

Etude prospective de 8 mois en réanimation à l'hôpital Henri Mondor

Identifier les facteurs associés aux infections à entérobactéries productrices de BLSE

610 patients hospitalisés plus de 72 heures

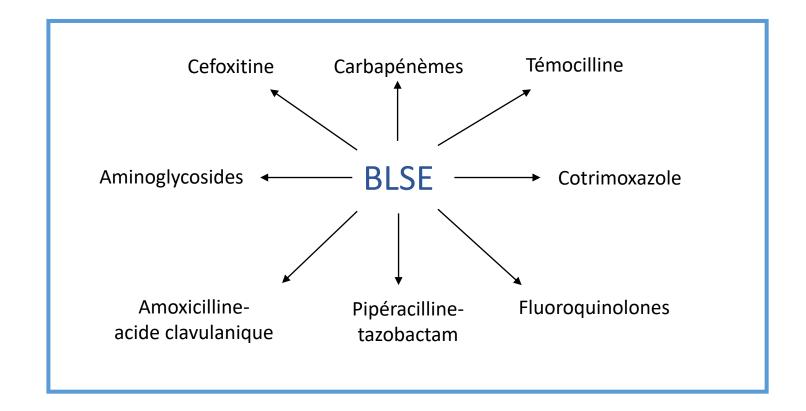
15% de patients porteurs de BLSE


Etude prospective de 8 mois en réanimation à l'hôpital Henri Mondor

Identifier les facteurs associés aux infections à entérobactéries productrices de BLSE

610 patients hospitalisés plus de 72 heures

15% de patients porteurs de BLSE



Les infections à entérobactéries productrice de BLSE

Les infections à BLSE

Le choix de la molécule dépend

- Des tests de sensibilité
- De la diffusion dans le foyer infectieux
- De la gravité clinique
- De l'impact écologique ?

Question en suspens

Weiss et a	d.	Agent	
Rank	Similar response (%) ^a		
1	100	Amoxicillin	
2	88	Amoxicillin/clavulanate	
3	81	3rd-generation cephalosporin	
4	71	Piperacillin/tazobactam	
		4th-generation cephalosporin	
5	81	Ertapenem	
6	85	Imipenem	

Question en suspens

Weiss et a	d.	Agent Madaras-Kelly et		al.	
Rank	Similar response (%) ^a		Spectrum score	Rank	
1	100	Amoxicillin	13.5	1	
2	88	Amoxicillin/clavulanate	29.5	3	
3	81	3rd-generation cephalosporin	25.5	2	
4	71	Piperacillin/tazobactam	42.25	7	
		4th-generation cephalosporin	33.25	5	
5	81	Ertapenem	30.25	4	
6	85	Imipenem	41.5	6	

Les infections à entérobactéries productrice de carbapénèmase

Les infections à Carbapénèmases

			Inl	hibition
Enzymes	Classes	Substrats	Tazo	Avibactam
TEM-1, TEM-2, SHV-1	Α	Pénicillines	Oui	Oui
TEM-3, SHV-2, CTX-M14	Α	Céphalosporines large spectre, monobactam	Oui	Oui
KPC-2, KPC-3	Α	Large spectre incluant les carbapénèmes	Non	Oui
IMP-1, NDM-1, VIM-1	В	Large spectre incluant les carbapénèmes mais pas le monobactam	Non	Non
E. Coli AmpC	С	Cephalosporins	Non	Oui
OXA-48	D	Carbapenems	Non	Oui

Les infections à Carbapénèmases

Contents lists available at ScienceDirect

International Journal of Antimicrobial Agents

journal homepage: www.elsevier.com/locate/ijantimicag

Multicentre study of ceftazidime/avibactam for Gram-negative bacteria infections in critically ill patients

Bárbara Balandín a.*, Daniel Ballesteros a, Vicente Pintado b, Cruz Soriano-Cuesta c, Irene Cid-Tovard, Milagros Sancho-Gonzáleze, María José Pérez-Pedrerof, Marta Chicote, María José Asensio-Martính, José Alberto Silval, Rafael Ruiz de Lunal, Cristina Martín-Dal Gessok, Diego Aníbal Rodríguez-Serranol, Fernando Martínez-Sagastid,

Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial

Antoni Torres, Nanshan Zhong, Jan Pachl, Jean-François Timsit, Marin Kollef, Zhangjing Chen, Jie Song, Dianna Taylor, Peter J Laud, Gregory G Stone Joseph W Chow

Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial

Richard G. Wunderink · Evangelos J. Giamarellos-Bourboulis · Galia Rahav · Amy J. Mathers · Matteo Bassetti · Jose Vazquez · Oliver A. Cornely · Joseph Solomkin · Tanaya Bhowmick · Jihad Bishara · George L. Daikos · Tim Felton · Maria Jose Lopez Furst · Eun Jeong Kwak Francesco Menichetti · Ilana Oren · Elizabeth L. Alexander · David Griffith · Olga Lomovskaya Jeffery Loutit · Shu Zhang · Michael N. Dudley · Keith S. Kaye

Clinical Infectious Diseases

RESTORE-IMI 1: A Multicenter, Randomized, Doubleblind Trial Comparing Efficacy and Safety of Imipenem/ Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections

Johann Motsch, Claudia Murta De Oliveira, Viktor Stus, Hithar Köksal, Olexiy Lyulko, Helen W. Boucher, Keith S. Kaye, Thomas M. File Jr. Michelle L. Brown, Ireen Khan, Jiejun Du, Hee-Koung Joeng, Robert W. Tipping, Angela Aggrey, Katherine Young, Nicholas A. Kartsonis, Joan R. Butterton,

Cefiderocol for the Treatment of Infections Due To Metallo-Beta-Lactamase-Producing

Pathogens in the CREDIBLE-CR And APEKS-NP Phase 3 Randomized Studies

Jean-Francois Timsit, Mical Paul, Ryan K Shields, Roger Echols, Takamichi Baba, 5 Yoshinori Yamano. 5 Simon Portsmouth. 6

Etudes randomisées contrôlées (non infériorité) Non prise en compte des mécanismes de résistances Infections urinaires, infections intra-abdominales, pneumopathies

Les infections à carbapénèmases

			Inh	ibition
Enzymes	Classes	Substrats	Tazo	Avibactam
TEM-1, TEM-2, SHV-1	Α	Pénicillines	Oui	Oui
TEM-3, SHV-2, CTX-M14	Α	Céphalosporines large spectre, monobactam	Oui	Oui
KPC-2, KPC-3	Α	Large spectre incluant les carbapénèmes	Non	Oui
IMP-1, NDM-1, VIM-1	В	Large spectre incluant les carbapénèmes mais pas le monobactam	Non	Non
E. Coli AmpC	С	Cephalosporins	Non	Oui
OXA-48	D	Carbapenems	Non	Oui

Résistance	1 ^{er} choix	Alternatives
KPC Ou carbapénèmase positive mais mécanisme non identifié	Ceftazidime-avibactam Méropénème-vaborbactam Imipénème-cilastatin-relebactam	Cefiderocol Tigécycline,éravacycline
Metallo-β-lactamase (NDM, VIM ou IMP)	Ceftazidime-avibactam + aztreonam Cefiderocol	Tigécycline, éravacycline, colistine
OXA-48 like carbapenemase	Ceftazidime-avibactam	Cefiderocol Tigécycline, éravacycline, colistine

Les infections à carbapénèmases

			Inh	ibition
Enzymes	Classes	Substrats	Tazo	Avibactam
TEM-1, TEM-2, SHV-1	Α	Pénicillines	Oui	Oui
TEM-3, SHV-2, CTX-M14	Α	Céphalosporines large spectre, monobactam	Oui	Oui
KPC-2, KPC-3	Α	Large spectre incluant les carbapénèmes	Non	Oui
IMP-1, NDM-1, VIM-1	В	Large spectre incluant les carbapénèmes mais pas le monobactam	Non	Non
E. Coli AmpC	С	Cephalosporins	Non	Oui
OXA-48	D	Carbapenems	Non	Oui

Résistance	1 ^{er} choix	Alternatives
KPC Ou carbapénèmase positive mais mécanisme non identifié	Ceftazidime-avibactam Méropénème-vaborbactam Imipénème-cilastatin-relebactam	Cefiderocol Tigécycline, éravacycline
Metallo-β-lactamase (NDM, VIM ou IMP)	Ceftazidime-avibactam + aztreonam Cefiderocol	Tigécycline, éravacycline, colistine
OXA-48 like carbapenemase	Ceftazidime-avibactam	Cefiderocol Tigécycline, éravacycline, colistine

Les infections à métallo-beta-lactamases

	NDM	VIM
Imipénème-relebactal	0%	0%
Méropénème-vaborbactam	0%	0%
Ceftazidime-avibactam	0%	0%
Aztréonam	23%	44%
Aztréonam + Amoxicilline-clavulanate	50	1%
Aztréonam + Ceftazidime-avibactam	86	5%
Céfidérocol	63%	86%

Question en suspens

	Excretion biliaire	Activité anti-anaérobie	Induction de dysbiose
Pipéracilline-tazobactam	30%		
Imipénème	< 5%		?
Méropénème	25%		
Ceftazidime-avibactam ⁽¹⁾	< 1%		↓ Bacteroides, Lactobacilli, Bifidobacteria, Clostridia ↑ Enterococci
Ceftolozane-tazobactam	< 20%		?
Imipénème-relebactam	< 5%		?
Méropénème-vaborbactam	25%		?
Cefiderocol	< 3%		?

Question en suspens

Weiss et al.		Agent	Madaras-Kelly et al.	
Rank	Similar response (%) ^a		Spectrum score	Rank
1	100	Amoxicillin	13.5	1
2	88	Amoxicillin/clavulanate	29.5	3
3	81	3rd-generation cephalosporin	25.5	2
4	71	Piperacillin/tazobactam	42.25	7
		4th-generation cephalosporin	33.25	5
5	81	Ertapenem	30.25	4
6	85	Imipenem	41.5	6

Ceftolozane-tazobactam ?
Ceftazidime-avibactam ?
Cefiderocol ?
Imipénème-relebactam ?
Méropénème-vaborbactam ?

Mon point de vue

	Entérobactéries		
	Classe A KPC	Classe B NDM, VIM	Classe D Oxa-48
Ceftolozane tazobactam			
Ceftazidime avibactam	1 ^{ère} intention		1 ^{ère} intention
Imipénème relebactam	3 ^{ème} intention		
Méropénème vaborbactam	2 ^{ème} intention		
Aztréonam avibactam		1 ^{ère} intention	
Cefiderocol	3 ^{ème} intention	2 ^{ème} intention	2 ^{ème} intention

Indication

Pas d'intérêt

Inactif

Chirurgie

Drainage

Optimisation des modalités d'administration

Conclusion

- Augmentation de l'incidence des infections à BMR
- Choix individuel:
 - Co-morbidité
 - Source de l'infection
- Tester sans a priori
- Contrôler le foyer infectieux
- Optimiser les administrations des ATB