

Sous-dosage et effets indésirables des antibiotiques en réanimation : comment les éviter ?

Minh Lê

PharmD, PhD

MCU-PH Laboratoire de Pharmacologie Hôpital Bichat-Claude Bernard INSERM, IAME UMR 1137

Etienne de Montmollin MD, PhD

Praticien hospitalier Médecine Intensive et Réanimation infectieuse Hôpital Bichat-Claude bernard INSERM, IAME UMR 1137

Rappels généraux de Pharmacocinétique

Rappels généraux de Pharmacocinétique

Rappels généraux de Pharmacocinétique (2)

Pharmacokinetics

Modifications des paramètres PK en réanimation

- Absorption et distribution :
 - Absorption orale altérée :
 - péristaltisme intestinal,
 - biodisponibilités des comprimés écrasés,...
 - → privilégier les formes intraveineuses

Modifications des paramètres PK en réanimation

• Absorption et distribution :

- Absorption orale altérée :
 - péristaltisme intestinal,
 - biodisponibilités des comprimés écrasés,...
 - → privilégier les formes intraveineuses
- Modifications du volume de distribution :
 - soluté de remplissage,
 - ascite,
 - ventilation mécanique et débit lymphatique pulmonaire diminué
 - deshydratation intra- ou extra- cellulaire...

Modifications des paramètres PK en réanimation

• Absorption et distribution :

- Absorption orale altérée :
 - péristaltisme intestinal,
 - biodisponibilités des comprimés écrasés,...
 - → privilégier les formes intraveineuses
- Modifications du volume de distribution :
 - soluté de remplissage,
 - ascite,
 - ventilation mécanique et débit lymphatique pulmonaire diminué
 - deshydratation intra- ou extra- cellulaire...
- Modifications de la fixation protéique :
 - Forme **ACTIVE** = forme **LIBRE**
 - attention au taux de protéines plasmatiques pour les molécules fortement liées

Zagli et al, Fundamental & Clinical Pharmacology 2008

Modifications des paramètres PK en réanimation (2)

- Métabolisme et élimination :
 - Si défaillance hépatique : diminution du métabolisme hépatique
 - Risques d'interactions médicamenteuses +++
 - Inducteurs enzymatiques : phénytoine, phénobarbital, carbamazépine, rifampicine, inhibiteurs de la pompe à proton...
 - Inhibiteurs enzymatiques : voriconazole, itraconazole, posaconazole, ritonavir,...
 - Attention aux effets inhibiteurs des cytokines pro-inflammatoires

Modifications des paramètres PK en réanimation (2)

• Métabolisme et élimination :

- Si défaillance hépatique : diminution du métabolisme hépatique
- Risques d'interactions médicamenteuses +++
 - Inducteurs enzymatiques : phénytoine, phénobarbital, carbamazépine, rifampicine, inhibiteurs de la pompe à proton...
 - Inhibiteurs enzymatiques : voriconazole, itraconazole, posaconazole, ritonavir,...
- Attention aux effets inhibiteurs des cytokines pro-inflammatoires
- Insuffisance rénale
- Hyperclairance (exemple des grands brulés,...)
- Impact des hémofiltrations, dialyse péritonéale et hémodialyse continue ou intermittente, etc...

Pénétration des antiviraux dans les compartiments profonds

• Exemple du passage dans le système nerveux central

Pénétration des antiviraux dans les compartiments profonds

• Exemple du passage dans le système nerveux central

Pénétration des médicaments dans les compartiments profonds

- Quels composés pénètrent dans les compartiments profonds ?
 - Fixation aux protéines plasmatiques,
 - Lipophilie/hydrophilie,
 - Poids moléculaire (<1000 Da),
 - Demi-vie d'élimination plasmatique, ...
- Bon usage du dosage en pharmacologie :
 - Toujours prélever un échantillon plasmatique en parallèle du liquide de ponction (LCR, LBA, etc...)

Impact de l'inflammation sur la pénétration centrale des composés

- Augmentation de la perméabilité
 - Libération de cytokines (TNF-α, IL-1β, IL-6) :
 - → Altération des jonctions serrées entre les cellules endothéliales de la BHE
 - Altération de l'expression des gènes codant les transporteurs d'efflux comme la P-glycoprotéine (P-gp)
- Perturbation de l'homéostasie du cerveau
 - Régulation du passage des nutriments, ions et neurotransmetteurs
 - Conséquence sur le passage de fluides (composés hydrophiles +++)

Relation PK-PD : classification des antibiotiques

Table 1. PD indices related to the efficacy of different antimicrobials.

Antimic	robial Activity PK/PE	Index
	Concentration-dependent activity	
Aminoglycosides	* F	fCmax/MIC
Quinolones		fAUC24/MIC
	Time-dependent activity	-
β-lactams		
Penicillins		fT. Mrc
Cephalosporins		J 1>MIC
Carbapenems		
(Concentration-dependent activity with time-depende	ence
Vancomycin	Fosfomycin	
Linezolid	Fluoroquinolones	fAUC ₂₄ /MIC
Daptomycin	Colistin	

fCmax/MIC: Free-drug maximum concentration to the MIC; $fT_{>MIC}$: The percentage of time that the antimicrobial free serum concentration remained above the MIC; $fAUC_{24}/MIC$: The area under the free concentration-time curve over 24 h divided by the MIC.

Rodriguez-Gascon et al, Pharmaceutics, 2021

Effet de l'exposition sur le risque de sélection de sous population de bactéries résistantes

Recommandations SFPT/SFAR (2019)

Table 2 Target trough total (Cmin) or free (fCmin) plasma concentration following intermittent administration and target total (Css) or free (fCss) steady-state plasma concentration following continuous administration for the main beta-lactam antibiotics

	Free	Recommended target con	centrations"	MIC threshold ^E	Ref.
	fraction (%)	Documented infection	Non-documented infection	[130]	
Amoxicillin	≈ 80%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 40–80°mg/L ⁹ Css 40–80 mg/L	8 mg/L (ECOFF E. coli)	[131]
Cefazolin	≈ 15–20%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 40–80 mg/L ⁵ Css 40–80 mg/L	2 mg/L (ECOFF S. aureus)	[132]
Cefepime	80%	/Cmin or /Css≥4× MIC Cmin < 20 mg/L Css < 35 mg/L	Cmin 5–20 mg/L Css 5–35 mg/L	1 mg/L (Enterobacteriaceae) ⁵⁵	[21, 72, 73]
Cefotaxime	≈ 60–80%	fCmin or fCss≥4× MIC Cmin or Css<60 mg/L	Cmin 25–60 mg/L Css 25–60 mg/L	4 mg/L (ECOFF S. aureus)	[133]
Ceftazidime	≈ 90%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 35–80 mg/L ⁵ Css 35–80 mg/L	8 mg/L (ECOFF P. aeruginosa)	[77]
Ceftriaxone	≈ 10%	fCmin≥4× MIC Cmin < 100 mg/L	Cmin 20-100 mg/L	0.5 mg/L (ECOFF E. cloacae)	[129]
Cloxacillin	≈ 10%	fCmin or fCss≥4× MIC Cmin ou Css < 50 mg/L	Cmin 20–50 mg/L ^{\$} Css 20–50 mg/L	0.5 mg/L (ECOFF S. aureus)	[131]
Ertapenem	≈ 10%	fCmin ou fCss≥4× MIC Cmin < 10 mg/L	Cmin 5–10 mg/L	0.125 mg/L (H. influenzae) ⁵⁵⁵	[117, 134]
Imipenem	≈ 80%	fCmin≥4× MIC Cmin <5 mg/L	Cmin 2.5–5 mg/L	0.5 mg/L (ECOFF E. coli)	[135]
Meropenem	≈ 100%	fCmin ou fCss≥4× MIC Cmin ou Css < 16 mg/L	Cmin 8–16 mg/L ⁹ Css 8–16 mg/L	2 mg/L (ECOFF P. aeruginosa)	[136]
Piperacillin	≈ 80%	/Cmin ou /Css≥4× MIC Css < 160 mg/L	Css 80–160 mg/L	16 mg/L (ECOFF P. aeruginosa)	[75]

Guilhaumou et al, Crit Care, 2019

Recommandations SFPT/SFAR (2019)

Table 2 Target trough total (Cmin) or free (*f*Cmin) plasma concentration following intermittent administration and target total (Css) or free (*f*Css) steady-state plasma concentration following continuous administration for the main beta-lactam antibiotics

	Free	Recommended target conc	entrations"	MIC threshold [£]	Ref.
	fraction (%)	Documented infection	Non-documented infection	[130]	
Amoxicillin	≈ 80%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 40–80°mg/L ⁹ Css 40–80 mg/L	8 mg/L (ECOFF <i>E. coli</i>)	[131]
Cefazolin	≈ 15–20%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 40–80 mg/L ⁵ Css 40–80 mg/L	2 mg/L (ECOFF S. aureus)	[132]
Cefepime	80%	fCmin or fCss≥4× MIC Cmin < 20 mg/L Css < 35 mg/L	Cmin 5–20 mg/L Css 5–35 mg/L	1 mg/L (Enterobacteriaceae) ⁵⁵	[21, 72, 73]
Cefotaxime	≈ 6080%	fCmin or fCss≥4× MIC Cmin or Css<60 mg/L	Cmin 25–60 mg/L Css 25–60 mg/L	4 mg/L (ECOFF S. aureus)	[133]
Ceftazidime	≈ 90%	fCmin or fCss ≥ 4× MIC Cmin or Css < 80 mg/L	Cmin 35–80 mg/L ⁵ Css 35–80 mg/L	8 mg/L (ECOFF P. aeruginosa)	[77]
Ceftriaxone	≈ 10%	/Cmin≥4× MIC Cmin < 100 mg/L	Cmin 20-100 mg/L	0.5 mg/L (ECOFF E. cloacae)	[129]
Cloxacillin	≈ 10%	fCmin or fCss ≥ 4× MIC Cmin ou Css < 50 mg/L	Cmin 20–50 mg/L ⁹ Css 20–50 mg/L	0.5 mg/L (ECOFF S. aureus)	[131]
Ertapenem	≈ 10%	fCmin ou fCss≥ 4× MIC Cmin < 10 mg/L	Cmin 5–10 mg/L	0.125 mg/L (H. influenzae) ⁵⁵⁵	[117, 134]
Imipenem	≈ 80%	fCmin≥4× MIC Cmin <5 mg/L	Cmin 2.5–5 mg/L	0.5 mg/L (ECOFF E. coli)	[135]
Meropenem	≈ 100%	fCmin ou fCss≥4× MIC Cmin ou Css<16 mg/L	Cmin 8–16 mg/L ⁹ Css 8–16 mg/L	2 mg/L (ECOFF P. aeruginosa)	[136]
Piperacillin	≈ 80%	/Cmin ou /Css≥4× MIC Css < 160 mg/L	Css 80–160 mg/L	16 mg/L (ECOFF P. aeruginosa)	[75]

Guilhaumou et al, Crit Care, 2019

Recommandations SFPT/SFAR

- Evaluer chaque jour toutes les sources de variabilités PK (catécholamines, remplissage vasculaire, défaillance d'organes, thérapies extra-corporelles, etc...)
- Evaluer le débit de filtration glomérulaire (U x V/P)au début de ttt et à chaque changement de condition
- Mesurer l'albumine (ou au moins les protéines plasmatiques)
- Evaluer %fT > 4-8 x CMI
- Envisager une dose de charge avant toute administration continue
- Effectuer un **STP** si présence d'une source de variabilité PK ou toxicité, EER, etc..

β -lactamines et risque convulsifs

Beta-lactam	Relative pro-convulsive activity (reference: penicillin G = 100)
Cefazolin	294
Cefepime	160
Penicillin G	100
Imipenem	71
Aztreonam	42
Ampicillin	21
Ceftazidime	17
Meropenem	16
Ceftriaxone	12
Piperacillin	11
Cefotaxime	8,8
Cefoxitine	1,8

Table 1 Convulsing activity of beta-lactams compared to penicillin G, from [67, 69, 70]

Guilhaumou et al, Crit Care, 2019

Mécanisme probable de neurotoxicité

- Hyperexcitabilité neuronale par :
 - Inhibition des récepteurs GABA-A, réduisant l'inhibition neuronale,
 - Agoniste des récepteurs NMDA, augmentant l'excitation neuronale.
- → convulsions ou encéphalopathie

Exemple de céfépime

• Cible thérapeutique (résiduelle) : 5-35 mg/L, à l'équilibre

plasma concentrations in patients with measured trough levels (n = 55).

Chapuis et al, Crit Care, 2010; Lamoth et al, AAC, 2010; Huwyler et al, CMI, 2017

100

Utilisation des β-lactamines en pratique clinique

Le sous-dosage en pratique

Le sous-dosage en pratique

			¹⁰⁰ 7		DFG	< 50 > 50
olécule	Dose journalière DFG > 80mL/min	quate	80	 		
tazidime	2g/8h	(adé	60 -			
Pip/tazo	4g/6h	te PK	40 -			
pénème	1g/8h	° °	20			
		•	оШ			

Mero

Cefta

Céfé

Pip/Taz

Bonne conduite du traitement Les 3 piliers

Doses journalières

Molécule	Dosage recommandé en réanimation
Pipéracilline / Tazobactam	16g par 24h
Ceftazidime	6g par 24h
Céfépime	6g par 24h
Imipénem / Cilastatine	4g par 24h
Méropénème	6g par 24h

Lodise, Clin Infect Dis 2007

A Pas de perfusion prolongée/continue sans **dose de charge** A

Rhodes, Clin Infect Dis 2014

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Prolonged vs Intermittent Infusions of β-Lactam Antibiotics in Adults With Sepsis or Septic Shock A Systematic Review and Meta-Analysis

Hétérogénéité de l'effet du traitement

Lorente, Clin Ther 2007

Optimisation PD – pour qui ?

Situation particulière : patients hyperclairants

- ▷ Définition : $Cl_{creat} \ge 130mL/min$
- ▶ Fréquence : 20-60% des patients critiques
 - Trauma crânien => 85%
 - HSA => 100%
- Sous-évaluation +++ par méthodes CKD-EPI, MDRD, ...
 - De -30 à -60 mL/min

Situation particulière : IRA

- Pas d'adaptation de dose dans les 24 premières heures
 - Le Vd des patients est largement altéré
 - A la phase précoce, le risque est toujours au sous-dosage ++
- Adaptation secondaire après 24h
 - **!** Ne pas oublier, sinon surdosage secondaire assuré
 - En cas d'EERc, adaptation pour un DFG entre 20 et 50 mL/min
 - Impact EER faible en cas de liaison protéique forte

Situation particulière : EERc

- Peu de données dans la littérature
- Adaptation pour un DFG entre 20 et 50 mL/min
- Privilégier perfusion continue/prolongée

Molécule	Effluent < 3L/h	Effluent \geq 3L/h
Piperacilline / Tazobactam	4g toutes les 8h 12g PSE + 4g dose de charge	4g toutes les 8h 12g PSE + 4g dose de charge
Céfépime	1g toutes les 8h 3g PSE + 2g dose de charge	1g toutes les 6h 4g PSE + 2g dose de charge
Méropénème	0.5g toutes les 8h 1,5g PSE + 1g dose de charge	0.5g toutes les 6h 1,5g PSE + 1g dose de charge

Hoff, Ann Pharmacother, 2020

La contrepartie de fortes posologies

La contrepartie de fortes posologies

RESEARCH

Open Access

Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy

Jennifer E Fugate¹, Ejaaz A Kalimullah², Sara E Hocker¹, Sarah L Clark³, Eelco FM Wijdicks¹ and Alejandro A Rabinstein^{1*}

Table 3 Characteristics of 100 ICU patients receiving intravenous (IV) cefepime

	Cefepime neurotoxicity	Rest of cohort	P value
	n = 15	n = 85	
Age, years, mean	69	66	0.16
Male gender, n (%)	11 (73)	50 (59)	0.39
Acute kidney injury, n (%)	13 (87)	64 (75)	0.51
Chronic kidney disease, n (%)	10 (67)	30 (35)	0.042
Hemodialysis, n (%)	4 (27)	28 (33)	0.77
Peak creatinine, median (IQR)	2.8 (1.7-3.1)*	2.3 (1.5-3)	0.36
Nadir eGFR, median (IQR)	22.5 (20.8-34.3)	27.5 (18-45)	0.53
Mean daily cefepime dose, g, median (IQR)	2.5 (1.7-4)*	2.5 (2-3.5)	0.66
Cefepime duration, days, median (IQR)	5 (4.8-7.3)*	7 (4-10)	0.26
Appropriate dose reduction for renal function, n (%)	4 (29)*	64 (75)	0.001
*Data available for 14 of the 15 second of cofering a neurotovisity			

*Data available for 14 of the 15 cases of cefepime neurotoxicity. IQR, interquartile range; g, grams.

Utilisation des aminosides en pratique clinique

Définition de la cible C_{max}/CMI

- ▷ Objectif pharmacodynamique : $C_{max}/CMI = 8 10$
- CMI maximale des bactéries ciblées :

	Entérobactéries	Pyo/Acineto
Gentamicine/Tobramycine	2 mg/L	4 mg/L
Amikacine	8 mg/L	8 mg/L

www.eucast.org/ clinical_breakpoints

- Cible de C_{max} en contexte probabiliste
 - Amikacine : 64 80 mg/l
 - Genta/tobra : 32 40 mg/l

Choix de la dose

41

Poids ajusté ?

Roger, J Antimicrob Chemother 2016

Sowinski, Clin J Am Soc Nephrol 2008 Taccone, Int J Antimicrob Agents 2011 D'Arcy, BMC Pharmacol Toxicol 2012

Aminosides et EER

- ▷ L'EER n'influence pas (peu) le Vd des aminosides
- ▷ Seule la ½ vie d'élimination est modifiée
 - Grande variabilité selon techniques/matériels/paramètres d'EER

Techniques d'EER		Cl _{AMK}	½ vie
	HDI	100mL/min	-
	CVVHF	10-45 mL/min	6-20h
 Pas de modification de posologie Espacement des doses Surveillance de la C_{min} impérative 		e initiale	

Veinstein, Antimicrob Agents Chemother 2013 Roger, Antimicrob Agents Chemother 2016

Aminosides et EER

Utilisation des glycopeptides en pratique clinique

Quelle cible d'AUC/CMI_{24h}

Mois-Broder, Clin Pharmacokinet 2004

Quelle dose pour cet objectif?

IDSA Guidelines, Clin Infect Dis 2011 ; Roberts, AAC 2011

Rybak, Am J Health-Syst Pharm 2009 Ryback, Clin Infect Dis 2020

48

En pratique

- ▷ AUC_{24h} difficile à évaluer
 - La concentration résiduelle permet d'avoir une estimation

	Cmin ≥ 15mg/L		
Si CIMI ≤ 1mg/L	AUC/CMI > 400		

Intérêt majeur de la perfusion continue

Situation particulière : DFG altéré

- ▷ La dose de charge garde toute son importance ++
 - Peu de modification du Vd lié à l'insuffisance rénale
 - Atteindre les taux thérapeutiques le + vite possible

Roberts, AAC 2011

Situation particulière : DFG altéré

Perfusion continue à privilégier ++

CrCL, L/minute >150 45 mg 120 to 150 40 mg 80 to 120 35 mg	dose
>150 45 mg 120 to 150 40 mg 80 to 120 35 mg	
120 to 150 40 mg 80 to 120 35 mg	g/kg
80 to 120 35 mg	g/kg
	g/kg
50 to 80 25 mg	g/kg
25 to 50 14 mg	g/kg
<25 or oliguria 7 mg/	/kg

Roberts, AAC 2011 Cristallini, AAC 2016

Surveillance des taux plasmatiques

Fraction libre des antibiotiques

- Forme **ACTIVE** = forme **LIBRE**
- Comparaison directe avec les seuils de 4-8 x CMI
- Risques importants de sous-dosages pour les antibiotiques avec une faible liaison aux protéines plasmatiques
- Intérêt si recherche de diffusion dans les compartiments profonds (SNC, tissus etc,..)

Barrières au STP

- Disponibilité du STP : délai de rendu trop important
- Nécessité d'une interaction proche avec le pharmacologue
- Cibles optimales non consensuelles
- Difficultés pratiques à appliquer une stratégie encore trop théorique
- Cout-efficacité non démontrée pour les β-lactamines (versus aminosides, vancomycine)
 - Probablement en relation avec le délai de rendu trop long
 - Résultats de l'étude DOLPHIN (essai multicentrique randomisé) attendus

Surcoût du STP

• Evaluation du surcout lié à l'atteinte de la cible thérapeutique ou « Target attainment »

TABLE 3. Daily ICU Costs Split by Cost Category							
	Target Attainment (N = 50)		Target Nonattainment (N = 29)		P		
Categories	Median	IQR1-IQR3	Median	IQR1–IQR3	Mann–Whitney U Test	Bootstrapped t test	
Total	€2.680	2.420-3.290	€2.700	2.930-3.370	0.95	0.95	
Variable	€1.080	889-1.630	€1.090	783-1.570	0.76	0.80	
Fixed admission	€ 1.790	1700-1.880	€1.820	1.760-1.890	0.33	0.90	
Consultation	€98.3	57-163	€111	68-242	0.42	0.25	
RRT	€0	00	€0	00	0.06	< 0.01	
Bedside procedures	€48.9	19.1-98.1	€52.9	28.9-83.9	0.85	0.97	
Laboratory diagnostics	€181	141-232	€164	134-217	0.38	0.66	

Quand et comment faire un « bon » dosage pharmacologique des antibiotiques?

- Indispensable de renseigner les horaires de dernières prises et de prélèvement
- Pour la prescription:
 - Ne pas se fier à la seule notion du terme « Résiduelle » dont l'interprétion peut fluctuer
 - Préciser l'horaire de prélèvement ou le moment
- Efficacité/Toxicité : idéalement résiduelle (dans les 30min qui précédent la prochaine administration)
- Si galénique orale écrasée : nécessité d'évaluer la bonne absorption intestinale

→ cinétique d'absorption

CONFERENCE REPORT AND EXPERT PANEL

Intensive Care Med 2022

Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper_#

Table 4 Recommendations for therapeutic drug monitoring (TDM) for antibiotics, antifungals and antivirals in critically ill patients^a

Antibacterials	TDM recommendation, suggested TDM sampling and targets in critically ill patients					
Beta-lactams	TDM recommendation by Panel: "YES"					
Aminoglycosides	TDM recommendation by Panel: "YES"					
Linezolid	TDM recommendation by Panel: "YES"					
Vancomycin	TDM recommendation by Panel: "YES"					

Antibacterials	TDM recommendation, suggested TDM sampling and targets in critically ill patients					
Fluoroquinolones	TDM recommendation by Panel: "NEITHER RECOMMEND NOR DISCOURAGE"					
Co-trimoxazole	TDM recommendation by Panel: "NEITHER RECOMMEND NOR DISCOURAGE"					
Daptomycin	TDM recommendation by Panel: "NEITHER RECOMMEND NOR DISCOURAGE"					
Colistin	TDM recommendation by Panel: "NEITHER RECOMMEND NOR DISCOURAGE"					

Surveillance des taux plasmatiques?

	TDM-guided	d dosing	Standard	dosing		RR		RR
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
De Waele 2014	3	21	5	20	2.6%	0.57 (.16 to 2.08)	2014	
Fournier 2015	5	27	7	82	3.8%	2.17 (.75 to 6.27)	2015	
McDonald 2016	2	48	4	45	1.6%	0.47 (.09 to 2.44)	2016	
Machado 2017	30	77	23	63	23.3%	1.07 (.69 to 1.64)	2017	_ _
Fournier 2018	0	19	2	19	0.5%	0.20 (.01 to 3.91)	2018 •	·
Meyer 2019	20	146	24	101	14.9%	0.58 (.34 to .99)	2019	
Nikolas 2021	12	114	6	46	5.1%	0.81 (.32 to 2.02)	2021	
Aldaz 2021	20	77	20	77	15.1%	1.00 (.59 to 1.70)	2021	
Kunz Coyne 2021	14	95	23	105	11.8%	0.67 (.37 to 1.23)	2021	
Hagel 2022	27	125	32	124	21.4%	0.84 (.83 to 1.31)	2022	
Total (95% CI)		749		682	100.0%	0.85 (.69 to 1.04)		•
Total events	133		146					
Heterogeneity: $\tau^2 = 0.0$	0; $\chi^2 = 8.87$, df	= 9 (P = .4	5); $l^2 = 0\%$;				1.7	
Test for overall effect: Z	Z = 1.58 (P = .11))						Eavors TDM-quided dosing Eavors standard dosing

Pas d'effet sur la mortalité !

Mangalore, Clin Infect dis 2022

Surveillance des taux plasmatiques?

Surveillance des taux plasmatiques?

		Value
	п	MIC CC : EB / Pyo
β-lactams		
Piperacillin/tazobactam	41	2 {0.85–4} (0.2;256) CC : 8 / 16
Cefepime	22	0.1 {0.0395–1} (0.023;4) CC:4/8
Ceftazidime	9	1.5 {0.8–13} (0.1;256) CC:4/8
Imipenem	9	0.35 {0.2–2.62} (0.1;32) CC:4/4
Meropenem	8	0.2 {0.043–1.05} (0.023;32) CC : 8 / 8

MIC, minimal inhibitory concentration. Data are presented as median {IQR} (min;max) or n (%).

Et des CMI très loin des concentrations critiques +++

Que retenir ?

- 1. Attention aux modifications PK propres à la réanimation
- 2. Sous dosages fréquents
- **3. Optimisation** de l'antibiothérapie par :
 - Augmentation des doses
 - Perfusion adaptée aux caractéristiques pharmacodynamiques
- 4. TDM : Adapter doses selon concentrations mesurées
- 5. Ne pas hésiter à **contacter** votre service de **Pharmacologie** !

Merci de votre attention