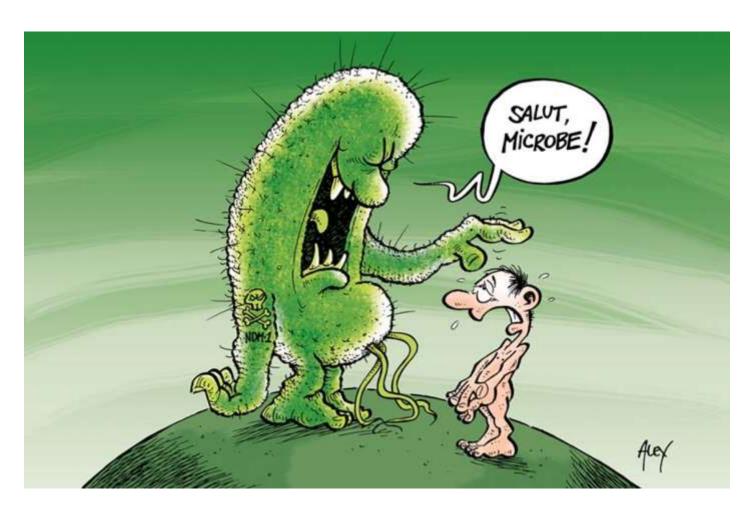
Nouveaux antibiotiques

David Boutoille

Maladies Infectieuses et Tropicales – CHU de Nantes

EA3826 : « Thérapeutiques Cliniques et Expérimentales des Infections »



Contexte épidémiologique

Années 2000 : épidémies de bactéries multirésistantes (BMR) et bactéries hautement résistantes (BHR)

Une menace pour la santé publique

Antibiotic resistance would make simplesurgerytooriskytoattempt

continued from PAGE 1.

him hip replacements, organitions plents, emperchemicherapy, and ease of proterm incance, would become far more difficult or even too dangerous to andersally."

Britain hassom a 30 percentification cases of blood potrorsing caused by E. coll bacteria between 2005 and 2009. from EXDODED more than 25,000 cases. Those resistant to autilize the lawer there. from tiper combatthe basinning of the contains to 30 per cent.

The most powerful antibiotics are carbopeners, which are used as a lost Direct Circlanes for the treatment of repictont infections.

In 2009, carbigomen-resistant K. presumenies, a bug present in the gut, were first detected in Grooce but by the Indistring yearhod scread to Italy, Augtris. Cyprus and Hungary.

The European Contro for Disease Control and Prevention reported that the percentage of custopences vesist-

ant K. postowiewske had doubled from 7 per cent to 15 per cent. As extimated 25.000 people diseach year in the like regions Union from antibiotic-resistand fractional infections.

In the UK, the Government pledged 2500,000 for research into the threat

Dr Chara was speaking as the World Health Organization launched The Evolving Threat of Antirotevobiol Revisioners Operons for Action, a book which warns that breakthrough treatments discovered in the last cantury for flu, tubescules is, malaria and HIV may become ineffective in the coming years.

She called for action to restrict the use of antibiotics in food production the 1940s. and a crackdown on counterfeit. medicines. "Worldwide, the fact that greater quantities of antibiotics are used in healthy enimals than in unhealthy humans is a cause for great concern," thousaid.

Discovering new med conecto treat

IN NUMBERS

people in Europa dis overy year frame antibiotic reststant intections:

of staphylocopcus cases of are now resistant.

aurese intections compliviolacter Enfection passed to pencillin, which from animals to was introduced in humanship 2010.

more mufti-drug recessant

enestian traperbags has proved in crossingly difficult and contly, as they are taken only for a short period and the commercial returns are low.

brokencentroid/Intermedinger replacement auxiliation the pipeline is wirtually-dry. The cupboned is near-

"Fecunian industry perspective, why invest considerable sums of money to develop a new ancient extent when itrational provillaccelerate itsixeffecchenesshoforethe investment can be rerouped?"

Six called for messaures to to the the threat by doctors prescribing antilyotics appropriately parients following their treatment and restrictions on the ware drug resistant assent antiblicates in an inners.

S. I she cald attention was "rtilleporodic" and actions "in adequate".

"At a time of multiple chlamities in the world, we cannot allow the loss of countial anterprotests, essential cures for enemy millions of people to bocome the next giobal critis," the said.

IDSA REPORT

Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America

Clinical Infectious Diseases 2009; 48:1–12

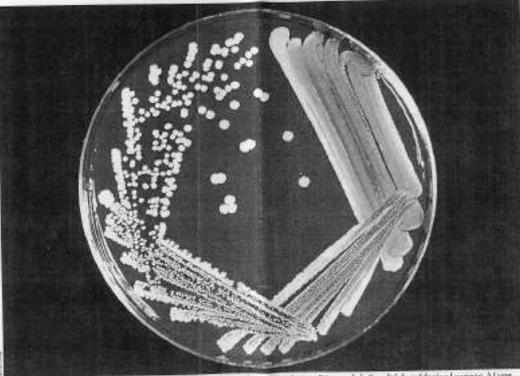
- Enterococcus faecium
- Staphylococcus aureus
- Klebsiella pneumoniae
- Acinetobacter baumanii
- Pseudomonas aeruginosa
- Enterobacter spp

In 1999, the emergence of community-MRSA

Société

LE TEMPS + JELIDI 28 ADOT 2003 + 20

Très virulent, le nouveau staphylocoque doré est né


C'est une mutation extraordinaire d'une bactérie déjà très problématique, connue depuis plusieurs années aux Etats-Unis, qui a atteint l'Europe en 1999. Présente hors des hôpitaux, cette nouvelle souche bactérienne provoque l'inquiétude du corps médical

Philippe Berraud

4 Test une authentique sale blos, dom l'emergence timoigne de l'exerconlinaire mencité d'adaptation des bactéries, uz que le professeur Jéntimo Fitienne. specie d'attrigence bactiriennes. A la Faculté de médecine Laconec, à Lyon, ce scientifique suisse et sex collègues du Centre national des infections à staphylocoques, out anales gênes de ce que le cherchese n'hésite pas à appeter un susper bogs, un staphylocogue doré diffenent de celui qui pose tant de protièmes dans les hôpitaux, en cela qu'il est à la fine plus virulent, résistent aux antibioriques, et qu'il vit en defendumfleubogstatier.

«Sur 20 000 prisonniers, vous en avez 1000 d'infectés: on n'a jamais vu ça»

lungrici, les suphylocoques erasers des agents infectient asserhorade geimes ubéquitares, às men priserres nur l'essemble de la planède. En jas, 20% à 50% de la populania en ponte, sur la pezu et donn le cue. Il vagit donc d'un reixen-orgariarpe seur l'equè nous rivons tous les sours lunqu'ec, la problèmatique en la complicate de competition de la conles sours l'unqu'ec, le problèmatique

QUESTIONS &

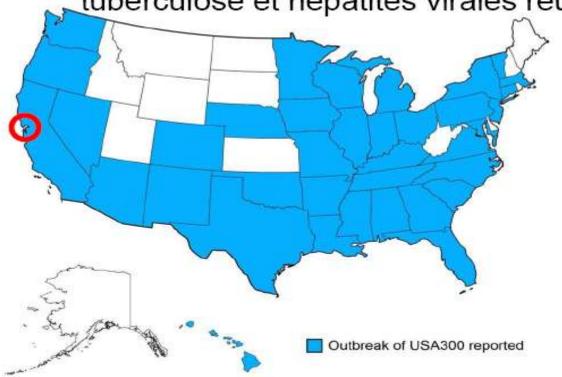
Patrick Francioli, Division de médecine préventive hospitalière au CHUV.

«La prise en charge des malades sera plus difficile»

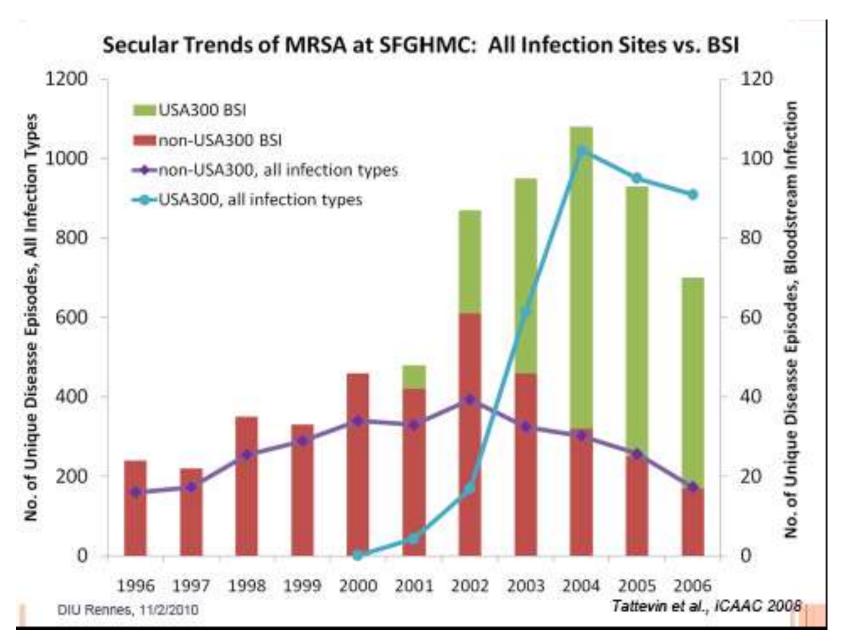
Le Temps: Que change l'apparition de ces acuveaux germes pour les soignants?

Patrick Francialli: La prise en charge de patients qui ont des infections à staphylocospon résistants est plus difficile our il y a davantage de risques que les traisements sonnt anofficants. Ces gens finisemt par Barri des compléations qui les aménem à finéprial. L'auxe poolitims, c'est qu'en plus de generalité de résistance, ceruitra se sont dots de ginna de virulence ils sont plus invasits et provoquent des itriccions plus parques.

Hospitaliser cus patients comporte-t-il des risques peur les hobitoss?


— Contine source de source, en effer. Si um patients pous activers, um souches communications dangéceuses pourcient élécuter ou se substituer aux emphylicosques déséhien asset nombress à l'hépital.

- Pointe-t-If time resistance als-


2000-2005 : Le raz-de-marée USA300

- Apparition en 2000
- 2004
 - 57% des infections cutanées vues aux urgences USA = SARM
 - o dont 97% = USA300

 2005 : 'Les SARM causent plus de décès aux USA que VIH, tuberculose et hépatites virales réunis' (CDC)

Proportion of 3rd gen. cephalosporins Resistant (R)

Ecotorichia coli Isolates in Participating Countries in

2006

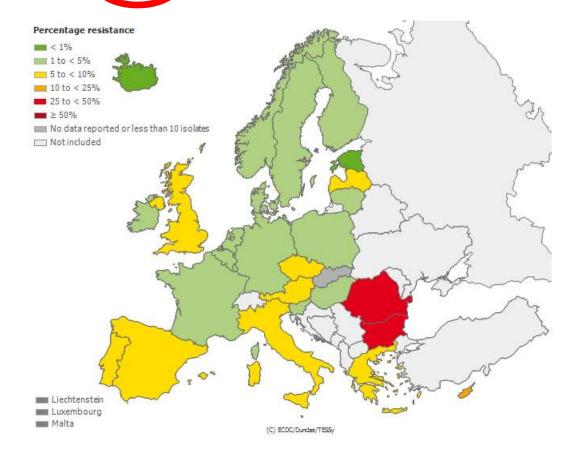
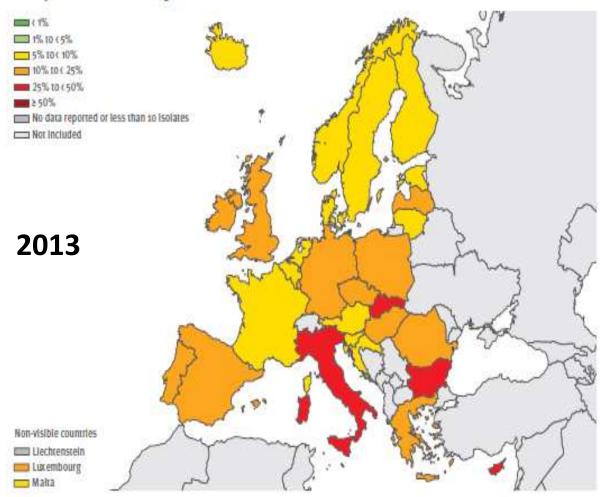



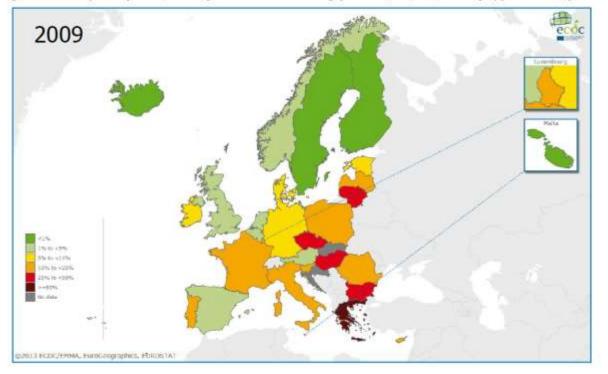
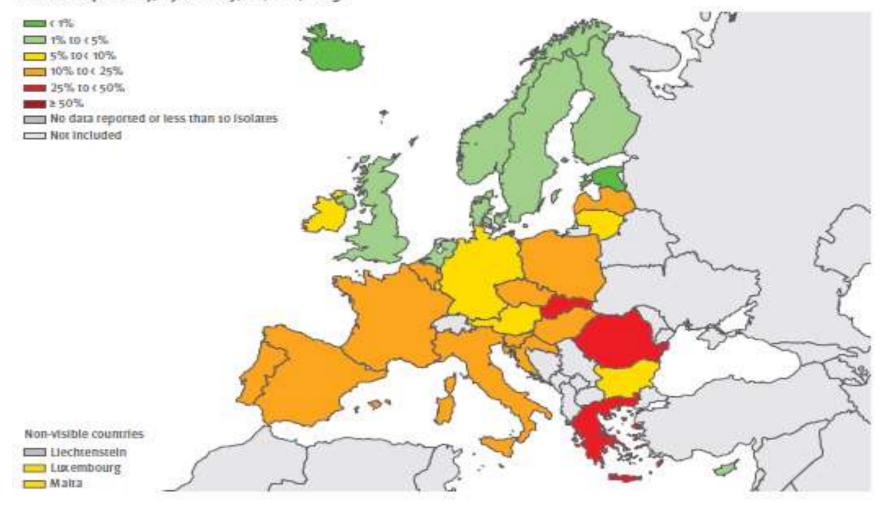
Figure 3.2. Escherichia coll. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2013

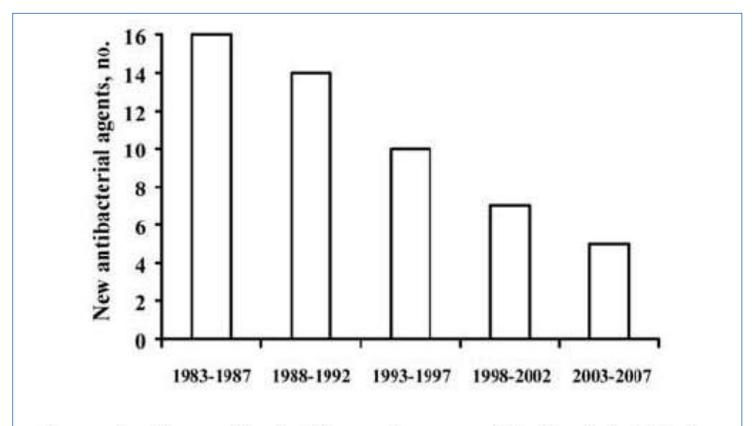
85 à 100 % de cette résistance est liée aux BLSE.

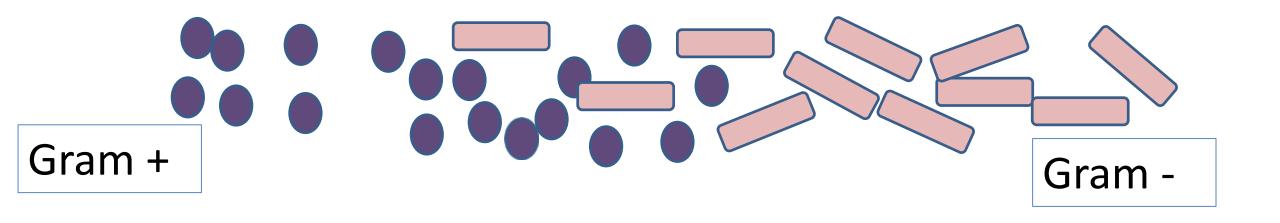
Klebsiella pneumoniae BLSE +

ECDC

Figure 1. Klebsiella pneumoniae: percentage of invasive isolates with combined resistance to thirdgeneration cephalosporins, fluoroquinolones and aminoglycosides, EU/EEA, 2009 (top) and 2012 (bottom)


Figure 3.7. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2013


Figure 3.16. Pseudomonas aeruginosa. Percentage (%) of invasive isolates with combined resistance (resistance to three or more antimicrobial groups among piperacillin + tazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems), by country, EU/EEA, 2013

La recherche en antibiothérapie...

Figure 1. New antibacterial agents approved in the United States, 1983–2007, per 5-year period [2, 3].

Disponibles

CEFTAROLINE

CEFTOBIPROLE

TEMOCILLINE

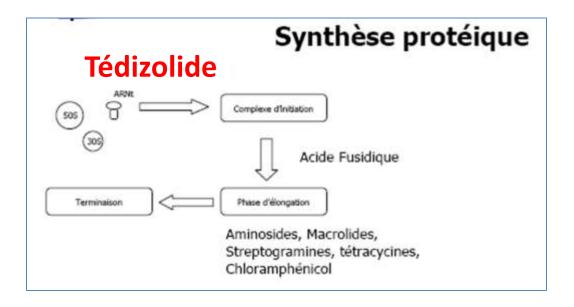
2016

TEDIZOLIDE

CEFTOLOZANE/ TAZOBACTAM

2017

CEFTAZIDIME/ AVIBACTAM


Plus tard

MEROPENEME/RPX7009 ERAVACYCLINE PLAZAMYCINE

Tedizolide (Sivextro*, MSD)

Oxazolidinone

Blocage du complexe d'initiation ribosomal par fixation sur la sous-unité ribosomale 50S.

Formulations

- 1 seul dosage : 200 mg
 - Comprimés
 - Forme IV

Posologie: 200 mg/j

Pharmacocinétique

 Biodisponibilité forme orale : 91 %, indifféremment par rapport aux repas.

- Faible interaction cytochromes.
- 70 % fixation protéïque
- Elimination: 90 % fèces, 10 % urines

Rationnel de développement

- Autre oxazolidinone : Linézolide (Zyvoxid*) :
- Toxicité mitochondriale
- Pour les traitements prolongés
 - Acidose lactique
 - Neuropathies
 - Toxicité hématologique
- Développement de résistance par mutation du gène cfr

Toxicité du Tédizolide

Effet IMAO très faible.

 Pas de neurotoxicité après 9 mois à 8 fois la dose thérapeutique chez les rats ≠ linézolide).

Myélotoxicité semble identique au Linézolide.

• Pas d'embyofoetotoxicité.

Essais de phase III : ESTABLISH-1

Tedizolid Phosphate vs Linezolid for Treatment of Acute Bacterial Skin and Skin Structure Infections The ESTABLISH-1 Randomized Trial

JAMA, February 13, 2013-Vol 309, No. 6

Non-infériorité de Tédizolide 6 j vs Linézolide 10 j.

Essais de phase III : ESTABLISH-2

Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial

Lancet Infect Dis 2014

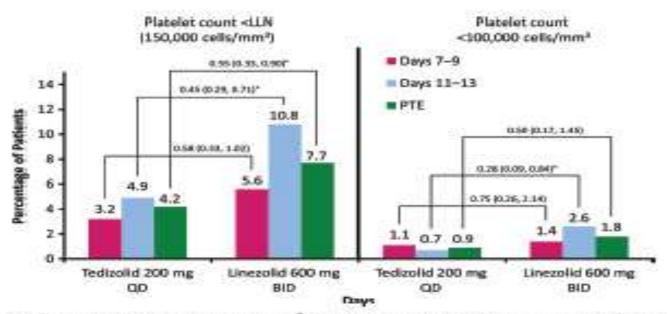

y, Anita F Das, Carisa De Anda, Philippe Prokocimer

Figure 2: Clinical response rates based on objective assessments incorporating changes in lesion area, at 48-72 h (primary efficacy endpoint) and at end of treatment (secondary efficacy endpoint) in the intention-to-treat population

Hématotoxicité

Tedizolid and Linemild Platelet Profile in ASSSS

Attention : durées de traitement très courtes !!!

FIG 1 Incidence of plantlet countr of <192,000 and <100,000 calls/mm³ at the visit on study days 7 to 9, at end of therapy (ECH) on study days 11 to 13, and at positherapy evaluation (PTE) (7 to 14 days after BOV visit). BID, twice daily, 11N, lower limit of normal, PTE, positherapy evaluation; QD, once daily. Treatment differences (shown over the commuting lines) reflect relative risk (RR) (95% CI). *, P < 0.05 (Fisher's count text).

Perspectives

 Phase III en cours pour les pneumonies nosocomiales, dont les pneumonies acquises sous ventilation.

Mucoviscidose : étude pharmacocinétique prévue.

 Traitement prolongés (os et Staphylocoques blancs, tuberculose XDR...)?

Tedizolide: en résumé

• Les avantages du linézolide (qui sera génériqué dans quelques mois).

- Une AMM pour un traitement de 6 j dans les infections de la peau et des parties molles.
- 1 seule prise par jour.
- A priori pas de neurotoxicité ni de risque d'acidose lactique.

Hématotoxicité moindre ?

Ceftaroline (Zinforo*, Astra-Zeneca)

ZINFORO* (Ceftaroline-fosamil)

Forme injectable Flacons 600 mg

Posologies:

Clairance créatinine (ml/min)	Posologie
> 50	600 mg toutes les 12 h
> 30 et ≤ 50	400 mg toutes les 12 h

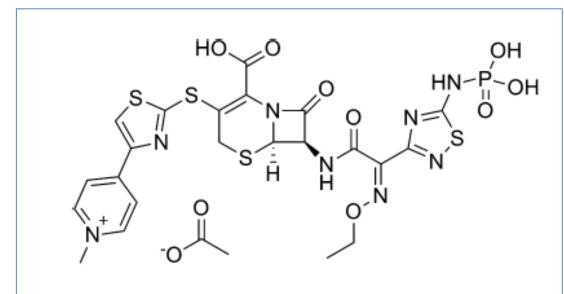


Figure 1. Chemical structure of ceftaroline fosamil acetate.

AMM:

Infections de la peau et des tissus mous

Mode d'action

- Céphalosporine semi-synthétique.
- Prodrogue : Ceftaroline-fosamil (faible hydrosolubilité du composant antibactérien)

- Fixation aux protéines de liaison des pénicillines
- Affinité élevée pour :
 - PBP2a (mecA)
 - PBP2x (Streptococcus pneumoniae résistant à la pénicilline)

Données du programme de surveillance Europe 2010 extraction France - ceftaroline

Germe	CMI 90	Range	EUCAST %S / %R
S. aureus (639) SASM (485) SARM (154)	0.5 0.25 1	0.06-2 0.06-0.5 0.25-2	99.8 – 0.2 100.0/0 99.4 – 0.6
Streptococcus pneumoniae (183) Streptococcus pneumoniae péni S (107) Streptococcus pneumoniae péni I (26) Streptococcus pneumoniae péni R (50)	0.12 <0.008 0.12 0.12	<pre><0.008 - 0.25 <0.008 - 0.06 0.015 - 0.12 0.06 - 0.25</pre>	100 / 0 100 / 0 100 / 0 100 / 0
Streptococcus beta hémolytique (173)	0.015	<u><</u> 0.008 - 0.03	100.0 / 0
Streptococcus groupe viridans (102)	0.06	<u><</u> 0.008 - 0.5	-/-
Haemophilus influenzae (83)	0.03	<u><</u> 0.008- 0.12	97.6 / 2.4
Moraxella catarrhalis (47)	0.12	<u><</u> 0.008- 0.5	-/-

Inactive sur *E. faecalis*

Poster RICAI 2013

Sensibilité in vitro sur les staphylocoques coagulase négative (CoNS), à sensibilité réduite au linézolide, à la daptomycine et à la vancomycine (données US)

Table 1. Summary of ceftaroline tested against *S. aureus* and CoNS from USA hospitals (2008–2011), including strains with reduced susceptibility to linezolid, daptomycin or vancomycin.

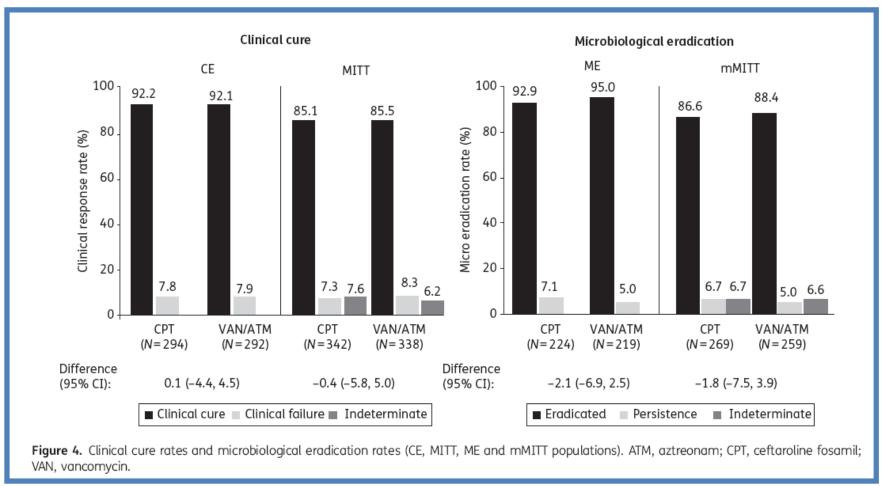
no. o	no. of strains (cumulative %) inhibited at ceftaroline MIC (μg/ml) of:					
≤0.06	0.12	0.25	0.5	1	2	
63 (0.3)	1,027 (5.6)	8,122 (47.6)	5,853 (77.8)	4,004 (98.5)	281 (100.0)	
61 (0.6)	1,020 (11.4)	7,928 (95.1)	460 (99.9)	6 (100.0)		
2 (0.2)	7 (0.9)	194 (2.1)	5,393 (56.7)	3,998 (97.2)	281 (100.0)	
-	-	1 (7.1)	5 (42.9)	6 (85.7)	2 (100.0)	
1 (5.6)	0 (5.6)	2 (16.7)	7 (55.6)	8 (100.0)	-	
5 (1.4)	10 (4.1)	89 (28.2)	92 (53.1)	143 (91.9)	30 (100.0)	
689 (21.1)	467 (35.3)	1,086 (68.5)	882 (95.5)	118 (99.1)	28 (100.0)	
631 (63.0)	293 (92.2)	74 (99.6)	2 (99.8)	2 (100.0)		
58 (2.6)	174 (10.2)	1,012 (54.8)	880 (93.6)	116 (98.7)	28 (100.0)	
1 (2.0)	3 (7.8)	7 (21.6)	37 (94.1)	1 (96.1)	2 (100.0)	
2 (50.0)	2 (100.0)	-	-	-	-	
	≤0.06 63 (0.3) 61 (0.6) 2 (0.2) - 1 (5.6) 5 (1.4) 689 (21.1) 631 (63.0) 58 (2.6) 1 (2.0)	≤0.06 0.12 63 (0.3) 1,027 (5.6) 61 (0.6) 1,020 (11.4) 2 (0.2) 7 (0.9) 1 (5.6) 0 (5.6) 5 (1.4) 10 (4.1) 689 (21.1) 467 (35.3) 631 (63.0) 293 (92.2) 58 (2.6) 174 (10.2) 1 (2.0) 3 (7.8)	≤0.06 0.12 0.25 63 (0.3) 1,027 (5.6) 8,122 (47.6) 61 (0.6) 1,020 (11.4) 7,928 (95.1) 2 (0.2) 7 (0.9) 194 (2.1) - - 1 (7.1) 1 (5.6) 0 (5.6) 2 (16.7) 5 (1.4) 10 (4.1) 89 (28.2) 689 (21.1) 467 (35.3) 1,086 (68.5) 631 (63.0) 293 (92.2) 74 (99.6) 58 (2.6) 174 (10.2) 1,012 (54.8) 1 (2.0) 3 (7.8) 7 (21.6)	≤0.06 0.12 0.25 0.5 63 (0.3) 1,027 (5.6) 8,122 (47.6) 5,853 (77.8) 61 (0.6) 1,020 (11.4) 7,928 (95.1) 460 (99.9) 2 (0.2) 7 (0.9) 194 (2.1) 5,393 (56.7) - - 1 (7.1) 5 (42.9) 1 (5.6) 0 (5.6) 2 (16.7) 7 (55.6) 5 (1.4) 10 (4.1) 89 (28.2) 92 (53.1) 689 (21.1) 467 (35.3) 1,086 (68.5) 882 (95.5) 631 (63.0) 293 (92.2) 74 (99.6) 2 (99.8) 58 (2.6) 174 (10.2) 1,012 (54.8) 880 (93.6) 1 (2.0) 3 (7.8) 7 (21.6) 37 (94.1)	≤0.06 0.12 0.25 0.5 1 63 (0.3) 1,027 (5.6) 8,122 (47.6) 5,853 (77.8) 4,004 (98.5) 61 (0.6) 1,020 (11.4) 7,928 (95.1) 460 (99.9) 6 (100.0) 2 (0.2) 7 (0.9) 194 (2.1) 5,393 (56.7) 3,998 (97.2) - - 1 (7.1) 5 (42.9) 6 (85.7) 1 (5.6) 0 (5.6) 2 (16.7) 7 (55.6) 8 (100.0) 5 (1.4) 10 (4.1) 89 (28.2) 92 (53.1) 143 (91.9) 689 (21.1) 467 (35.3) 1,086 (68.5) 882 (95.5) 118 (99.1) 631 (63.0) 293 (92.2) 74 (99.6) 2 (99.8) 2 (100.0) 58 (2.6) 174 (10.2) 1,012 (54.8) 880 (93.6) 116 (98.7) 1 (2.0) 3 (7.8) 7 (21.6) 37 (94.1) 1 (96.1)	

Sader HS et al AAC online doi:10;1128/AAC00484-13

Résistances chez les bacilles à Gram négatif

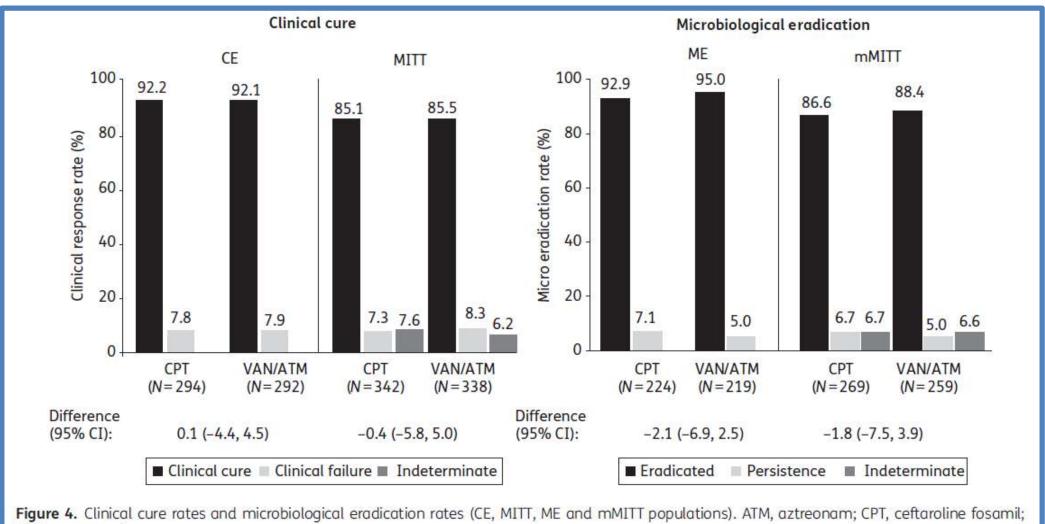
- Entérobactéries :
 - sécrétion de β-lactamase à spectre élargi
 - AmpC déréprimée
- Bacilles non fermentants (dont P. aeruginosa)

Activité anti-anaérobie :


Comparable à celle de l'amoxicilline-acide clavulanique

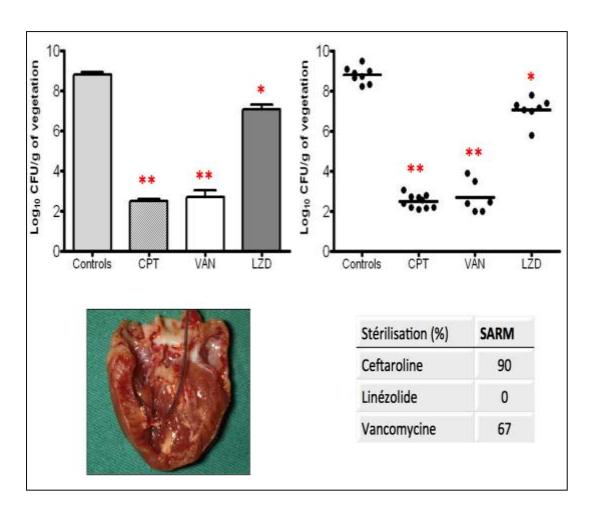
- Actinomyces
- Propionibacterium
- Clostridium perfringens
- Mauvaise activité sur Bacteroides fragilis

Etudes de phase III


- Etudes randomisées, multicentriques, en double-aveugle, de non-infériorité.
- Peau et tissus mous : CANVAS 1 et 2 (1400 patients).
 - Ceftaroline IV 600 mg X 2/J
 - Vs Vancomycine/aztreonam
- Pneumopathies communautaires : FOCUS 1 et 2 (1300 patients).
 - Ceftaroline IV 600 mg X 2/j
 - Vs Ceftriaxone 1 g/j

Résultats CANVAS 1 : non-infériorité vs Vancomycine + Aztreonam

Wilcox MH et al. J Antimicrob Chemother 2010.


CANVAS 2 : Résultats

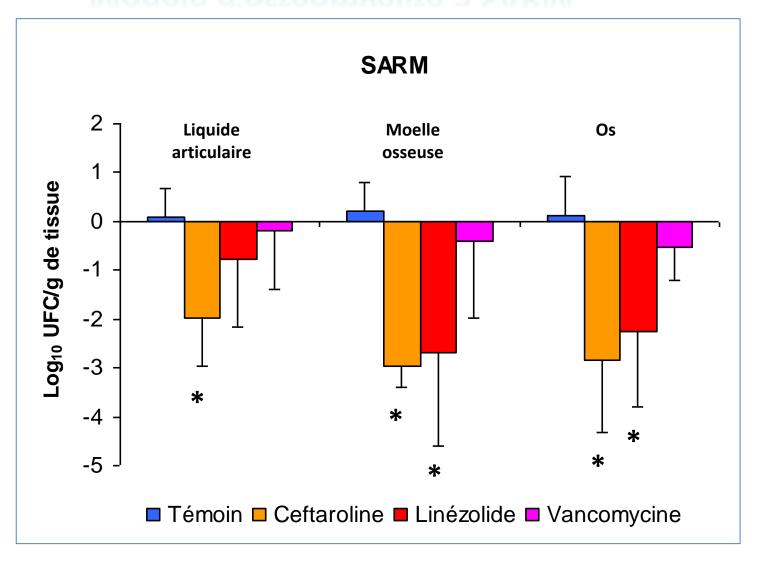
VAN, vancomycin.

Perspectives : bactériémies, endocardites

Données expérimentales

Jacqueline C, et al. J Antimicrob Chemother. 2011; 66(4):863-6.

Données cliniques : bactériémies, endocardites


J Antimicrob Chemother 2014 doi:10.1093/jac/dku085 Advance Access publication 28 March 2014

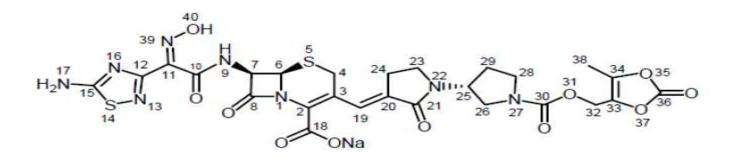
Salvage treatment of methicillinresistant staphylococcal endocarditis with ceftaroline: a multicentre observational study

Pierre Tattevin^{1,2*}, David Boutoille^{2,3}, Virginie Vitrat⁴, Nicolas Van Grunderbeeck⁵, Matthieu Revest^{1,2}, Mathieu Dupont⁶, Serge Alfandari⁷ and Jean-Paul Stahl⁸ Plusieurs séries de cas dans la littérature à posologies le plus souvent de 600 mg X 3/j

Attente des résultats d'une étude de cohorte sur le traitement des bactériémies à SARM : Ceftaroline 600 mg X 3/j.

Modèle d'ostéomyélite à SARM

Jacqueline C, et al.
J Antimicrob Chemother
2010; 65(8):1749-52.


Phase II en cours sur l'ostéomyélite de l'enfant à SARM.

Toxicité

- KJ Furtek. ICAAC 2014
 - 12 % neutropénie
 - Médiane de survenue : 29 j (13-64)

Vigilance +++ pour les traitements prolongés

Ceftobiprole medocaril : Mabelio*, Basilea (Zeftera*)

Céphalosporine de « 5^{ème} » génération : activité sur les SARM

Activité anti-Gram - > Ceftaroline

Affinité pour :

PBP2a de *S. aureus*PBP2x de *S. pneumoniae*PBP5 de *E. faecalis*

PBP 1,2,3 et 4 d' *E. coli* et de *P. aeruginosa*

Formulation et posologie AMM

Flacons 500 mg pour IV

- Posologie :
 - 500 mg (perf de 2 h) X 3/j

Elimination rénale sous forme inchangée.

Adaptation à la fonction rénale

Stabilité 24 h après reconstitution dans SP, 12 h dans G5

Spectre antibactérien

July 2014 Volume 58 Number 7

Ceftobiprole Activity against over 60,000 Clinical Bacterial Pathogens Isolated in Europe, Turkey, and Israel from 2005 to 2010

David J. Farrell, a,b Robert K. Flamm, Helio S. Sader, a,c Ronald N. Jones a,d

JMi Laboratories, North Liberty, Iowa, USA+; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada^a; Division of Infectious Diseases, Federal University of São Paulo, São Paulo, Brazil+; Tufts University School of Medicine, Boston, Massachusetts, USA^a

Gram +:

Staphylocoques meti-S: 100 % Se

Staphylocoques meti-R: 98,3 % Se

Streptocoques β-hémolytiques : 100 % Se

Pneumocoques: 99,3 % Se

E. Faecalis: > 95 % Se

Activité anti-staphylococcique > 16 X celle de la ceftriaxone

Inactif sur E. faecium

Gram -:

Entérobactéries : 83,4 % Se (inactif sur BLSE)

P. aeruginosa : 64,6 % Se (CAZ 75,4 %, CEF 78,6 %)

(80 % Se si P. aeruginosa CAZ-S , 20 % si CAZ-R)

Activité médiocre sur :

- S. maltophilia
- A. baumanii

Paramètres PK/PD

• T>CMI:

Craig. ICAAC 2015

- ->30 % pour *S. aureus*
- ->40 % pour *S. pneumoniae*
- >50 % pour entérobactéries
- − >60 % pour *P. aeruginosa*

Etude phase III

MAJOR ARTICLE

A Phase 3 Randomized Double-Blind Comparison of Ceftobiprole Medocaril Versus Ceftazidime Plus Linezolid for the Treatment of Hospital-Acquired Pneumonia

Samir S. Awad.* Alejandro H. Rodriguez.* Yin-Ching Chuang.* Zsuszaenne Marjanek.* Alex J. Pareigis.* (Gilmar Reis.* Thomas W. L. Schedren.* Alejandro S. Sanchez.* Xin Zhou.* Mikael Suslay.* and Marc Engelhardr.* Clinical Infectious Diseases 2014:59(1):51-61

AMM:
Pneumonies nosocomiales
à l'exception des VAP

Table 2. Primary Endpoint: Clinical Cure at Test of Cure (Intent-to-Treat and Clinically Evaluable Analysis Sets)

	Ce	Ceftobiprole Ceftazidime/L		dime/Linezolid		
Analysis Set Group	No.	No.ª (%)	No.	No. ^a (%)	Difference (%)b	(95% CI) ^c
Intent-to-treat						
All patients	391	195 (49.9)	390	206 (52.8)	-2.9	(-10.0 to 4.1)
HAP (excluding VAP)	287	171 (59.6)	284	167 (58.8)	0.8	(-7.3 to 8.8)
VAP	104	24 (23.1)	106	39 (36.8)	-13.7	(-26.0 to -1.5)
HAP, mechanically ventilated	69	21 (30.4)	70	19 (27.1)	3.3	(-11.8 to 18.3)
Clinically evaluable						
All patients	251	174 (69.3)	244	174 (71.3)	-2.0	(-10.0 to 6.1)
HAP (excluding VAP)	198	154 (77.8)	185	141 (76.2)	1.6	(-6.9 to 10.0)
VAP	53	20 (37.7)	59	33 (55.9)	-18.2	(-36.4 to0)
HAP (excluding VAP), mechanically ventilated	38	21 (55.3)	37	15 (40.5)	14.7	(-7.6 to 37.1)

Abbreviations: CI, confidence interval; HAP, hospital-acquired pneumonia; VAP, ventilator-associated pneumonia.

a No. of patients with clinical cure at test of cure.

^b Difference ceftobiprole minus ceftazidime/linezolid.

^o Two-sided 95% CI is based on the normal approximation to the difference of the 2 proportions.

Perspectives

- Posologies plus élevées.
- Perfusion continue.

- Mucoviscidose
- Pied diabétique
- Infections osseuses

International Journal of Antimicrobial Agents 39 (2012) 455-457

Contents lists available at SciVerse ScienceDirect

International Journal of Antimicrobial Agents

journal homepage: http://www.elsevier.com/locate/ijantimicag

Editorial

What's behind the failure of emerging antibiotics in the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance

Posologies définies d'après les études chez le volontaire sain.

Critères PK/PD minimum (ex. T>CMI > 30 % pour les β-lactamines

Sepsis sévère :

- Augmentation du VD
- Augmentation de la clairance
- Variabilité allant jusqu'à un facteur
 14 pour la pipéracilline!
 (Shikuma LR et al. Crit Care Med 1990)

Ceftolozane/Tazobactam (Zerbaxa*, MSD)

- Ceftolozane = activité anti-pyocyanique +++
- Ceftolozane/tazobactam :
 - Spectre large incluant les entérobactéries sécrétrices de BLSE
- Activité sur certains G+ (S. anginosus, S. constellatus, S. salivarius)
- Activité limitée sur les anaérobies.
- Inactif sur KPC et carbapénémases de classe B (VIP, NDM-1...)

Formulation et posologie AMM

- Flacons 1500 mg pour IV
- (1 g Ceftolozane/0,5 g Tazobactam)
- Posologie :
 - -1500 mg X 3/j

Elimination rénale. Adaptation à la fonction rénale

Efficacy of ceftolozane in a murine model of *Pseudomonas aeruginosa* acute pneumonia: *in vivo* antimicrobial activity and impact on host inflammatory response

Cédric Jacqueline*, Antoine Roquilly, Cyndie Desessard, David Boutoille, Alexis Broquet, Virginie Le Mabecque, Gilles Amador, Gilles Potel, Jocelyne Caillon and Karim Asehnoune

Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826, F-44000 Nantes, France

J Antimicrob Chemother 2013; 68: 177-183

Modèle expérimental de pneumonie à *P. aeruginosa*

	Log_{10} cfu/g of organ, mean \pm SD		
Regimen	lung	spleen	
Controls	7.05 ± 0.86	5.06 ± 0.63	
Ceftolozane	3.61 ± 0.35°,b	$2.63 \pm 0.46^{\circ}$	
Ceftazidime	4.74 ± 1.01°	$2.74 \pm 0.49^{\circ}$	
Piperacillin/tazobactam	$5.04 \pm 0.90^{\circ}$	$2.80 \pm 0.84^{\circ}$	

Contents lists available at ScienceDirect

International Journal of Antimicrobial Agents

journal homepage: http://www.elsevier.com/locate/ijantimicag

In vivo efficacy of ceftolozane against *Pseudomonas aeruginosa* in a rabbit experimental model of pneumonia: Comparison with ceftazidime, piperacillin/tazobactam and imipenem

Cédric Bretonnière ^{a,b,*}, David Boutoille ^a, Jocelyne Caillon ^a, Cyndie Desessard ^a, Christophe Guitton ^b, Gilles Potel ^a, Cédric Jacqueline ^a

^a Université de Nantes, Faculté de Médecine, UPRES EA 3826, 1 rue Gaston Veil, Nantes F-44035, France

ECHU de Nantes, Pôle Hospitalo-universitaire 3, Service de Réanimation Médicale Polyvalente, Place A. Ricordeau, Nantes F-44093, France

Table 2
Pulmonary bacterial load and spleen and blood culture results for the different treatment groups and controls.

	Controls (n-10)	Ceftolozane 1 g t,i,d, (n=7)	Ceftolozane 2 g t,i,d, (n=7)	Ceftazidime 2 g t,i,d, (n=6)	TZP 4 g q.i,d. (n = 6)	lmipenem 1 g t.i.d. (n = 6)	P-value ^a
Mean ± S,D, pulmonary bacterial load (log ₁₀ CFU/g) ^b	6.3 ± 0.9	4,9 ± 0.3	3,6±0,3	4,8 ± 0,2	5.5±0.8	3,9 ± 0,3	10-6
Spleen cultures positive/negative ^c	8/2	4/3	2/5	3/3	5/1	2/4	N/S
Blood cultures positive/negative ^c	2/8	0/7	0/7	1/5	1/5	0/6	N/S

Etude de phase III : infections urinaires communautaires

Wagenlehner FM et al. Lancet 2015

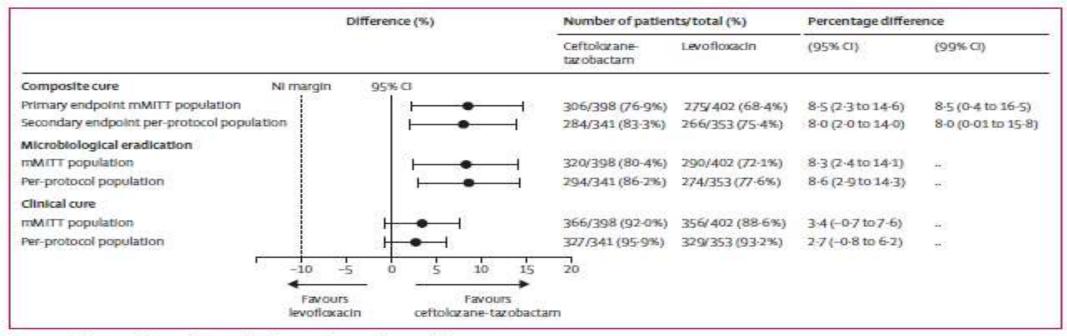


Figure 2: Primary and secondary endpoints at the test-of-cure visit mMITT=microbiological modified intention-to-treat population. Nl=non-inferiority.

800 pyélonéphrites C/T 7 j > Levofloxacine 750 mg/j 7 j 26,5 % entérobactéries LVF-R 2,7 % entérobactéries CT-R

BLSE: 14 %

	Number of patients with a specific baseline pathogen/ total number with baseline pathogens (%)		Percentage difference (95% CI)	
	Ceftolozane- tazobactam	Levofloxacin		
Gram-negative aerobes				
All	287/323 (88-9%)	263/340 (77-4%)	11.5 (5.8 to 17.1)	
Enterobacteriaceae spp	281/316 (88-9%)	255/327 (78-0%)	10-9 (5-2 to 16-6)	
Escherichia cali	237/262 (90-5%)	226/284 (79-6%)	10-9 (4-9 to 16-8)	
ESBL producers	27/36 (75-0%)	18/36 (50-0%)	NA	
CTX-M-14/15*	20/27 (74-1%)	13/25 (52-0%)	NA	
Klebsiella pneumoniae	21/25 (84-0%)	14/23 (60-9%)	23·1 (-2·1 to 45·4)	
ESBL producers	7/10 (70-0%)	2/7 (28-6%)	NA	
CTX-M-15*	5/8 (62-5%)	1/4 (25-0%)	NA	
Proteus mirabilis	10/10 (100-0%)	8/11 (72-7%)	27-3 (-5-6 to 56-6)	
Enterobacter doacae	2/6 (33-3%)	6/7 (85-7%)	-52-4 (-78-8 to -0-3)	
Pseudomonas aeruginosa	6/7 (85.7%)	7/12 (58-3%)	27-4 (-15-9 to 56-3)	

Wagenlehner FM et al. Lancet 2015

	Number of patients with a specific baseline pathogen/ total number with baseline pathogens (%)		Percentage difference (95% CI)	
	Ceftolozane- tazobactam	Levofloxacin		
Gram-negative aerobes				
All	287/323 (88-9%)	263/340 (77-4%)	11-5 (5-8 to 17-1)	
Enterobacteriaceae spp	281/316 (88-9%)	255/327 (78-0%)	10-9 (5-2 to 16-6)	
Escherichia cali	237/262 (90-5%)	226/284 (79-6%)	10-9 (4-9 to 16-8)	
ESBL producers	27/36 (75-0%)	18/36 (50-0%)	NA	
CTX-M-14/15*	20/27 (74-1%)	13/25 (52-0%)	NA	
Klebsiella pneumoniae	21/25 (84-0%)	14/23 (60-9%)	23-1 (-2-1 to 45-4)	
ESBL producers	7/10 (70-0%)	2/7 (28-6%)	NA	
CTX-M-15*	5/8 (62-5%)	1/4 (25-0%)	NA	
Proteus mirabilis	10/10 (100-0%)	8/11 (72-7%)	27-3 (-5-6 to 56-6)	
Enterobacter doacae	2/6 (33-3%)	6/7 (85-7%)	-52-4 (-78-8 to -0-3)	
Pseudomonas aeruginosa	6/7 (85.7%)	7/12 (58-3%)	27-4 (-15-9 to 56-3)	

Wagenlehner FM et al. Lancet 2015

Etude de phase III : infections intra-abdominales

	Ceftolozane/ tazobactam plus metronidazole No. (%)	Meropenem No. (%)	Percentage difference (95% CI)
MITT population	n = 389	n = 417	
Cure	323 (83.0)	364 (87.3)	-4.2 (-8.91 to .54)
Failure	32 (8.2)	34 (8.2)	
Indeterminate	34 (8.7)	19 (4.6)	
ME population	n = 275	n = 321	
Cure	259 (94.2)	304 (94.7)	-1.0 (-4.52 to 2.59
Failure	16 (5.8)	17 (5.3)	

CT + Metronidazole vs Meropénème

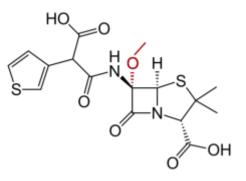
Non-infériorité

Peritonitis present, No. (%)	337 (86.6)	340 (81.5)
Local ^d	198 (58.8)	203 (59.7)
Diffuse ^d	139 (41.2)	137 (40.3)
Localized complicated appendicitis, No. (%)	115 (29.6)	142 (34.1)

Mean (SD)	6.2 (4.2)	6.0 (4.1)
0-5	191 (49.2)	213 (51.1)
6-10	143 (36.9)	153 (36.7)
11-15	42 (10.8)	38 (9.1)
>15	12 (3.1)	13 (3.1)
resence of bacteremia	8 (2.1)	12 (2.9)

Solomkin J et al. Clin Infect Dis 2015

Perspectives


 Phase III en cours : pneumonies acquises sous ventilation, poso 3 g/8 h


Sepsis sévère

Témocilline (Negaban*, Eumedica)

Témocilline: spectre

- Pénicilline dérivée de la ticarcilline
- Deux caractéristiques principales:
 - Son spectre étroit:
 - Actif vis-à-vis de la pluparts des bactéries à Gram négatif:
 - Enterobacteriaceae (E. coli, Klebsiella, Enterobacter, Citrobacter, Morganella, Proteus,
 Providencia, Serratia, Salmonella, Shigella, ...)
 - Non-fermentaires: Burkholderia cepacia,
 - Autres: Neisseria, Haemophilus, Pasteurella
 - Sa stabilité vis-à-vis des β-lactamase grâce à son groupe 6- α -methoxy
 - BLSE, AmpC and ± KPC
 - Hydrolysé par les métallo-β-lactamases (ex: NDM-1)

Témocilline : spectre

• Inactive sur:

- P. aeruginosa
- Acinetobacter baumanii
- Stenotrophomonas maltophilia
- Gram +
- Les anaérobies

AMM par reconnaissance mutuelle

« Prise » de l'AMM belge telle quelle

4.1. Indications therapeutiques

NEGABAN 2 g poudre pour solution injectable ou pour perfusion est indiqué, chez les adultes et chez les enfants, pour le traitement des infections suivantes (voir rubriques 4.2, 4.4 et 5.1):

- des voies urinaires compliquées (incluant les pyélonéphrites);
- des voies respiratoires basses, des bactériémies et des infections des plaies.

Il convient de tenir compte des recommandations officielles concernant l'utilisation appropriée des antibactériens.

Adultes (y compris les personnes âgées)

1 à 2 g par jour, à répartir en 2 administrations. Cette posologie peut être doublée en cas d'infections sévères.

Population pédiatrique

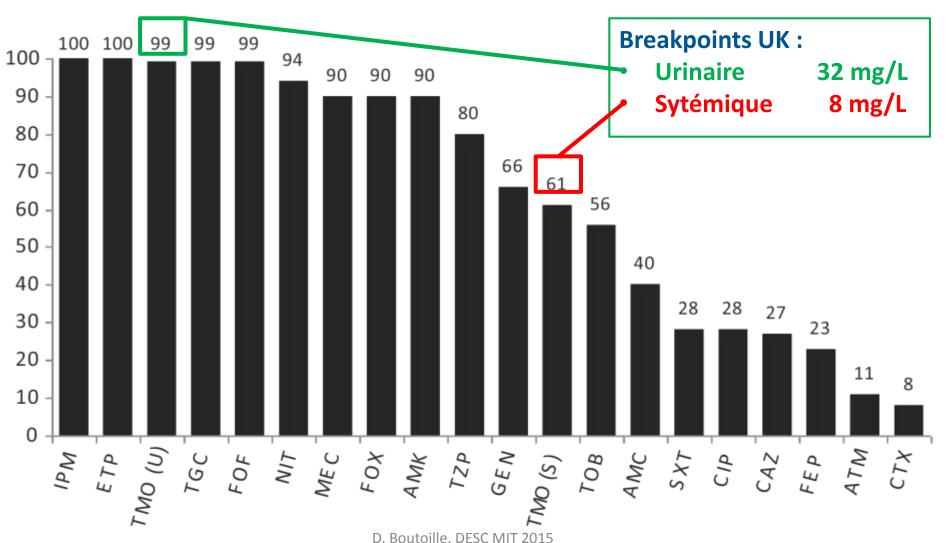
25 à 50 mg par kg par jour, à répartir en 2 administrations, avec un maximum de 4 g/jour.

Sa posologie et son mode d'administration

	POSOLOGIE PAR 24 HEURES				
	Dosage habituel	Infections sévères			
	2 g	4 g			
Adultes	en 2 administrations	en 2 administrations			
	(injections I.M., I.V. ou perfusion)	(injections I.V. ou perfusion)			
	avec antibiothérapie				
	complémentaire éventuelle				
	25 mg/kg/24 h	50 mg/kg/24 h			
Enfants	en 2 administrations	en 2 administrations			
	(injections I.M., I.V. ou perfusion)	(injections I.V. ou perfusion)			

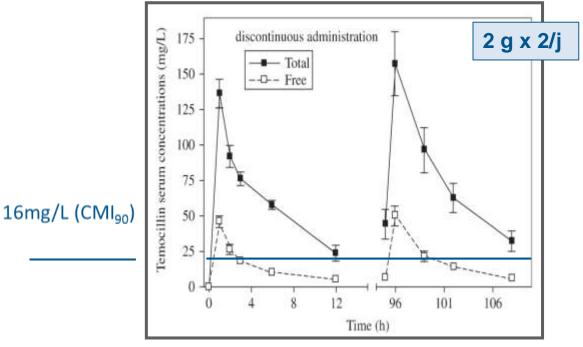
<u>Remarque</u>: La voie I.M. dans les infections urinaires hautes est à réserver aux cas de malades porteurs de germes résistants à des antibiotiques pris per os ou incapables de prise orale en raison, par exemple, de troubles digestifs ou neurologiques.

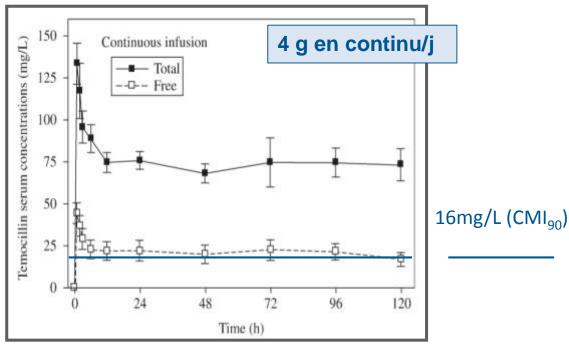
Origines des données cliniques

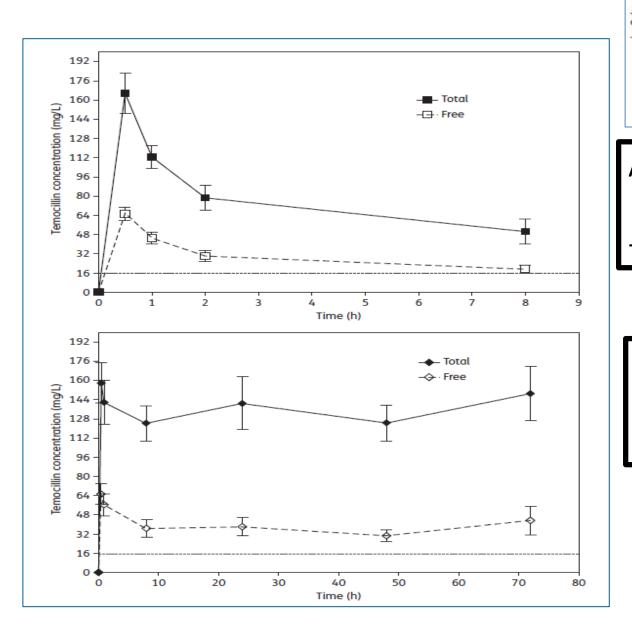

Majorité des données datent des années 80

- 51 études cliniques incluent 936 patients
 - 453 infections urinaires (succès clinique 94.3% [361/383])
 - 164 infections respiratoire basses (succès clinique 86.9% [113/130])
 - 115 bactériémies (succès clinique 88.5% [69/78])
 - 37 infections de la peau et des tissus mous (succès clinique 87.9% [29/33])
 - 116 autres infections (génitales, péritonites, gastrointestinales, endocardites, sinusites, ostéomyélites, ...)

Données récentes plus rares:


- Séries rétrospectives
- Case-report
- Séries prospectives dans l'infection urinaire chez l'enfant


Activité vis-à-vis des *E. coli* producteurs de BLSE


Paramètre PK/PD (fT>CMI)

- Modèle animal (Soubirou et al., JAC 2015):
 - fT>CMI à 40% corrélée avec bactériostase et efficacité
 - -fT>CMI de l'ordre de 80 % permet bactéricidie maximale (sur des souches CTX-M 15 ou non-BLSE)
- Patients de réanimation:

D. Boutoille. DESC MIT 2015

J Antimicrob Chemother 2015; **70**: 891–898 doi:10.1093/jac/dku465 Advance Access publication 27 November 2014 Journal of Antimicrobial Chemotherapy

Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration

Pierre-François Laterre¹, Xavier Wittebole¹, Sebastien Van de Velde²†, Anouk E. Muller³, Johan W. Mouton⁴, Stéphane Carryn²‡, Paul M. Tulkens²* and Thierry Dugernier^{1,5}

Administration discontinue: 2 g X 3/j

— fraction totale

--- fraction libre

Administration continue : bolus 2 g puis 6 g/j

— fraction totale

---- fraction libre

Etude pharmacocinétique chez patients de réanimation

TEMOCILLINE: conclusions

 Alternative +++ aux carbapénèmes sur infections documentées à BLSE.

Faible impact écologique.

• Posologie 4 g/j discontinu ou continu, 6 g sur infections sévères et/ou réa.

Avibactam (Astra-Zeneca)

Inhibiteur de bêta-lactamases non-bêta-lactamine

• Spectre :

- BLSE de classes A et D
- enzymes de classe A, dont KPC
- Enzymes de classe C : AmpC
- Certaines enzymes de classe D : Certaines OXA (OXA-48)
- M. tuberculosis

Classification d'Ambler

	Classe A	Classe B	Classe C	Classe D
	Sérine β-lactamases	Metallo-β-lactamases	Céphalosporinases	Oxacillinases
Chromosomiques	Pénicillinases (<i>C. koseri, Klebsiella</i>)		AmpC non inductible (<i>E. coli</i>)	
			AmpC inductible	
			AmpC déréprimée	
	TEM, SHV		AmpC plasmidique	OXA spectre étroit
Plasmidiques	BLSE TEM, SHV, CTX-M			BLSE de type OXA
	Carbapénémases KPC	Carbapénémases VIP, IMP, NDM-1		Carbapénémases Ex. OXA-48

Spectre Avibactam

	Classe A	Classe B	Classe C	Classe D
	Sérine β-lactamases	Metallo-β-lactamases	Céphalosporinases	Oxacillinases
Chromosomiauss	Pénicillinases		AmpC non inductible	
Chromosomiques	(C. koseri, Klebsiella)		(E. coli)	
			AmpC inductible	
			AmpC déréprimée	
	TEM, SHV		AmpC plasmidique	OXA spectre étroit
Dlasmidiaues	BLSE			BLSE de type OXA
Plasmidiques	TEM, SHV, CTX-M			
	Carbapénémases KPC	Carbapénémases VIP, IMP, NDM-1		Carbapénémases Ex. OXA-48

Bactericidal Activity, Absence of Serum Effect, and Time-Kill Kinetics of Ceftazidime-Avibactam against β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa

Tiffany R. Keepers, Marcela Gomez, Chris Celeri, Wright W. Nichols, Kevin M. Krause

Cerexa, Inc., Oakland, California, USAa; AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USAb

September 2014 Volume 58 Number 9

• Inactif:

- Classe B : VIM, NDM-1, et autres métalloprotéases
- OXA-23, OXA 24/40 (Acinetobacter baumanii)

Ceftazidime-avibactam (Avycaz*, Astra-Zeneca)

• Spectre de la ceftazidime, + inhibition large de β -lactamases.

- Peu d'activité sur :
 - Gram +
 - Acinetobacter
 - anaérobies

Posologie:

- 2,5 g (2 g Ceftazidime, 0,5 g Avibactam) X 3/j
- Perfusions de 2 h.

Essais cliniques phase III

• 2 essais terminés sur infections urinaires et infections intraabdominales : résultats en attente.

1 essai en cours sur pneumonies nosocomiales dont VAP.

Perspectives : anti-carbapénémases

Meropenem + RPX7009 (Carbavance*) :

 Phase III en cours dans les infections sévères à entérobactéries productrices de carbapénémases

• Eravacycline :

- Phase III en cours dans les infections urinaires
- À venir : infections intra-abdominales

Plazomicine (aminoside) :

- Phase III en cours dans lesinfections sévères à entérobactéries productrices de carbapénémases
- A venir : infections urinaires

Merci pour votre attention!

