SÉMINAIRE DES BACTÉRIÉMIES ET CHOC SEPTIQUE - CONFÉRENCE N° 3

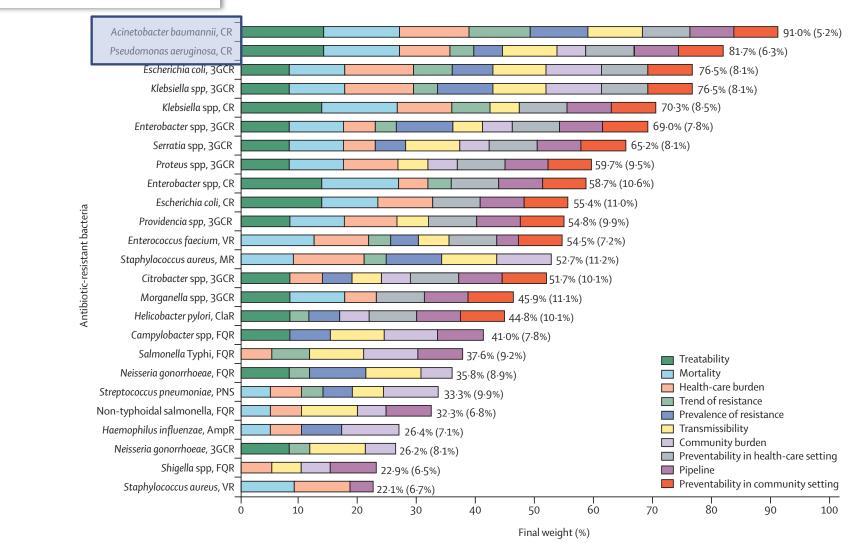
BACTÉRIÉMIE À BACILLE GRAM NÉGATIF NON FERMENTANT

AURÉLIEN DINH

MALADIES INFECTIEUSES

HÔPITAL RAYMOND-POINCARÉ

APHP. PARIS SACLAY



Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

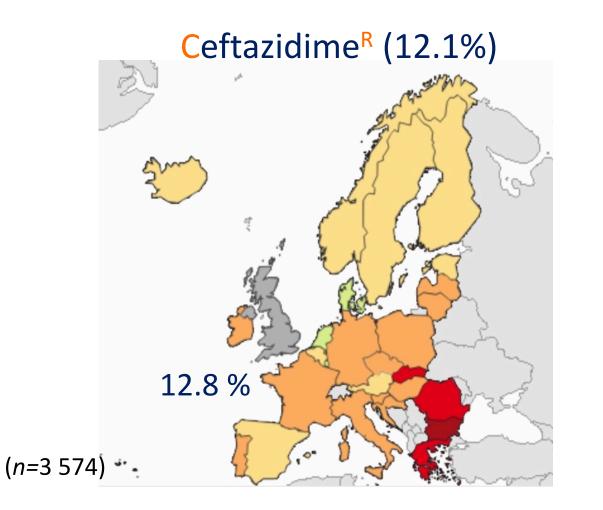
Evelina Tacconelli, Elena Carrara*, Alessia Savoldi*, Stephan Harbarth, Marc Mendelson, Dominique L Monnet, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans, Yehuda Carmeli, Marc Ouellette, Kevin Outterson, Jean Patel, Marco Cavaleri, Edward M Cox, Chris R Houchens, M Lindsay Grayson, Paul Hansen, Nalini Singh, Ursula Theuretzbacher, Nicola Magrini, and the WHO Pathogens Priority List Working Group†

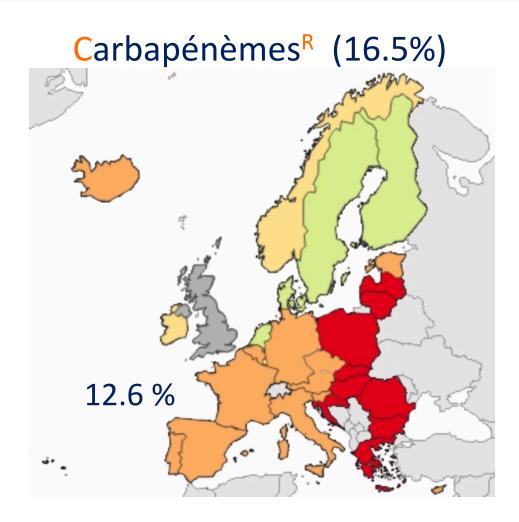
CR=résistant aux carbapénèmes. 3GCR=résistant aux céphalosporines de troisième génération. VR=résistant à la vancomycine. MR=résistant à la méticilline. ClaR=résistant à la clarithromycine. FQR=résistant aux fluoroquinolones.

PNS=non sensible à la pénicilline.

mpR=résistant à l'ampicilline

Epidémiologie bactérienne en réanimation en 2020


	E. ¢	oli	K. pne	umoniae		oacae nplex		tres bactéries	P. aen	uginosa	A. bau	ımənnii	S. a	ureus	E. fa	ecalls	E. fa	ecium	To	tal
Secteur d'activité	Nb souches	Répartitio n (%)	Nb souche s	Répartito n (%)	Nb souche s	Répartitio n (%)	Nb souches	Répartitio n (%)												
Médecine	114 780	44,6%	22 705	8,8%	10 006	3,9%	37 775	14,7%	19 646	7,6%	468	0,2%	24 591	9,5%	22 545	8,7%	5 090	2,0%	257 606	100,0%
Chirurgie	40 813	32,4%	7 764	6,2%	7 160	5,7%	22 232	17,7%	9 541	7,6%	265	0,2%	22 440	17,8%	12 899	10,3%	2 664	2,1%	125 778	100,0%
Réanimation	12 546	20,5%	5 833	9,5%	4 809	7,8%	12 467	20,4%	10 503	17,2%	367	0,6%	8 814	14,4%	4 349	7,1%	1 520	2,5%	61 208	100,0%
Gynécologie- obstětrique	15 112	65,8%	1 609	7,0%	419	1,8%	1 538	6,7%	258	1,1%	34	0,2%	2 047	8,9%	1 872	8,2%	70	0,3%	22 959	100,0%
Pédiatrie	8 483	41,7%	1 305	6,4%	1 005	4,9%	2 576	12,7%	1 099	5,4%	87	0,4%	4 180	20,5%	1 529	7,5%	95	0,5%	20 359	100,0%
Psychiatrie	2 258	60,0%	301	8,0%	87	2,3%	522	13,9%	128	3,4%	6	0,2%	182	4,8%	264	7,0%	13	0,4%	3 761	100,0%
SSR	31 223	44,7%	8 223	11,8%	3 246	4,7%	11 805	16,9%	5 821	4,0%	153	0,2%	4 799	6,9%	6 409	9,2%	1 133	1,6%	72 812	100,0%
SLD	4 711	42,4%	1 354	12,2%	254	2,3%	2 0 1 1	18,1%	962	8,6%	22	0,2%	912	8,2%	773	6,9%	117	1,1%	11 116	100,0%
Total	229 926	39,9%	49 094	8,5%	26 986	4,7%	90 926	15,8%	47 958	8,3%	1 402	0,2%	67 965	11,8%	50 640	8,8%	10 702	1,9%	575 599	100,0%


- 17.2% *P. aeruginosa* (2^e)
- 0.6% A. baumannii

Mission SPARES, Mars 2022

Situation épidémiologique en Europe en 2020 chez P. aeruginosa

European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) Annual Epidemiological Report 2020. Stockholm: ECDC; nov 2021.

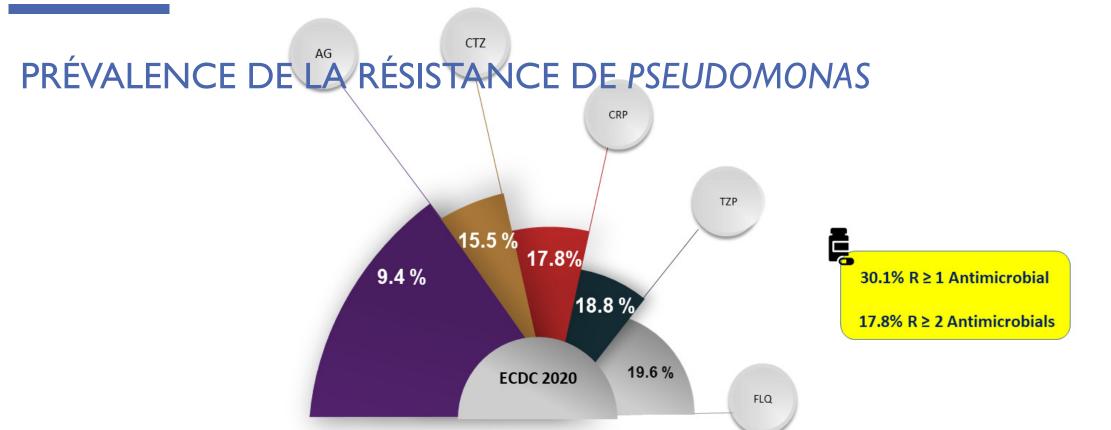
Evolution de la résistance chez *P. aeruginosa* en France

En Réanimation

	2011	2012	2013	2014	2015	2016	2017	
	(<i>n</i> =1 113)	(<i>n</i> =1 278)	(<i>n</i> =1 107)	(<i>n</i> =1 084)	(<i>n=</i> 2 075)	(<i>n</i> = 2 339)	(<i>n</i> =2 199)	
Ceftazidime ^R	28.5 %	23.6%	20.8%	17.1%	18.7%	19.4%	21.6%	
lmipénème ^R	22.6 %	23.4%	24.6%	19.7%	18.4%	23.3%	19.6%	

Réseau REA-Raisin

 $- CAZ^{R} = 18.2\%$


 $- IMP^{R} = 19.0\%$

 $- MER^{R} = 17.3\%$

2019: *n*= 41 748 souches **2020**: *n*= 47 958 souches $- CAZ^{R} = 14.5\%$ $-IMP^{R} = 15.2\%$ $- MER^{R} = 15.7\%$ **Répids** oublique

Mission SPARES, Mars 2022

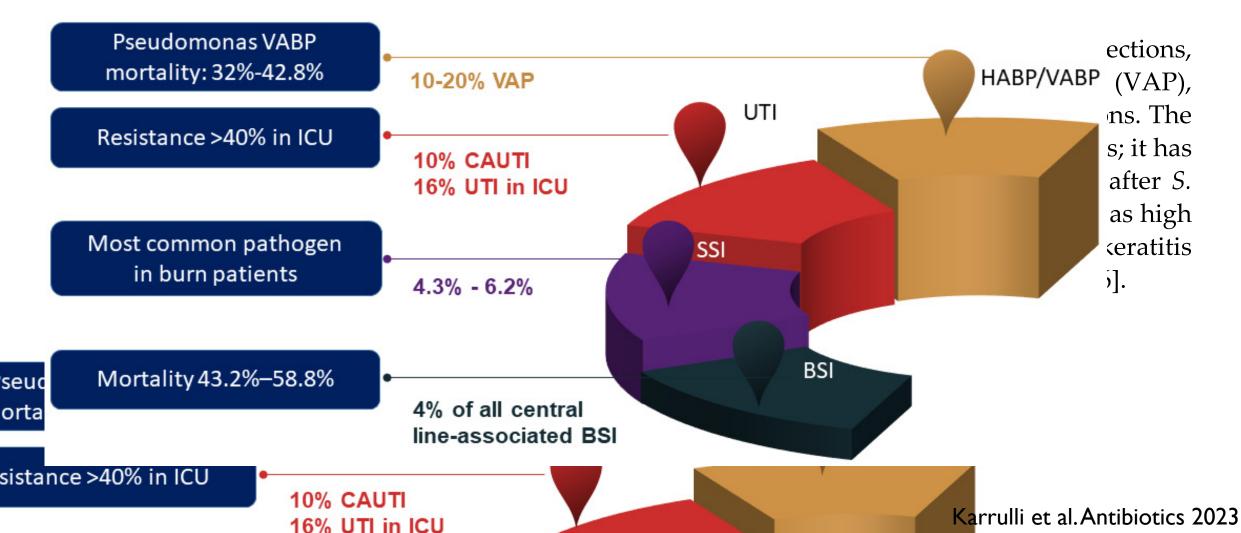
9.4 %

15. Figure 1, Prevalence of *Pseudomonas aerugino*, resistance to common antimicrobials/classes in Europe. Abbreviations: AG, aminoglycosides, CTZ, ceftazidime; CRP, carbapenems; FLQ, fluoroquinolones; TZP, piperacillin-tazobactam; R, resistant, ECDC, European Centre for Disease Prevention **18.8** % crol; R, resistant [12].

17.8% R ≥ 2 Antimicrobials

Usually, the most common infections due to PA are respiratory tract infections, including hospital acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP), urinary tract infections (UTI), bloodstream (BSI), and skin and soft tissue infections. The most common types of *P. aeruginosa* infection are lower respiratory tract infections; it has a prevalence of 10–20% in VAP, which is the second most common pathogen after *S. aureus*. Mortality in VAP and bloodstream infections due to *P. aerugi* (carred) is the second most common pathogen after *S*.

DÉFINITIONS RÉSISTANCE


MDR : R au moins I molécule parmi
3 familles

 XDR : R à au moins 1 molécule dans toutes les familles sauf 2

PDR : R à tout

 DTR : Difficult to treat *P. aeruginosa* : R aux bétalactamines + FQ (ceftazidime, cefepime, piperacilline tazobactam, imipeneme-cilastatien, meropeneme, ciprofloxacine, levofloxacine, et aztreonam)

INFECTION Service of Oservation and Service of Oservation and Service and Service of Oservation Europe. Abbreviations: AG, aminoglycosides; CTZ, ceftazidime; CRP, carbapenems; FLQ, fluoroquinolones; TZP, piperacillin-tazobactam; R, resistant, ECDC, European Centre for Disease Prevention and Control; R, resistant [12].

SENSIBLES A FORTE POSOLOGIE ?

Molécules antibiotiques	S	R	Interprétation Souche Sauvage
	(mg/L)		à partir de 2019
Pipéracilline/tazobactam	0,001	16	I ou SFP
Ceftazidime	0,001	8	I ou SFP
Ceftazidime/avibactam	8	8	S
Ceftolozane/tazobactam	4	4	S
Céfépime	0,001	8	I ou SFP
Imipénème	0,001	4	l ou SFP
Méropénème	2	8	S
Céfidérocol	2	2	S
Ciprofloxacine	0,001	0,5	l ou SFP
Amikacine	16	16	S
Tobramycine	2	2	S
Colistine	2	2	S

SENSIBLES A FORTES POSOLOGIE !

Molécules	Posologie standard	Forte posologie
Piperacilline-tazobactam	4gX3/j IV	4gX4/j IV
Ticarcilline	3gX4∕j IV	3gX6/j IV
Ceftazidime	IgX3/j IV	2gX3/j IV ou IgX6/j IV
Imipénème	0,5X4/j IV	IgX4/j IV
Méropénème	IgX3/j IV	2gX3/j IV (3h)
CPF	500mgX2/j po	750mgХ2/ј ро

FACTEURS DE RISQUE DE RÉSISTANCE

AND/

OR

PATIENT RISK FACTORS

CRITICALLY ILL OR SEPTIC SHOCK

Associated Comorbidities:

- Diabetes
- COPD
- Moderate/severe renal/liver disease
- Immunosuppression/neutropenia
- Elderly
- Solid tumor
- Structural lung disease
- Trauma
- Organ transplantation
- Hemodialysis

<u>AND/</u> OR

Risk factors for P. aeruginosa

- Receipt of broad-spectrum antimicrobial therapy in last 90 days (mainly cephalosporines, fluoroquinolones or carbapenems)
- History of prolonged hospitalization and/or LTCFs
- Invasive devices
- Immunosuppression
- current or prior ICU admission

CEFTOLOZANE TAZOBACTAM

CEFTOLOZANE TAZOBACTAM

- Avantages
- Moins affectée par système d'efflux et imperméabilité
- Meilleur affinité pour PBPs (PBP1b, PBP1c et PBP3)
- Peu d'hydrolyse par AmpC

Limites

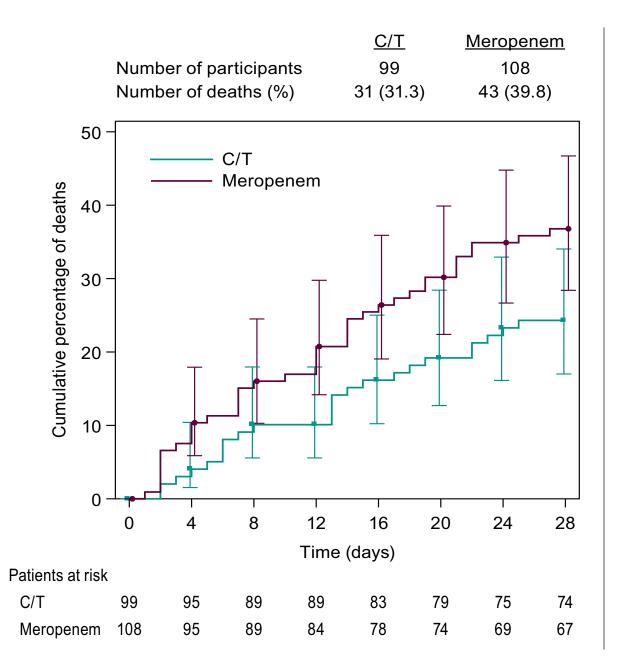
Résistance in vivo rapportée

Par hyper expression ou modification de l'AmpC chromosomique

Et acquisition horizontale de béta lactamase

Pas d'activité sur bactérie sécrétrices de carbapénémase

RESEARCH


Open Access

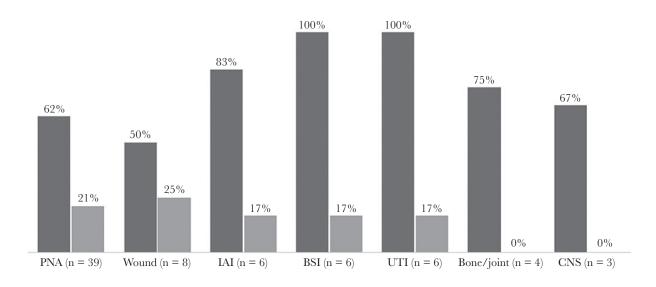
Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial

Jean-François Timsit¹, Jennifer A. Huntington², Richard G. Wunderink³, Nobuaki Shime⁴, Marin H. Kollef⁵, Ülo Kivistik⁶, Martin Nováček⁷, Álvaro Réa-Neto⁸, Ignacio Martin-Loeches^{9,10}, Brian Yu², Erin H. Jensen², Joan R. Butterton², Dominik J. Wolf², Elizabeth G. Rhee² and Christopher J. Bruno^{2*}

- Sous groupe d'ASPECT-NP : PAVM
- 99 patients sous ceftolozane/tazobactam vs 108 sous méropénem
- Analyse ajustée sur facteurs confondants : mortalité 2 X plus élevée avec méropénem vs ceftolozane tazobactam

Facteurs de mauvais pronostic en analyse
BMG ariée : vasopresseur et bactériémie

Critical Care 2021


Open Forum Infectious Diseases

MAJOR ARTICLE

A Multicenter Evaluation of Ceftolozane/Tazobactam Treatment Outcomes in Immunocompromised Patients With Multidrug-Resistant *Pseudomonas aeruginosa* Infections Delaney E. Hart,¹ Jason C. Gallagher,² Laura A. Puzniak,³ and Elizabeth B. Hirsch¹: for the C/T Alliance to deliver Real-world Evidence (CARE)

Clinical cure All-cause 30-day mortality

- Etude rétrospective multicentrique (n=14)
- Patients immunodéprimés traités ≥24 avec C/T
- P. aeruginosa MDR
- 66 patients
- USI : 46%
- Infection respiratoire : 56%
- Mortalité J30 : 19%

Outcome

Clinical cure, all infection sources ($n = 69$), No. (%) 4	47 (68)						
Clinical cure, all infection sources (n = 69), No. (%)							
Pneumonia, receiving pneumonia dosing (n = 28) 2	21 (75)						
Pneumonia, receiving nonpneumonia dosing (n = 10)	3 (30)						
30-d all-cause mortality, all infection sources (n = 69), No. (%) 1	13 (19)						
Pneumonia, receiving pneumonia dosing (n = 28)	5 (18)						
Pneumonia, receiving nonpneumonia dosing (n = 10)	3 (30)						
Length of C/T therapy, mean ± SD, d 13	3 ± 11						
Length of hospital stay, median (IQR), d 3	38 (54)						

Open Forum Infectious Diseases

MAJOR ARTICLE

Cefiderocol Activity Against Clinical *Pseudomonas aeruginosa* Isolates Exhibiting Ceftolozane-Tazobactam Resistance

Patricia J. Simner,¹ Stephan Beisken,² Yehudit Bergman,¹ Andreas E. Posch,² Sara E. Cosgrove,^{3,0} and Pranita D. Tamma^{4,0}

		TOL-TAZ MIC, mcg/mL		CAZ-AVI MIC, mcg/mL		IMI-REL MIC, mcg/ mL		Cefiderocol MIC, mcg/ mL	
Isolate ^b	Clinical Summary ^c	а	b	а	b	а	b	а	b
12a-b	16 yo M, ventilator-dependent with <i>P. aeruginosa</i> pneu- monia. Received TOL-TAZ 3g q8h × 6d (no HD); other β-lactams: meropenem (7d). Alive at day 30: yes.	4	2	32	4	8	8	0.25	0.25
13a-b	53 yo M, 60% body surface area burns with <i>P. aeruginosa</i> pneumonia. Received TOL-TAZ 3g q8h × 6d (no HD); other β-lactams: meropenem (10d). Alive at day 30: no.	1	0.5	16	4	4	4	0.5	0.5
14a-b	55 yo F, anoxic brain injury with <i>P. aeruginosa</i> pneu- monia. Received TOL-TAZ 3g q8h × 7d (no HD); other β-lactams: meropenem (3d). Alive at day 30: yes.	2	8	16	16	8	4	0.5	1
15a-b	74 yo M, ventilator-dependent with <i>P. aeruginosa</i> pneu- monia. Received TOL-TAZ 3g q8h × 6d (HD); other β-lactams: none. Alive at day 30: yes.	1	256	2	256	4	32	0.12	0.25
16a-b	65 yo M, ventricular assist device with <i>P. aeruginosa</i> bac- teremia and device-associated infection, device not removed. Received TOL-TAZ 3g q8h × 16d (HD); other β-lactams: meropenem (1d). Alive at day 30: yes.	1	256	8	32	32	4	0.12	1

- Mutations dans région AmpC-AmpR associées à résistance à ceftolozanetazobactam (TOL-TAZ) et ceftazidimeavibactam (CAZ-AVI)
- 32 paires d'isolats de 16 patients
 - isolats index de P. aeruginosa sensibles à TOL-TAZ
 - isolats après traitement par TOL-TAZ
- 4/16 paires : **7** ≥4x CMI au cefiderocol
- Mutations AmpC E247K : 7 ≥4x CMI à TOL-TAZ et CAZ-AVI + ≥4x CMI à IMI-REL
- Altérations sites de liaison d'AmpC βlactamases dérivées de P. aeruginosa :
 - Peuvent réduire l'activité de 3 sur 4 nouveaux β-lactamines (ie, ceftolozanetazobactam, ceftazidime-avibactam, et cefiderocol)
 - Peuvent augmenter susceptibilité à imipenem-relebactam

CEFTAZIDIME AVIBACTAM

Avantages

- Avibactam inhibe les betalactamases de classe A (KPC), AmpC, and OXA-48.
- Avibactam active in vitro vis-à-vis des enzymes GES.
- ERACE-PA global study : montre sensibilité à ceftazidime-avibactam
 - 91% des pyo Carba S
 - 72% des pyo Carba R

Limites

Pas d'activité sur métallo beta lactamase

Plus affectée par systèmes d'efflux et imperméabilité des porines que Ceftolozane tazobactam

Emergence de résistance chez KPC

MEROPENEM VABORBACTAM

Avantages

Même activité que meropénem vis-à-vis de Pseudomonas aeruginosa

Vaborbactam inhibe beta-lactamases de classe A (KPC, TEM, SHV) et C,

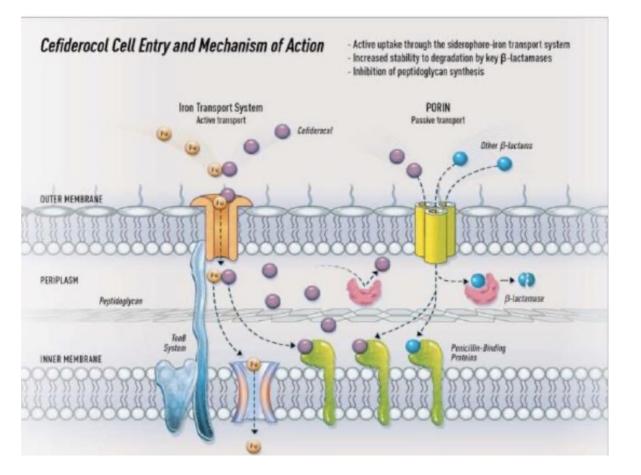
Limites

Même activité que meropénem vis-à-vis de Pseudomonas aeruginosa La résistance de P. aeruginosa au meropeneme surtout due aux systèmes d'efflux et aux beta lactamase de classe B et D

IMIPENEME RELEBACTAM

Avantages

Relebactam (diazabicyclooltane) Inhibe les beta lactamase de classe A et C


Actifs sur certaines souches R au ceftolozane tazobactam et cetazidime avibactam

Limites

Pas d'activité vis-à-vis des MBL

CEFIDEROCOL

CEFIDEROCOL

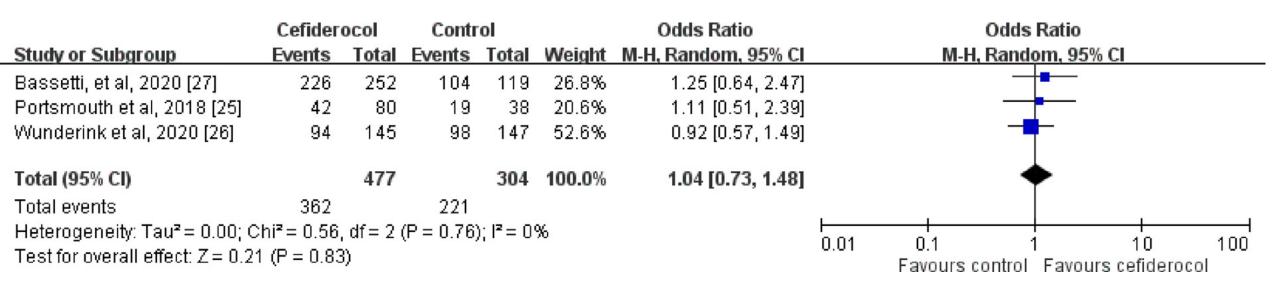
- Céphalosporine type sidérophore
- Liaison au fer ferrique transporté dans les cellules bactériennes
- Peu affectée par système efflux
- Stable vis-à-vis d'AmpC et MBL

JAC Antimicrob Resist doi:10.1093/jacamr/dlab081

JAC-Antimicrobial Resistance

In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in France

Thierry Naas 💿 ^{1,2,3}*, Gerard Lina^{4,5}, Anne Santerre Henriksen 💿 ⁶, Christopher Longshaw⁷ and Francois Jehl⁸


		All isolate	S		NP			cUTI			BSI			cIAI	
Pathogen	n	Ν	%S	n	Ν	%S	n	Ν	%S	n	Ν	%S	n	Ν	%S
Enterobacterales	1330	1344	99.0	344	344	100	383	388	98.7	166	172	96.5	300	302	99.3
E. coli	322	324	99.4	48	48	100	104	105	99.0	38	38	100	114	115	99.1
K. pneumoniae	260	266	97.7	65	65	100	101	103	98.1	35	37	94.6	43	44	97.7
Klebsiella oxytoca	96	96	100	24	24	100	17	17	100	13	13	100	31	31	100
K. aerogenes	90	91	98.9	40	40	100	17	18	94.4	14	14	100	11	11	100
Klebsiella variicola	18	18	100	5	5	100	5	5	100	1	1	100	5	5	100
E. cloacae	89	90	98.9	13	13	100	24	24	100	13	14	92.9	21	21	100
Enterobacter asburiae	9	11	81.8	2	2	100	1	2	50.0	2	3	66.7	1	1	100
Serratia spp.	167	167	100	90	90	100	20	20	100	30	30	100	10	10	100
Citrobacter spp.	137	139	98.6	28	28	100	55	55	100	15	17	88.2	32	32	100
Proteus spp.	89	89	100	17	17	100	27	27	100	3	3	100	19	19	100
M. morganii	37	37	100	11	11	100	3	3	100	1	1	100	12	12	100
Providencia rettgeri	16	16	100	1	1	100	9	9	100	1	1	100	1	1	100
Non-fermenters	681	683	99.7	337	338	99.7	105	105	100	92	93	98.9	62	62	100
P. aeruginosa	341	341	100	166	166	100	42	42	100	30	30	100	54	54	100
Pseudomonas otitidis	1	1	100	_	_		_	_		_	_		1	1	100
A. baumannii	159	161	98.8	66	67	98.5	34	34	100	32	33	97.0	1	1	100
other Acinetobacter spp.	71	71	100	23	23	100	23	23	100	17	17	100	2	2	100
S. maltophilia	103	103	100	78	78	100	6	6	100	11	11	100	4	4	100
Burkholderia spp.	6	6	100	4	4	100	_	_		2	2	100	_	_	
Total	2011	2027	99.2	681	682	99.9	488	493	99.0	258	265	97.4	362	364	99.5

- Programme de surveillance SIDERO WT
- Collection des souches de 2014-2018
- 10 laboratoires en France
- Sensibilité en microdilution
- Selon Guidelines/break point EUCAST

ESSAIS CLINIQUES

Essais	Design	Durée de	Sites	Indications	N de p	atients	Posologie		
Essais	l'étuc		Siles	muicacions	Cefiderocol	Comparateur	Cefiderocol	Comparateur	
Portsmouth et <i>al</i> .	Non infériorité double aveugle (phase 2)	2015-2016	65 hôpitaux I5 pays	IU compliquées	300	148	2g X3 (1h) 7-14j	lmipenème cilastatine Ig X3 (1h) 7-14j	
APEKS-NP Wunderink et al	Non infériorité double aveugle (phase 3)	2017-2019	76 hôpitaux 17 pays	Pneumonies nosocomiales à BGN	148	150	2g X3 (3h) 7-14j	Méropénème 2g X3 (3h) 7-14j	
CREDIBLE-CR Basseti et al	Essai randomisé descriptif ouvert ciblé sur le pathogène	2016-2019	95 hôpitaux 16 pays	Pneumonies nosocomiales, bactériémies, sepsis, IU compliquées	101	49	2g X3 (3h) 7-14j	Meilleur traitement disponible 7-14j	

ESSAIS RANDOMISÉS

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

	Cefiderocol (n=101)	Best available therapy (n=49)
Sex		
Male	66 (65%)	35 (71%)
Female	35 (35%)	14 (29%)
Age (years)		
Mean (SD)	63.1 (19.0)	63.0 (16.7)
Clinical diagnosis		
Nosocomial pneumonia	45 (45%)	22 (45%)
HAP	20 (20%)	7 (14%)
VAP	24 (24%)	13 (27%)
HCAP	1(1%)	2 (4%)
Bloodstream infections or sepsis†	30 (30%)	17 (35%)
Bloodstream infection	22 (22%)	9 (18%)
Complicated intra- abdominal infection	3 (3%)	2 (4%)
Skin and skin structure infection	1(1%)	0
Intravenous line infection	4 (4%)	2 (4%)
Other‡	5 (5%)	1 (2%)
Unknown	9 (9%)	4 (8%)
Sepsis	8 (8%)	8 (16%)
Complicated intra- abdominal infection	2 (2%)	1 (2%)
Skin and skin structure infection	4 (4%)	3 (6%)
Intravenous line infection	0	3 (6%)
Other‡	2 (2%)	1 (2%)
Complicated urinary tract infection	26 (26%)	10 (20%)

- Essai clinique ouvert, randomisé avec un contrôle actif (2:1) et une analyse descriptive
- Patients en état critique et souffrant d'infections diverses (IU, PN, BSI) résistantes aux carbapénèmes
- 29 régimes de contrôle différents utilisés dans 95 centres

	Cefiderocol (n=101)	Best available therapy (n=49)
(Continued from previous colu	umn)	
Creatinine clearance (mL/min))	
Mean (SD),	85.8 (79.3)	88.9 (64.2)
Median (range; IQR)	59·2 (9·4–539·26; 33·9–107·9)	69·4 (4·6–270·8; 47·6–119·8)
Empirical treatment failure	58 (57%)	27 (55%)
Previous therapy§		
Antibiotics¶	93 (92%)	49 (100%)
Carbapenems	60 (59%)	26 (53%)
Systemic corticosteroids	44 (44%)	17 (35%)
ICU at randomisation	57 (56%)	21 (43%)
Shock	19 (19%)	6 (12%)
Immunocompromised	27 (27%)	10 (20%)
Positive blood culture	25 (25%)	13 (27%)
APACHE II score		
Mean (SD)	15·3 (6·5)	15.4 (6.2)
Median (range; IQR)	15 (2–29; 11–20)	14 (2–28; 11–20)
≤15	55 (54%)	27 (55%)
16–19	17 (17%)	9 (18%)
≥20	29 (29%)	13 (27%)

	Cefiderocol (n=80)	Best available therapy (n=38				
Number of carbapenem-resis appropriate specimens*	. ,					
One	62 (78%)	30 (79%)				
Two	13 (16%)	8 (21%)				
Three	4 (5%)	0				
Four	1(1%)	0				
Type of carbapenem-resistant Gram-negative pathogen						
All patients	N=87†	N=40‡				
Acinetobacter baumannii	37 (46%)	17 (45%)				
Klebsiella pneumoniae	27 (34%)	12 (32%)				
Pseudomonas aeruginosa	12 (15%)	10 (26%)				
Stenotrophomonas maltophilia	5 (6%)	0				
Acinetobacter nosocomialis	2 (3%)	0				
Enterobacter cloacae	2 (3%)	0				
Escherichia coli	2 (3%)	1(3%)				

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

- PN: Guérison clinique dans le groupe céfidérocol 50.0% (20/40) vs 52.6% (10/19)
- BSI/Sepsis : Guérison clinique dans le groupe céfidérocol 43.5% (10/23) vs 42.9% (6/14)
- IU : Eradication microbiologique dans le groupe céfidérocol 52.9% (9/17) vs 20.0% (1/5)
- Mortalité J28 (toute cause): 33% (13/40) dans le groupe cefiderocol vs 16% (3/19)

	Nosocomial p	oneumonia	Bloodstream sepsis	infections or	Complicated infections	urinary tract	Overall	
	Cefiderocol (n=40)	Best available therapy (n=19)	Cefiderocol (n=23)	Best available therapy (n=14)	Cefiderocol (n=17)	Best available therapy (n=5)	Cefiderocol (n=80)	Best available therapy (n=38)
Clinical outcome	5							
End of treatment								
Clinical cure	24 (60%; 43·3–75·1)	12 (63%; 38·4-83·7)	16 (70%; 47·1–86·8)	7 (50%; 23·0–77·0)	13 (77%; 50·1–93·2)	3 (60%; 14·7–94·7)	53 (66%; 54·8–76·4)	22 (58%; 40·8–73·7)
Clinical failure	13 (33%)	7 (37%)	6 (26%)	7 (50%)	1(6%)	1 (20%)	20 (25%)	15 (40%)
Indeterminate	3 (8%)	0	1 (4%)	0	3 (18%)	1 (20%)	7 (9%)	1(3%)
Test of cure								
Clinical cure*	20 (50%; 33·8–66·2)	10 (53%; 28·9–75·6)	10 (43%; 23·2–65·5)	6 (43%; 17·7–71·1)	12 (71%; 44·0–89·7)	3 (60%; 14·7–94·7)	42 (53%; 41·0–63·8)	19 (50%; 33·4–66·6)
Clinical failure	16 (40%)	6 (32%)	9 (39%)	7 (50%)	2 (12%)	1 (20%)	27 (34%)	14 (37%)
Indeterminate	4 (10%)	3 (16%)	4 (17%)	1 (7%)	3 (18%)	1 (20%)	11 (14%)	5 (13%)
Follow-up								
Sustained clinical cure	20 (50%; 33·8–66·2)	6 (32%; 12·6–56·6)	9 (39%; 19·7–61·5)	4 (29%; 8·4–58·1)	9 (53%; 27·8–77·0)	3 (60%; 14·7–94·7)	38 (48%; 36·2–59·0)	13 (34%; 19·6–51·4)
Relapse	0	3 (16%)	1(4%)	1 (7%)	1(6%)	0	2 (3%)	4 (11%)
Clinical failure	16 (40%)	6 (32%)	9 (39%)	7 (50%)	2 (12%)	1 (20%)	27 (34%)	14 (37%)
Indeterminate	4 (10%)	4 (21%)	4 (17%)	2 (14%)	5 (29%)	1 (20%)	13† (16%)	7† (18%)

MORTALITÉ SELON BACTÉRIE

	Cefiderocol n/N (%) (95%IC (%))	MTD n/N (%) (95%IC (%))
Tous les patients	34/101 (33,7) (24,6- 43,8)	10/49 (20,4) (10,2-34,3)
Patients avec une infection à Acinetobacter spp.	21/42 (50) (34,2- 65,8)	3/17 (17,6) (3,8-43,4)
Patients avec une infection sans Acinetobacter (comprenant entérobactéries ou P. aeruginosa)	3/59 (22) (2,3-34,7)	6/32 (18,8) (7,2- 36,4)
Entérobactérales P. aeruginosa	6/28 (21,4) 2/11 (18,2)	4/15 (26,7) 2/11 (18,2)

*Parmi ces patients, 30% (16) avaient des souches ayant une CMI au méropénème supérieure à 64 mg/L. Bassetti 2020 Lancet ID et rapport de l'étude CREDIBLE-CR; 2: Wunderick 2020 Lancet ID

MDPI

Brief Report Susceptibility Testing Is Key for the Success of Cefiderocol **Treatment: A Retrospective Cohort Study**

Alexandre Bleibtreu ¹, Laurent Dortet ^{2,3}, Remy A. Bonnin ^{2,3}, Benjamin Wyplosz ⁴, Sophie-Caroline Sacleux ⁵, Liliana Mihaila ², Hervé Dupont ⁶, Helga Junot ⁷, Vincent Bunel ⁸, Nathalie Grall ^{9,10}, Keyvan Razazi ¹¹, Clara Duran ¹², Pierre Tattevin ¹³, Aurélien Dinh ^{12,*} and on behalf of the Cefiderocol French Study Group [†]

Patient	I	2	3	4	5	6	7	7	8	9	10	П	12
Type d'infection	Respiratoire	Vasculaire	Respiratoire + Abdominale + Vasculaire	Respiratoire	Respiratoire	IPOA	Respir	atoire	Respiratoire + Abdominale	Respiratoire	Respiratoire + Urinaire	IOA + cutanée	Respiratoire
Isolat	P. aeruginosa	A. baumannii	A. baumannii	P. aeruginosa	P. aeruginosa	Enterobacter hormaechei	K. pneumoniae	P. aeruginosa	P. aeruginosa	P. aeruginosa	P. aeruginosa	P. aeruginosa	P. aeruginosa
Carbapénémase	VIM-4	OXA-23	OXA-23	-	VIM-2	-	OXA-48	NDM-I	VIM-2	OXA-836	-	VIM-2	-
Céfiderocol	S (2)	S (I)	S (0.5)	S (4)	S (2)	S (I)	S (0.5)	S (4)	l (8)	R (16)	R (16)	R (>32)	R (16)
Outcome	Guérison	Guérison	Guérison	Guérison	Guérison	Guérison	Ech	iec	Décès (infection)	Décès (infection)	Echec	Echec	Traitement suppressif

MONOVS BITHÉRAPIE

Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to *Pseudomonas aeruginosa*: a meta-analysis

Lorenzo Onorato^a, Margherita Macera^a, Federica Calò^a, Paolo Cirillo^b, Giovanni Di Caprio^b, Nicola Coppola^{a,*}

Study		%
ID	RR (95% CI)	Weigh
30-day		
Del Favero, 2001	0.61 (0.08, 4.52)	1.02
Chamot, 2003	1.37 (0.76, 2.46)	10.04
Pena, 2013	0.87 (0.57, 1.32)	17.00
Kim 2017	◆ 2.79 (1.07, 7.28)	4.22
Ripa 2017	• 1.81 (0.89, 3.67)	7.26
Paulsson, 2017	0.68 (0.32, 1.42)	6.66
Yoon, 2017	■ 2.83 (0.43, 18.70)	1.14
Subtotal (I-squared = 41.1%, p = 0.117)	> 1.23 (0.83, 1.82)	47.33
In hospital		
Leibovici 1997	1.22 (0.66, 2.24)	9.43
Todeschini, 1998	0.90 (0.39, 2.06)	5.47
Micek, 2006	0.57 (0.28, 1.17)	7.17
Garnacho-montero 2007	1 .05 (0.63, 1.73)	12.78
Tschudin-Sutter 2018	- 0.69 (0.27, 1.75)	4.48
Pilmis 2020	1.00 (0.48, 2.08)	6.77
Subtotal (I-squared = 0.0%, p = 0.672)	0.93 (0.70, 1.22)	46.11
. 1		
14-day		
Kim 2014	1.32 (0.62, 2.79)	6.56
Subtotal (I-squared = .%, p = .)	1.32 (0.62, 2.79)	6.56
Overall (I-squared = 12.3%, p = 0.319)	1.06 (0.86, 1.30)	100.00
NOTE: Weights are from random effects analysis		
.05 1	1 5	
	irs combination	

Figure 2. Forest plot of RRs of mortality in patients treated with empirical combination or monotherapy

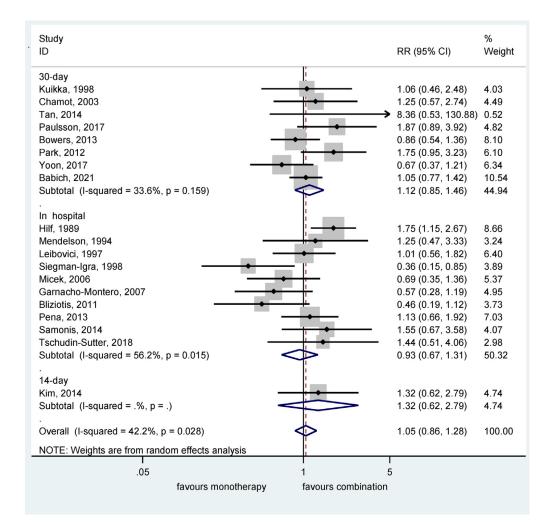


Figure 3. Forest plot of RRs of mortality in patients treated with definitive combination or monotherapy

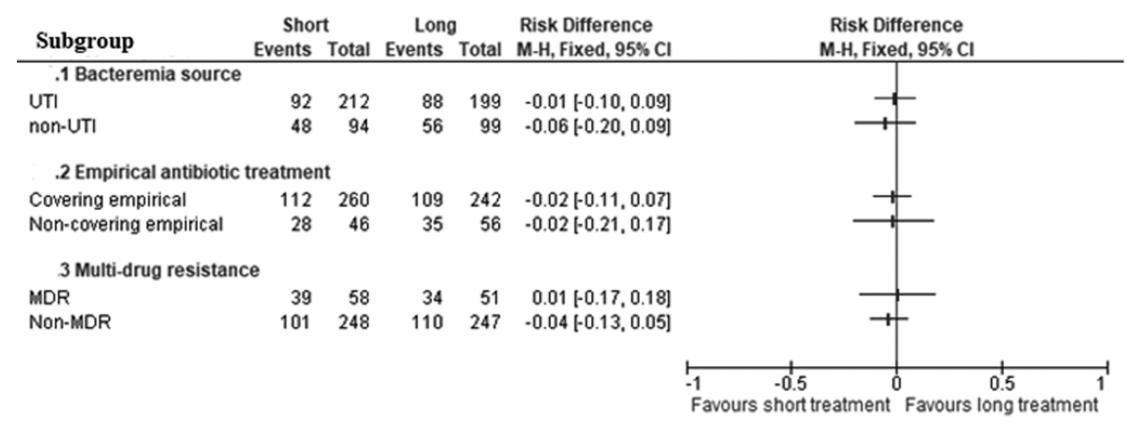
DURÉE DE TRAITEMENT

Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial

RCT ouvert Non infériorité(10%)

Bactériémie à BGN stable depuis 48h (source control)

7j vs 14j ATB


Critère composite principal à J90: mortalité toute cause, récidive, autre localisation septique, ré admission, hospitalisation prolongée.

Non infériorité démontrée

D.Yahav et al. CID 2019

Variable	Short-duration Arm (7 d) (n = 306)	Long-duration Arm (14 d) (n = 298)
Patient characteristics		
Age, y, median (IQR)	71 (61.8–81)	71 (61–80)
Sex, female	156 (51.0)	163 (54.7)
mmunosuppression ^a		
Any	69 (22.5)	81 (27.2)
Solid organ transplantation	25 (8.2)	26 (8.7)
Stem cell transplantation	2 (0.7)	3 (1.0)
Presentation of infection		
SOFA score at presentation, median (IQR)	2 (1–3)	2 (1–3)
Leukocytes at presentation, cells/ μ L, median (IQR)	10.6 (7.4–15.4) (n = 306)	11.3 (7.8–15.2) (n = 297
Creatinine at presentation, mg/dL, median (IQR)	1.2 (0.9–1.7) (n = 304)	1.3 (0.8–1.8) (n = 297
Albumin at presentation, g/dL, median (IQR)	3.3 (2.7–3.8) (n = 195)	3.3 (2.9–3.8) (n = 197
SOFA score at randomization, median (IQR)	1 (0–2)	1 (0–2)
Systolic blood pressure at randomization, mm Hg, median (IQR)	128.0 (115.0–144.3)	126.0 (110.0–140.0)
Temperature at randomization, °C, median (IQR)	36.8 (36.6–37.1) (n = 304)	36.8 (36.6–37.0) (n = 298
Appropriate empirical therapy administered within 48 h	260 (85.0)	242 (81.2)
Bacteria type ^c		
Escherichia coli	186 (60.8)	194 (65.1)
Klebsiella spp	47 (15.3)	33 (11.1)
Other Enterobacteriaceae	40 (13.1)	43 (14.4)
Acinetobacter spp	2 (0.7)	4 (1.3)
Pseudomonas spp	28 (9.2)	20 (6.7)
Other	3 (1)	4 (1.3)
MDR gram-negative bacteremia ^d	58 (18.9)	51 (17.1)
Source of bacteremia		
Urinary tract	212 (69.3)	199 (66.8)
Primary bacteremia	23 (7.5)	28 (9.4)
Abdominal	37 (12.1)	34 (11.4)
Respiratory	14 (4.6)	10 (3.4)
Central venous catheter	15 (4.9)	23 (7.7)
Skin and soft tissue	5 (1.6)	4 (1.3)

Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial

D.Yahav et al. CID 2019

Bactériémies non compliquées sans porte d'entrée retrouvée

- Bacilles à Gram négatif (dont entérobactéries et BGN non fermentant), streptocoques, entérocoques : 7 jours
- Staphylococcus aureus et Staphylococcus lugdunensis : 14 jours

Synthèse réalisée le 10 Mars 2021 par la SPILF

Comparison of 8 versus 15 days of antibiotic therapy for *Pseudomonas aeruginosa* ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial

Adrien Bouglé^{1*}, Sophie Tuffet², Laura Federici³, Marc Leone⁴, Antoine Monsel⁵, Thomas Dessalle¹, Julien Amour¹, Claire Dahyot-Fizelier⁶, François Barbier⁷, Charles-Edouard Luyt⁸, Olivier Langeron⁵, Bernard Cholley¹⁰, Julien Pottecher¹¹, Tarik Hissem¹², Jean-Yves Lefrant¹³, Benoit Veber¹⁴, Matthieu Legrand¹⁵, Alexandre Demoule⁹, Pierre Kalfon¹⁶, Jean-Michel Constantin¹⁷, Alexandra Rousseau², Tabassome Simon² and Arnaud Foucrier¹⁸ on behalf of the iDIAPASON Trial Investigators

Outcome or event	15-day group (<i>N</i> = 98)	8-day group (<i>N</i> = 88)	Difference (90% Cl)
Death or PA-VAP recurrence rate at day 90 during hospitalization in the ICU in ITT population—no. (%)	25/98 (25.5)	31/88 (35.2)	9.7% (- 1.9-21.2%)
Death or PA-VAP recurrence rate at day 90 during hospitalization in the ICU in PP population—no. (%)	22/80 (27.5)	29/72 (40.3)	12.8% (— 0.4–25.6%)
PA-VAP recurrence rate during hospitalization in the ICU in ITT population— no. (%)	9/98 (9.2)	15/88 (17)	7.9% (— 0.5–16.8%)

Pseudomonas aeruginosa bloodstream infections (SHORTEN-2 trial) José Molina^{1,2,3}, Clara María Rosso-Fernández⁴, Enrique Montero-Mateos⁵, José Ramón Paño-Pardo^{3,6,7}, María Solla^{1,4}, Ana Belén Guisado-Gil^{1,2,3,8}, Rocío Álvarez-Marín^{1,2,3}, María Eugenia Pachón-Ibáñez^{1,2,3}, Adelina Gimeno^{1,2,3}, Guillermo Martín-Gutiérrez^{1,2,3}, José Antonio Lepe^{1,2,3}, José Miguel Cisneros^{1,2,3*}, on behalf of the SHORTEN-2 trial team[¶] Check for FOLLOW-UP SCREENING (Up to day +7) V1* V4 V3 V2 Experimental End of End of Test Follow-up group follow-up of cure treatment 30 days V0 Day +0 Randomization Day +1 Day 6 (+/-1) Pseudomonas **Blood cultures** obtained aeruginosa V1* V4 **V**3 **V2** identified in blood Control End of End of Empirical Test cultures Follow-up antibiotic group follow-up treatment of cure treatment starts 30 days Day+6 Day +0 Day+7 Day +37 Day +44 Day +14 Day +21 Day +90 (up to day+7)

DURÉE DE TRAITEMENT

STUDY PROTOCOL

Study protocol for a randomized clinical trial

to assess 7 versus 14-days of treatment for

Assessment of total number of days of antibiotic treatment until de end of the follow-up

* Antibiotic treatment will be stopped at this point if the patient remain apyretic and without symptoms of infection for at least 72 hours. Antibiotic treatment could be resumed after this point whenever considered necessary by the clinician in charge of the patient if an unfavourable course was observed.

RECOMMANDATIONS

European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)

Mical Paul ^{1, 2, §}, Elena Carrara ^{3, §}, Pilar Retamar ^{4, 5}, Thomas Tängdén ⁶, Roni Bitterman ^{1, 2}, Robert A. Bonomo ^{7, 8, 9}, Jan de Waele ¹⁰, George L. Daikos ¹¹, Murat Akova ¹², Stephan Harbarth ¹³, Celine Pulcini ^{14, 15}, José Garnacho-Montero ¹⁶, Katja Seme ¹⁷, Mario Tumbarello ¹⁸, Paul Christoffer Lindemann ¹⁹, Sumanth Gandra ²⁰, Yunsong Yu ^{21, 22, 23}, Matteo Bassetti ^{24, 25}, Johan W. Mouton ^{26, †}, Evelina Tacconelli ^{3, 27, 28, *, §}, Jesús Rodríguez-Baño ^{4, 5, §}

Recommendation	Strength of recommendation	Level of evidence
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) Recommendations on the choice of antibiotic treatment for CRPA		
In patients with severe infections due to difficult to treat CRPA, we suggest therapy with ceftolozane-tazobactam if active <i>in vitro</i> . Insufficient evidence is available for imipenem-relebactam, cefiderocol and ceftazidime-avibactam at this time.	Conditional	Very low
In patients with non-severe or low-risk CRPA infections, under the consideration of antibiotic stewardship, we consider it good clinical practice to use the old antibiotics, chosen from among the <i>in vitro</i> active antibiotics on an individual basis and according to the source of infection.	Good practice statement	Expert opinion
Recommendations on combination therapy for CRPA		
Lacking evidence, we cannot recommend for or against the use of combination therapy with the new BLBLI (ceftazidime-avibactam and ceftolozane-tazobactam) or cefiderocol for CRPA infections.	No recommendation	
When treating severe infections caused by CRPA with polymyxins, aminoglycosides, or fosfomycin, we suggest treatment with two <i>in vitro</i> active drugs. No recommendation for or against specific combinations can be provided.	Conditional	Very low
In patients with non-severe or low-risk CRPA infections, under the consideration of antibiotic stewardship, we consider it good clinical practice to use monotherapy chosen from among the drugs active <i>in vitro</i> , on an individual basis and according to the source of infection.	Good practice statement	Expert opinion

Mica Paul et al CMI 2022

Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance (DTR-*P. aeruginosa*)

Pranita D. Tamma,¹ Samuel L. Aitken,² Robert A. Bonomo,³ Amy J. Mathers,⁴ David van Duin,⁵ and Cornelius J. Clancy⁶

Source of Infection	Preferred Treatment	Alternative Treatment if First-line Options not Available or Tolerated
Cystitis	Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, cefiderocol, or a single dose of an aminoglycoside	Colistin
Pyelonephritis or complicated urinary tract infection ^a	Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, and cefiderocol	Once-daily aminoglycosides
Infections outside of the urinary tract	Ceftolozane-tazobactam, ceftazidime-avibactam, or imipenem-cilastatin-relebactam	Cefiderocol Aminoglycoside monotherapy: limited to uncomplicated bloodstream infections with complete source control ^b

Pranita Tamma et al. CID 2021

Recommandations pour le traitement des infections dues à des Bacilles à Gram négatif multirésistants

Jeu de diapositives réalisé par le groupe recommandation de la SPILF le 07.09.2022 essentiellement à partir des recommandations de European Society of Clinical Microbiology and Infectious Diseases &

Infectious Diseases Society of America

Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

Traitement des infections graves

- Ceftolozane-tazobactam est recommandé
- En cas de résistance à Ceftolozane-tazobactam les alternatives sont : Imipénème-relebactam, Céfidérocol et Ceftazidime-avibactam.
- En l'absence d'autre alternative, Colimycine, Aminosides ou Fosfomycine peuvent être discutées sur avis spécialisé

Traitement des infections non graves

Ou pour les infections urinaires ou biliaires, bactériémiques ou non, après contrôle de la source

L'utilisation d'antibiotiques anciens, choisi parmi ceux actifs in-vitro, est de bonne pratique clinique, pour des considérations de politique de bon usage des antibiotiques.

Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

Associations d'antibiotiques

- En l'absence de données probantes, il n'est pas possible de recommander ou déconseiller l'utilisation d'associations avec les nouveaux BL/IBL (Ceftazidime-avibactam et Ceftolozanetazobactam) ou le Céfidérocol.
- En cas d'utilisation de Colimycine, Aminoside ou Fosfomycine, une association de 2 antibiotiques est recommandée.
 Aucune recommandation pour ou contre des combinaisons spécifiques ne peut être fournie.

Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

Ampicilline-sulbactam est le traitement de référence (forte dose : ampicilline 6g/sulbactam 3g IV toutes les 8h)

Traitement des infections graves ou à haut risque

Une association est recommandée, comportant 2 antibiotiques actifs in vitro en privilégiant une association à base d'Ampicilline-sulbactam, parmi :

- Ampicilline-sulbactam,
- Colimycine,
- Aminoglycosides,
- Tigécycline,
- Meropénème (si CMI< 8mg/L, à dose élevée en perfusion prolongée)

Les associations Colimycine-Carbapénèmes et Colimycine-Rifampicine ne sont pas recommandées.

Le Céfidérocol ne doit être utilisé qu'en l'absence d'autre alternative et en association.

Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

Traitement des infections non graves

Une monothérapie est possible

- Ampicilline-sulbactam est le traitement de référence
- Colimycine ou Tigécycline à forte dose peuvent être utilisées

WHICH WAY OF ADMINISTRATION?

 If you are going to use betalactams, always administer them with an extended or continuous infusion. This has proved to reduce mortality among patients with severe infections produced by *P. aeruginosa*.

CONTROL THE SOURCE

 Remove that catheter, drain that abscess... P. aeruginosa will learn fast, as it has a great ability to develop antibiotic resistance during treatments.

TRAITEMENT

AT LEAST ONE RISK FACTOR

EMPIRICAL THERAPY

BSI and VAP

Ceftolozane/tazobactam>ceftazidime/avibactam

OR

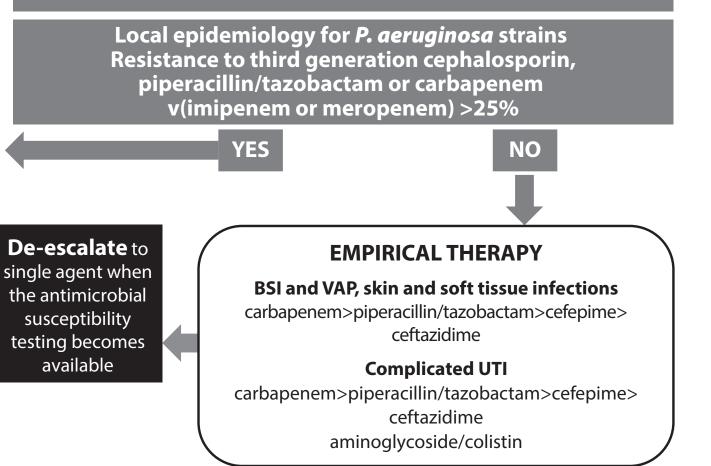
carbapenem>piperacillin/tazobactam>cefepime> ceftazidime

PLUS

aminoglycoside/colistin/fosfomycin

Complicated UTI or IAI

Ceftolozane tazobactam>ceftazidime/avibactam + metronidazole


OR

carbapenem>piperacillin/tazobactam or cefepime> ceftazidime ± metronidazole

PLUS

aminoglycoside/colistin/fosfomycin

NO RISK FACTORS

Basseti et al. Drug in Context 2018

WHICH AGENT?

 The letter "I" in antibiograms of *P. aeruginosa* does not mean "intermediate susceptibility" anymore; now it means "increase antibiotic exposure". This change affects only to some antibiotics.

 With the proper dose and administration, you can use any option in the antibiogram, as long as they are not categorized as "R" (resistant).

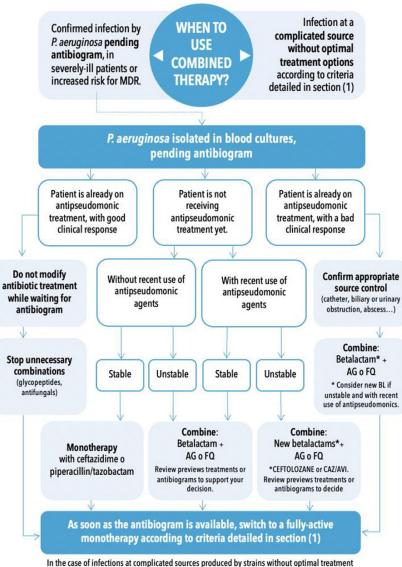
	MIC breakproint to consider a treatment as active (mg/L)		MIC breakproint to consider a treatment as active (mg/L)
Ciprofloxacin	≤0,5	Imipenem	≤4
Levofloxacin	≤1	Meropenem	≤8
Piperacillin/tazobactam	≤16	Meropenem-vaborbactam	≤8
Ceftazidime	≤8	Colistin	≤2
Cefepime	≤8	Amikacin	≤16
Ceftazidime/avibactam	≤8	Tobramicin	≤2
Ceftolozane/tazobactam	≤4	Aztreonam	≤16

 Avoid agents with a MIC value exactly on the breakpoint concentration (e.g. ceftazidime = 8 mg/L, piperacillin/tazobactam = 16 mg/L, etc.) in severe infections or complicated sources. The risk of treatment failure in these cases could be higher.

• Infections produced by *P. aeruginosa* require higher doses.

Agents currently approved by AEMPS	Anti-pseudomonic doses		
Fluorquinolones	Oral	Intravenous	
Ciprofloxacin	750 mg q12h	400 mg q8h	
Levofloxacin	500 mg q12h	500 mg q12h	
	4 g / 0.5 g q8h administered in 4h-extended infusion.		
Piperacillin/tazobactam	4 g / 0.5 g q6h in 4h-extended infusion in severe infections produced by strains resistant to ceftazdime or pneumonia.		
Ceftazidime, cefepime	2 g q8h		
Ceftazidime/avibactam	2 g q8h administered in 2 h		
Ceftolozane/tazobactam	1 g / 0.5 g q8h In case of pneumonia, recommended dose is 2 g / 1 g q8h		
Imipenem	1 g q6h		
Meropenem	MIC ≤2 mg/L: 1 g q8h MIC >2 mg/L and ≤8 mg/L: 2 g q8h administered in 3 h		
Meropenem- vaborbactam	2 g / 2 g q8h in 3h-extended infusion		
Colistin	4,5 MU q12h		
Amikacin	25-30 mg/kg q24h		
Tobramycin	6-7 mg/kg q24h		
Aztreonam	2 g q6h		

WHICH WAY OF ADMINISTRATION?



3

If you are going to use betalactams, always administer them with an extended or continuous infusion. This has proved to reduce mortality among patients with severe infections produced by *P. aeruginosa*.

4 MONOTHERAPY OR COMBINATION?

 If a fully-active agent is available, use it as a monotherapy. Combination therapy has not proved improved outcomes, but an increased risk of toxicity.

options according to these criteria, it may be recommendable to cotinue combination therapy

AG = Aminoglycoside (tobramycin or amikacin) FQ = Fluorquinolones CAZ/AVI: Ceftazidime/avibactam

 Remove that catheter, drain that abscess... P. aeruginosa will learn fast, as it has a great ability to develop antibiotic resistance during treatments.

References

- 0
- EUCAST Breakpoint tables for interpretation of MICs and zone diameters, version 10.0, 2021. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of 0 randomised trials. Vardakas et al. Lancet ID 2018.
- Impact of borderline minimum inhibitory concentration on the outcome of invasive infections caused by Enterobacteriaceae treated with β-lactams: a systematic review and meta-analysis. Torres et al. Eur J Clin Microbiol Infect Dis, 2015. 0
- Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to P. aeruginosa: a meta-analysis. Onorato L et al. Int J 0 Antimicrob Agents. Dec 2021;106512.

Recommandations pour le traitement des infections dues à des Bacilles à Gram négatif multirésistants

Jeu de diapositives réalisé par le groupe recommandation de la SPILF le 07.09.2022 essentiellement à partir des recommandations de European Society of Clinical Microbiology and Infectious Diseases &

Infectious Diseases Society of America

- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)
 Clinical Microbiology and Infection 28 (2022) 521e547
- Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and *Pseudomonas aeruginosa* with Difficult-to-Treat Resistance (DTR-*P. aeruginosa*) Clinical Infectious Diseases 2021;72(7):1109–16
- Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase- Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections

https://www.idsociety.org/globalassets/idsa/practice-guidelines/amr-guidance/2.0/idsa-amr-guidancev2.0.pdf updated March 2022 consulté le 08/06/2022

Ces recommandations concernent les traitements d'infections microbiologiquement documentées. Elles ne sont pas applicables aux antibiothérapies probabilistes.

La gravité est définie par la présence d'un sepsis ou d'un choc septique (définitions Sepsis3).

Sont considérés comme « nouveaux antibiotiques » ceux qui ont été règlementairement approuvés après 2010.

Les choix sont hiérarchisés selon les critères cliniques suivants :

- Gravité
- Localisation de l'infection : infection urinaire/biliaire ou non
- Sont exclues les infections osseuses, neurologiques, et sur matériel étranger.

La résistance aux antibiotiques ne change pas la durée du traitement.

Questions

- Quelle est l'antibiothérapie de choix pour traiter les infections à enterobacterales résistantes aux C3G (C3G-R) ?
- Quelle est l'antibiothérapie de choix pour traiter les infections à enterobacterales sensibles aux C3G, et à risque moyen ou haut de production d'AmpC ?
- Quelle est l'antibiothérapie de choix pour traiter les infections à enterobacterales résistantes aux carbapénèmes (ERC) ?
- Quelle est l'antibiothérapie de choix pour traiter les infections à Pseudomonas aeruginosa résistant aux carbapénèmes (CRPa) ?
- Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumanii résistant aux carbapénèmes (CRAB) ?

Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

Traitement des infections graves

- Ceftolozane-tazobactam est recommandé
- En cas de résistance à Ceftolozane-tazobactam les alternatives sont : Imipénème-relebactam, Céfidérocol et Ceftazidime-avibactam.
- En l'absence d'autre alternative, Colimycine, Aminosides ou Fosfomycine peuvent être discutées sur avis spécialisé

Traitement des infections non graves

Ou pour les infections urinaires ou biliaires, bactériémiques ou non, après contrôle de la source

L'utilisation d'antibiotiques anciens, choisi parmi ceux actifs in-vitro, est de bonne pratique clinique, pour des considérations de politique de bon usage des antibiotiques.

Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

Associations d'antibiotiques

- En l'absence de données probantes, il n'est pas possible de recommander ou déconseiller l'utilisation d'associations avec les nouveaux BL/IBL (Ceftazidime-avibactam et Ceftolozanetazobactam) ou le Céfidérocol.
- En cas d'utilisation de Colimycine, Aminoside ou Fosfomycine, une association de 2 antibiotiques est recommandée.
 Aucune recommandation pour ou contre des combinaisons spécifiques ne peut être fournie.

Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

Ampicilline-sulbactam est le traitement de référence (forte dose : ampicilline 6g/sulbactam 3g IV toutes les 8h)

Traitement des infections graves ou à haut risque

Une association est recommandée, comportant 2 antibiotiques actifs in vitro en privilégiant une association à base d'Ampicilline-sulbactam, parmi :

- Ampicilline-sulbactam,
- Colimycine,
- Aminoglycosides,
- Tigécycline,
- Meropénème (si CMI< 8mg/L, à dose élevée en perfusion prolongée)

Les associations Colimycine-Carbapénèmes et Colimycine-Rifampicine ne sont pas recommandées.

Le Céfidérocol ne doit être utilisé qu'en l'absence d'autre alternative et en association.

Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

Traitement des infections non graves

Une monothérapie est possible

- Ampicilline-sulbactam est le traitement de référence
- Colimycine ou Tigécycline à forte dose peuvent être utilisées