

OUTILS DIAGNOSTIQUES ET INFECTIONS FONGIQUES INVASIVES (IFI)

Dr Lilia HASSEINE – hasseine.l@chu-nice.fr

Service de Parasitologie-Mycologie, CHU de Nice Université Côte d'Azur

INTRODUCTION

Infection	Number of infections per underlying disorder per year					Rate/100K	Total burden
	None/other	HIV/AIDS	Respiratory	Cancer/Tx	ICU		
ABPA	_	_	95,331	_	_	145	95,331
SAFS	_	_	124,678			189	124,678
Chronic pulmonary aspergillosis	_	_	3450	_	_	5.24	3450
Invasive aspergillosis	151	17	97	800	120	1.8	1185
Mucormycosis	10	_	_	69	_	0.12	79
Pneumocystis pneumonia	61	449	4	144	_	1	658
Candidaemia	533	28	85	1134	590	3.6	2370
Candida peritonitis	249	_	_	_	237	0.74	486
Oesophageal candidiasis	_	9075	_	?	_	13.8	9075
Recurrent vaginal candidiasis $(4 \times / \text{year} +)$	730,690	_	_	_	_	2220 ^a	730,690
Cryptococcosis	32	76	2	21	_	0.2	131
Total burden estimated	731,726	9645	223,647	2168	947		968,14

- 1 Million cas infections fongiques graves (IFI) / an
- Augmentation incidence (5,9/100000) et mortalité (27,6%)
- Mortalité hospitalière/IFI
- IFI, priorité de santé publique en France

INTRODUCTION

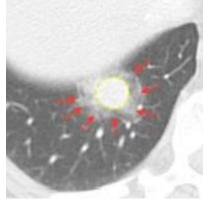
Agents infectieux

IFI: vaste hétérogénéité

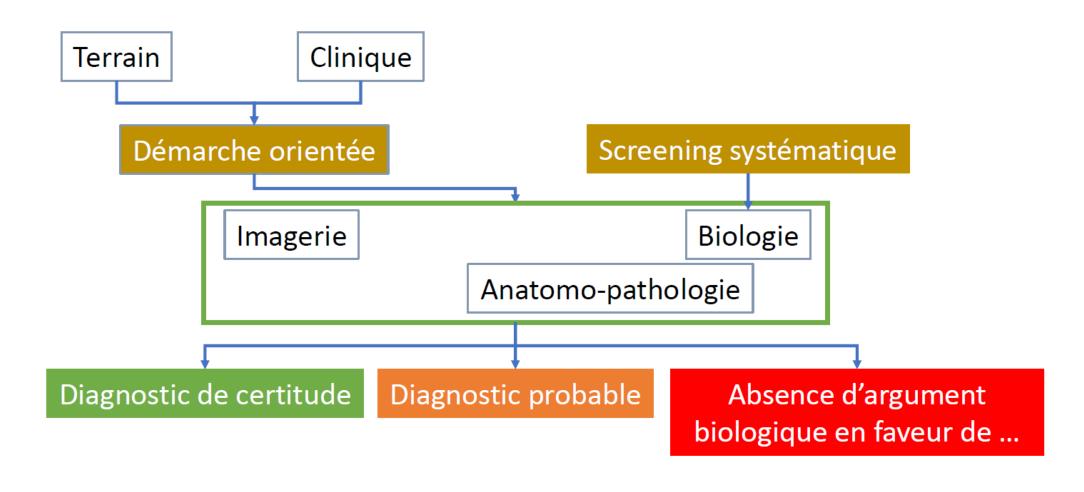
- > Levures
 - Candida spp, Cryptococcus neoformans
- > Champignons filamenteux
 - Aspergillus spp
 - -Zygomycètes
 - Mucor, Rhizopus, Lichthemia, Rhizomucor
- >Autres moisissure
 - CH noirs (*Alternaria*...etc), *Fusarium spp*, *Scedosporium spp*
- > Pneumocystis jiroveci

Patients à risque

SUSPICION IFI


- Contexte clinique
- Immunodépression

- o latrogène: Hématologie, Cancer, transplantés d'organes; maladies auto-immunes, biothérapies
- VIH et ARV
- * Réanimation: médicale, chirurgicale (KT, ventilation mécanique,....)
- * Autre: Diabète, porte d'entrée cutanée (traumatisme, brûlure...)
- Clinique non spécifique mais orientation du diagnostic
- imagerie



Photos ANOFEL

DEMARCHE DIAGNOSTIQUE

CLASSIFICATION IFI

(EORTC/MSG, consensus international) 2002, 2008, 2020

probable possible Prouvée Myco ou **Facteur Facteur** anapath lié à lié à pos (pvts l'hôte l'hôte profonds stériles) Critère Critère clinique clinique Donnelly JP, Chen SC, Kauffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer Critère and the Mycoses Study Group Education and Research biologique Consortium. Clin Infect Dis 2020; 71: 1367-76. 4 Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics

En 2012 AsplCU: Blot SI and al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am J Respir Crit Care Med **2012**; **186**: 56–64.

CLASSIFICATION IFI

(EORTC/MSG, consensus international) 2002, 2008, 2020

Prouvée

Myco ou anapath pos (pvts profonds stériles)

Donnelly JF of the conse

European C

and the Myd Consortium probable

Facteur lié à l'hôte possible

Facteur lié à l'hôte

➤En 2019, plusieurs changements

PCR Aspergillus
T2M Candida
révision seuil GM LBA/sérum

Critère biologiqu e

gorithm to diagnose 's. Am J Respir Crit Care

Critère

clinique

OUTILS DIAGNOSTIQUES IFI

Diagnostic direct: mise en évidence du champignon (sang, biopsies, pvts respi...etc)

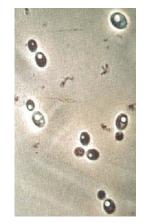
- > Examen direct/cytologie
- +/- rapides mais peu sensibles (ED 40%, ED+culture 60-70%)
- Spécificité variable (hémocultures, LCR, pvts broncho-pulmonaires) > Culture
- ➤ Identification précise : Spectrométrie de masse MALDI-TOF / techniques conventionnelles
 - Orientation thérapeutique
- > Tests de sensibilité aux antifongiques

OUTILS DIAGNOSTIQUES IFI

Diagnostic direct: mise en évidence du champignon (sang, biopsies, pvts respi...etc)

- > Examen direct/cytologie
- > Culture

- +/- rapides mais peu sensibles (ED 40%, ED+culture 60-70%)
- Spécificité variable (hémocultures, LCR, pvts broncho-pulmonaires)
- ➤ Identification précise : Spectrométrie de masse MALDI-TOF / techniques conventionnelles
 - Orientation thérapeutique
- > Tests de sensibilité aux antifongiques

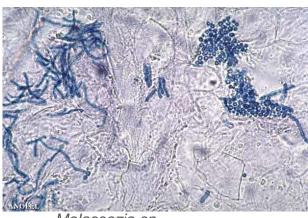

Diagnostic indirect (Biomarqueurs):

- Détection de molécules fongiques
- Galactomananne: sérum, LBA, LCR → Aspergillose

spécifiques

- Glycuronoxylomanne (GXM): LCR, sérum, urines -> Cryptococcose
- Mannane (Ag/Ac) → Candidoses
- Antigènes « panfongiques » : β (1-3) D glucane
- > ADN fongiques
 - Real-time PCR

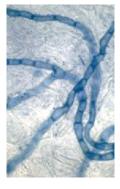
EXAMEN DIRECT

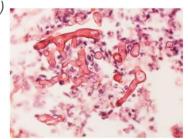

Levures

Levures et pseudofilaments Candida sp

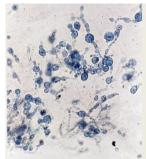
Levures encapsulées (*Cryptococcus spp*)

EXAMEN DIRECT


Levures et pseudofilaments Candida sp



Levures


Filaments septés 2 à 5 mm ramifications à 45° Aspergillus spp

Levures encapsulées (Cryptococcus spp)

Filaments non septés 6 à 15 mm rubannés bifurquant à 90° Mucorales

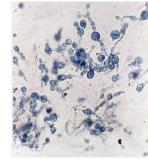
Filaments septés irréguliers vésiculeux

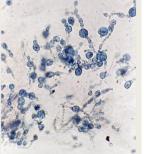
Aspergillus sp?

Fusarium sp?

Autre moisissure?

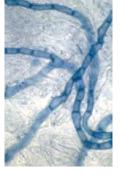
EXAMEN DIRECT

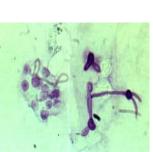

Levures et pseudofilaments Candida sp



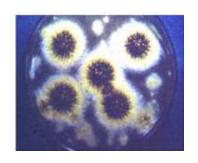
Levures encapsulées

(Cryptococcus spp)

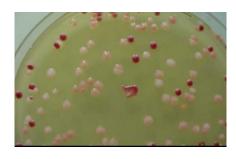



Filaments non septés 6 à 15 mm rubannés bifurquant à 90° Mucorales

Filaments septés irréguliers vésiculeux Aspergillus sp? Fusarium sp? Autre moisissure?



Levures et Pneumocystis Kystes Pneumocystis jiroveci


CULTURE

A. fumigatus
Vert de +en+
foncé en
vieillissant

moisissures

levures

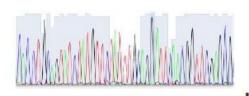
Levures/milieu chromogène

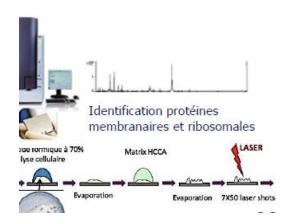
Crytpotcoccus neoformans

Incubation levures 5-7 jours vs 3 semaines filamenteux

PVTS respiratoires non invasifs	ECBC Crachat induit Répéter les PVTs	ED et culture <u>Sensibilité</u> ~ 30% Spécificité ?
PVTS respiratoires invasifs	LBA	ED + culture Sensibilité ~ 50%

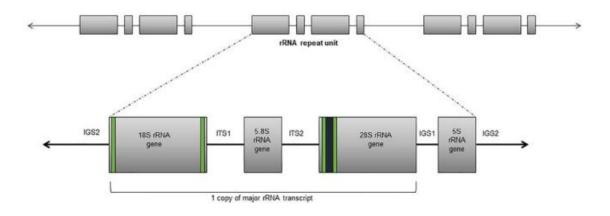
CULTURE


Genre


Complexe d'espèce

Section

Espèce



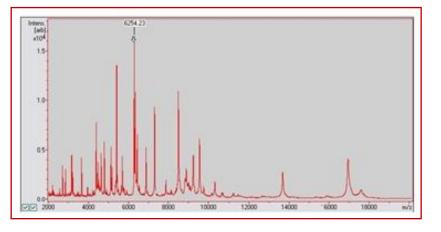
ID phénotypique conventionnelle métabolique +/- morphologique

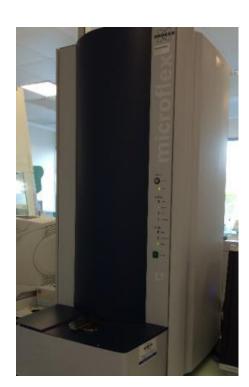
Séquençage moléculaire (ITS ou Multilocus) Quelques jours

Spectrométrie de masse de type MALDI-TOF

Matrix assisted laser desorption ionisation time of flight Mass Spectrometry

- L'identification par Maldi-TOF MS revient à comparer l'empreinte proteique d'un isolat à une banque d'empreintes proteiques.
- Méthode:
 - Facile
 - Rapide
 - ▶ Plus précise que les méthodes phénotypiques classiques
- ⇒ Elle a déjà révolutionné l'identification des bactéries et des levures.
- ⇒ Elle est maintenant tout-à-fait applicable à l'identification des filamenteux

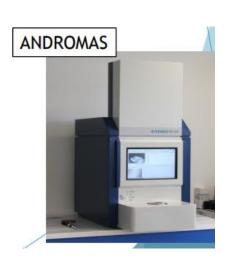

MALDI-TOF: association de 2 principes


MALDI (Matrix Assisted Laser Desorption Ionization) = analyte+matrice= mélange cristallin irradié par un faisceau laser→désorption-ionisation.

En pratique: dépôt d'une colonie en fine crêpe ou de suspension sur plaque métallique—séchage—dépôt d'une matrice—séchage.

Plusieurs protocoles: sans extraction, extraction courte, extraction longue

TOF (Time of fligh)=analyseur du temps de vol et transformation des ions en un courant électrique **En pratique:** obtention d'un profil comparé à une banque de données–10 propositions avec score décroissant-satisfaisant si >2,acceptable entre1,7et 2 (Bruker).



and the second s

Plaque de dépôt échantillon (Bruker Daltonics)

Appareil Biotyper de Bruker

Organisms	Vitek MS (Avril-2017) Biomerieux	MBT-RUO (Octobre- 2017) Bruker	MBT-IVD (Octobre- 2017) Bruker	MBT-mold (Octobre- 2017) Bruker	NIH- (2013)	Online MSI (Aout 2017)
Total champignons	158	219	178	126	114	825
Total levures	87	182	177	0		207
Total Dermatophytes	18	8	0	15	4	64
Total filamenteux	53	29	1	111	110	554
Aspergillus spp	13	8	0	20	37	128
Penicillium spp	11	5	0	30	3	113
Fusarium spp	8	3	1	14	7	50
Scedosporium spp	3	1	0	2	4	11
Mucorales spp	6	2	0	9	10	31
Autres genres	12	10	0	31	49	221

Appareil Biotyper de Bruker

Application web

MSI-2

Banque et algorithme spécifiques

Outil épidémiologique

% d'identification supérieur à 80% avec l'application en ligne, quelque soit l'hôpital d'origine du prélèvement

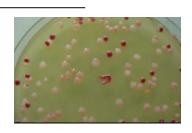
De manière générale, Application d'identification en ligne > Base maison avec logiciel Bruker > Base Bruker avec logiciel Bruker Et ce quel que soit l'hôpital d'origine

Performances de l'application d'identification en ligne par rapport au logiciel Bruker alimenté par une base Bruker ou par une base « maison ». Test à l'aide de 498 isolats cliniques provenant de 5 hôpitaux différents

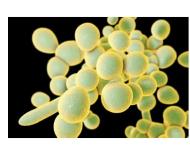
TABLE 3 Panel 2 identification results obtained with the five identification systems

Result for panel 2	IHEM/MRS-MSI	IHEM/MRS-MBT	IHEM/MRS-MBT	Bruker-MBT	Bruker-MBT
sequenced strains ^a	(threshold = 20)	(threshold = 1.7)	(threshold = 2.0)	(threshold = 1.7)	(threshold = 2.0)
Correct at the species level	435 (87.35)	411 (82.53)	312 (62.65)	259 (52.01)	119 (23.9)
Correct at the genus level	26 (5.22)	34 (6.83)	12 (2.41)	41 (8.23)	9 (1.81)
False at the genus level	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Identification criteria not met	37 (7.43)	53 (10.64)	174 (34.94)	198 (39.76)	370 (74.3)

For each database/software combination, the number (%) of strains is specified. Correct, concordant with the molecular identification at either the species or the genus level. False, discordant with the molecular identification at the genus level. Identification criteria not met, score below the defined threshold.


Laboratoire de Parasitologie Hôpital de la salpêtrière

Renaud Piarroux et Anne-Cécile Normand


CANDIDOSES INVASIVES

- Candida sp: commensaux du tube digestif
- Dissémination si facteurs de risque
- Interprétation délicate
 - Péritoine
 - Prélèvements
- Hémoculture=> candidémies (Ss 50%)
- + Sites profonds stériles => Candidoses invasives
- Mortalité associée 25-40%
- Retard à l'instauration du traitement > 48 h
 7 risque de décès par candidémie de 30%
- Impact d'un diagnostic précoce sur la mortalité

HEMOCULTURES

Candidoses invasives, Cryptococcoses disséminées, Fusarioses, Scédosporioses, levuroses autres

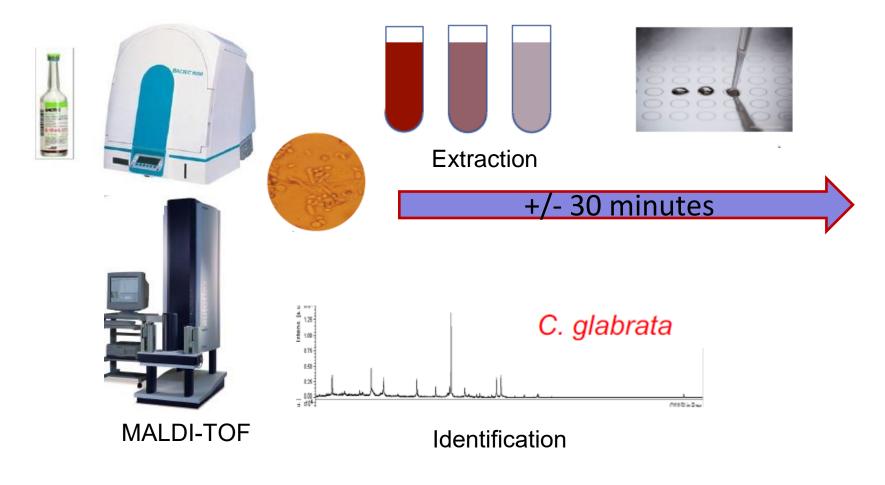
BacT/ALERT® VIRTUO ® (BioMérieux, France) Flacons FA aérobie Plus, FN anaérobie Plus (billes polymériques absorbantes) Mesure du volume Gain temps détection (3h)

majorité des Candida spp : 2 à 4 jours Absorption des ATFs (et ATB) par billes

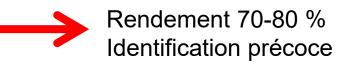
Suivi PTs sous ATF

BD BACTEC™ 9240 (Becton Dickinson, USA) Plus Aerobic/F et Plus Anaerobic/F (résines) Mycosis IC/F sélectif pour fongiques (ATB, agent lytique)

Automate BD BACTEC™ avec Mycosis IC/F en Mycologie


Incubation minimum 14 jours **Ch. filamenteux** e.g. *Fusarium spp* Certains levures exigeantes ou à croissance plus lente

Candida glabrata, C. guillermondii, C. neoformans. Malassezia spp, **Co-infection bactérie-levure** : présence d'ATB


Suivi PTs sous ATF: neutralisation ATFs variabilité de l'inoculum (1-100 à 1000 cfu/mL)

Volume minimum 10 mL par flacon

MALDI TOF SUR FLACON

- ➤ MBT Sepsityper
- > Techniques maison

Bidart and al JCM 2015 Lagacé-Wiens Methods Mol Biol 2015 Farina New microb 2015 Jeddi Med Mycol 2017

> Biomarqueurs sériques:

- > Sérologie : performances variables
 - Ag manannes-Ac antimanannes : Ss 83%, Sp 86%
 - β (1-3) D glucane: Ss (51-100%), Sp (30-98%), VPN ++
 - CAGTA (Candida albicans germ tube antibody/IF Ac IgG)
 Ss (53-73%), Sp (54-80%)
 - Combinaison des 2: Recommandations sociétés savantes: VPN 95% (ESCMID/IDSA guidelines)

> Biomarqueurs sériques:

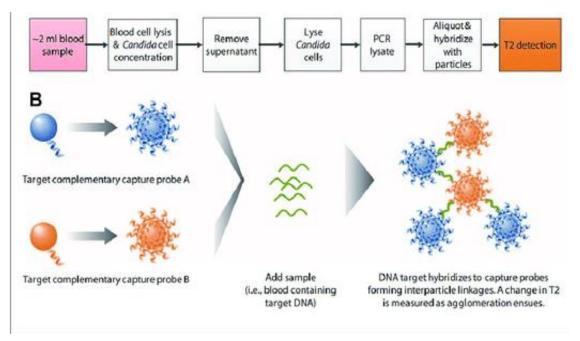
- > Biologie moléculaire
 - PCR in house: Ss (88-98%), Sp (88-95%), non standardisées
 - PCR commercialisées: Ss (48-97%), Sp (99%)

PCR sensible +++(2 échantillons positifs consécutifs)

VPN++ Cl/patients réanimation et chirurgie abdominale

Détection limitée/espèces principales

Coût


PCR T2MR Candida

T2MR Candida (Résonnance magnétique T2/nanoparticules couplées à la PCR)

Détection en multiplex (5 principales espèces Candida) sur sang

Amplification (polymérase thermostable) et détection de particules magnétiques

agglutinées

Agglomération spécifique des NP en présence d'amplicons Modification du signal T2

C. albicans

C. glabrata

C. parapsilosis

C. tropicalis

C. krusei

PCR ITS2 Pan Candida

NP superparamagnétiques couplées À des sondes spécifiques d'espèces

T2MR Candida (Résonnance magnétique T2/nanoparticules couplées à la PCR)

Avantages

Sensibilité/Spécificité 91%/98%

(LOD: 1 à 3 UFC/mL vs 100 UFC/mL en PCR)

- Gain de temps X10 vs Hémoculture => Délai rendu (3 heures)
- Détection précoce avant hémoculture
- Suivi, pronostic

Aspect médico-technique:

- Durées hospitalisation diminuée
- Utilisation des antifongiques, plus adaptée
- Baisse mortalité
- Moins de traitement antifongique chez les non inféctés

T2MR Candida (Résonnance magnétique T2/nanoparticules couplées à la PCR)

Avantages

- Sensibilité/Spécificité 91%/98%
 - (LOD: 1 à 3 UFC/mL vs 100 à 1000 UFC/mL PCR)
- Gain de temps X10 vs Hémoculture => Délai rendu (3 heures)
- Détection précoce avant hémoculture
- Suivi, pronostic

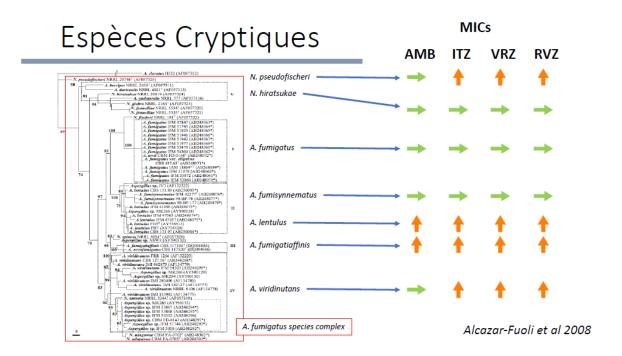

Aspect médico-technique:

- Durées hospitalisation diminuée
- Utilisation des antifongiques, plus adaptée
- Baisse mortalité
- Moins de traitement antifongique chez les non inféctés

Limites

- Ne remplace pas les hémocultures
- Sensibilité limitée
 quand mélange polymicrobien
- Pas d'antifongigramme
- Capacité limitée: 7 tiroirs
- Coût

- Pathogène de l'environnement
- Multiples formes cliniques
- Aspergillose invasive (AI) est la forme la plus grave =>Fréquence en Hématologie
- Fièvre persistante, point d'appel pulmonaire=> LBA
- Biologie spécifique
 - Mycologie directe
 - Detection d'antigènes: Galactomannane, manoprotéines
 - qPCR



IDENTIFICATION CULTURE ASPERGILLUS

- Non différenciables en microscopie
- Plusieurs espèces incriminées en clinique
- Profils de sensibilité variable aux antifongiques

	AMB	Azolés
A. fumigatus		
N. pseudofischeri		
A. fumigatiaffinis		
A. lentulus		
A. hiratsukae		

- Ag polysaccharidiques d'Aspergillus non spécifique
- Screening Hématologie

Galactomannane sérique (ELISA, seuil 0,5), révision EORTC =>

consensus EORTC 2020: 1 ou 0,8 associé GM LBA 0.7

- Précoce
- Intérêt des dosages cinétiques chez les neutropéniques
- Outils pronostique de suivi d'efficacité sous traitement antifongique

Faux positifs
Pip/tazo
Amox/clav
Immunoglobulines
Poches Fresenius
Reactions croisées
Pénicillium/ Histoplasma
GVH/ BMT aliments

Held et al 2013, Mengoli et al 2009
Denning ERJ and al 2016; Herbrecht J Clin Oncol 2002
Aubry JCM 2006, White LJCM 2010, White JCM 2011
White JCM 2015, Dannaoui JCM 2017, White CID 2015
ALANIO Front microbiol 2017
Cordonnier C et al., CMI (2009), Chamilos G et al., Haematologica (2006), Hidalgo A et al., Eur J Radiol (2009), Maertens JA et al., CID (2007), Marchetti O et al., BMT (2012), Miceli MH et al., CID (2008), Woods G et al., Cancer (2007)

- Ag polysaccharidiques d'Aspergillus non spécifique
- Screening Hématologie

Galactomannane sérique (ELISA, seuil 0,5), révision EORTC =>

consensus EORTC 2020: 1 ou 0,8 associé GM LBA 0.7

- GM: sensibilité 50-90%, spécificité 81-99% AI (cancer, SOT/Hématologie)
 - Précoce
 - Intérêt des dosages cinétiques chez les neutropéniques
 - Outils pronostique de suivi d'efficacité sous traitement antifongique
- TDR (Test de détection rapide)

Aspergillus (LFD): Se 61-92%, Sp 73%-92%

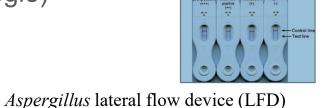
Aspergillus (LFA): Se 96%, Sp 98%

Held et al 2013, Mengoli et al 2009

Denning ERJ and al 2016; Herbrecht J Clin Oncol 2002

Aubry JCM 2006, White LJCM 2010, White JCM 2011

White JCM 2015, Dannaoui JCM 2017, White CID 2015


ALANIO Front microbiol 2017

Cordonnier C et al., CMI (2009), Chamilos G et al., Haematologica (2006), Hidalgo A et al., Eur J Radiol (2009), Maertens JA et al., CID (2007), Marchetti O et al., BMT (2012), Miceli MH et al., CID

(2008), Woods G et al., Cancer (2007)

Faux positifs
Pip/tazo
Amox/clav
Immunoglobulines
Poches Fresenius
Reactions croisées
Pénicillium/ Histoplasma
GVH/ BMT aliments

Lateral Flow Assay

31

- Plusieurs travaux sur PCR (cibles différentes)
- qPCR: Sensibilité 77-88%; Spécificité 75-94%, Hématologie ++
- Plus performante sur plasma vs serum
- Coffrets commerçiaux disponibles (ex MYCOGENIE, ADEMTECK): Ss proche 100%, Sp 84%

- Plusieurs travaux sur PCR (cibles différentes)
- qPCR: Sensibilité 77-88%; Spécificité 75-94%, Hématologie ++
- Plus performante sur plasma vs serum
- Coffrets commerçiaux disponibles (ex MYCOGENIE, ADEMTECK): Ss proche 100%, Sp 84%

Combinaison GM/PCR=> Sensibilité 90-95%

Détection mutation(s) CYP51: Résistance aux azolées

Mutation fréquente TR34/L98H

Coffret Mycogénie, Asperenius

Held et al 2013, Mengoli et al 2009

Denning ERJ and al 2016; Herbrecht J Clin Oncol 2002

Aubry JCM 2006, White LJCM 2010, White JCM 2011

White JCM 2015, Dannaoui JCM 2017, White CID 2015

ALANIO Front microbiol 2017

Cordonnier C et al., CMI (2009), Chamilos G et al., Haematologica (2006), Hidalgo A et al., Eur J Radiol (2009), Maertens JA et al., CID (2007), Marchetti O et al., BMT (2012), Miceli MH et al., CID (2008), Woods G et al., Cancer (2007)

LBA:

GM seuil 0,5/ revision consensus EORTC 2020
 consensus EORTC 2020: 1 ou 0,7 associé GM sérum 0.8

(1 ou 0,7 asscocié GM sérum 0,8)

- TDR Aspergillus (LFD): Se 81%, Sp 100%
- qPCR performance variables selon étude

excellentes: SS 93.7%, Sp 94.5%

API	Se (%)	Sp (%)	Ref
Hématologie	100%	100%	Becker, BJH 2003
BMT	76%	94%	Musher JCM 2004
SOT sauf poumons	100%	84%	Clancy JCM 2007
SOT poumons	67%	95%	Husain Transplantation 2007
Réanimation	88%	87%	Meersseman AJRCCM 2008

Combinaison GM/PCR=> SS 94%

LBA:

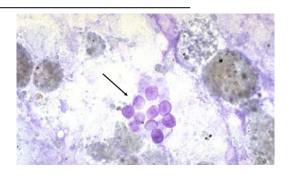
GM seuil 0,5/ revision consensus EORTC 2020
 consensus EORTC 2020: 1 ou 0,7 associé GM sérum 0.8

(1 ou 0,7 asscocié GM sérum 0,8)

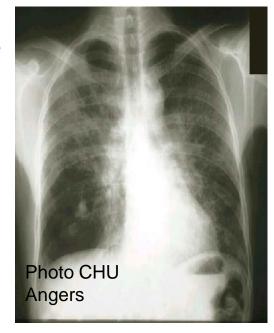
- TDR Aspergillus (LFD): Se 81%, Sp 100%
- qPCR performance variables selon étude excellentes: SS 93.7%, Sp 94.5%

API	Se (%)	Sp (%)	Ref
Hématologie	100%	100%	Becker, BJH 2003
BMT	76%	94%	Musher JCM 2004
SOT sauf poumons	100%	84%	Clancy JCM 2007
s LCR			Husain

- Détection systématique
- sensibilité 88% et spécificité 96%
- Cut-Off recommandé par l'ECIL-3 (Marchetti et al. 2012) = 1


Chong GM et al., JCM 2016

Combinaison GM/PCR=> SS 94%

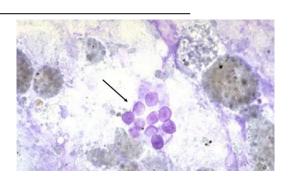

Meersseman AJRCCM

2008

DIAGNOSTIC PNEUMOCYSTOSE

Pneumocystis jirovecii: Responsable d'une pneumopathie interstitielle
 l'augmentation de fréquence a été révélatrice de l'épidémie de SIDA

Infiltrats pulmonaires

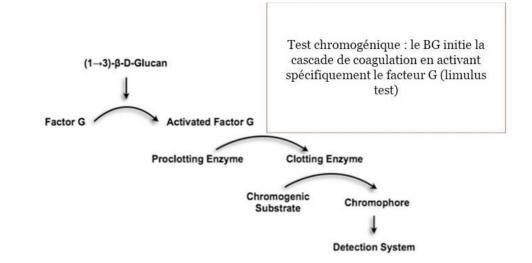

DIAGNOSTIC PNEUMOCYSTOSE

- Détection du champignon dans les prélèvements pulmonaires
- Technique de référence:

Examen microscopique (IF/colorations) sur LBA, PDP, aspiration induite

- Détection de charges fongiques faibles/Patients immunodéprimés non VIH
- Plusieurs travaux: Différencier colonisation/infection sur LBA
- Difficile de faire la différence pour les autres prélèvements
- Détection B D glucanes/LBA (taux supérieur 80-100 pg/mL avec absence d'autres IFI en faveur de pneumocystose
- Combinaison qPCR et B D glucanes: Performance dans diagnostic de pneumocystose

DIAGNOSTIC PNEUMOCYSTOSE


ß-D glucane

- Polysaccharides de la parfoi fongique:
 - Pneumocystis, Candida, Aspergillus....
 - Pas Mucormycètes et Cryptococcus
- Détection enzymatique: tests en plaque ou unitaire
- Des méta-analyses flatteuses
- Une interprétation délicate Faux positif:

immunoglobulines IV, dialyse, compresses chirurgicales, Nutrition, parentérale, colonisation digestive à Enterococcus, Mucite ou colite sévère

Faux négatifs:

Traitement préemptif/empirique : échinocandines

DIAGNOSTIC PNEUMOCYSTOSE

Place ß-glucane dans l'algorithme

- Pneumocystose+++
 - Suspicion clinique (forte ou non)
 - Combinaison IF ou qPCR
 - Immunodéprimé VIH -
- IFI en réanimation
 - Pneumopathie peut être
 - Candidose
 - Immunodéprimé VIH-
- En hématologie:

Sensibilité 49%-77% selon études

Guitard and al 2018

- Aspergillose: à priori non
- Candidose: suivi thérapeutique, études contradictoires

DIAGNOSTIC CRYPTOCOCCOSE

- Examen direct (encre de chine), culture moins sensible notamment chez non VIH
- Détection de l'Ag glucurono-xylomannane capsulaire circulant
- Concentration corrélée à charge fongique in vivo

Sérum - LCR - (LBA, Liq. pleural) avec Sensibilité 98%, Spécificité > 95%

(A)

- Immunochromatographie, ELISA, Screening patients HIV+, CD4 < 100/μL</p>
- Agglutination latex, titrage de l'Ag

agglutination de particules de latex sensibilisées par des AC polyclonaux de lapin dirigés contre les polysaccharides capsulaires des 4 sérotypes

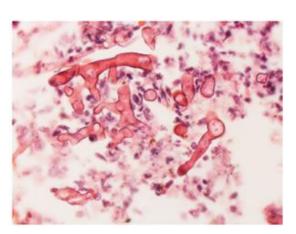
VIH+:

Titres élevés facteur mauvais pronostic Surveillance échec thérapeutique ou rechutes (**LCR**)

VIH-

Titre sérique > 512, PL obligatoire même en absence de signes neurologiques

Faux-positifs : facteur rhumatoïde, perfusion de macromolécules type hydroxyéthyl-amidon, infection à *Trichosporon asahii*



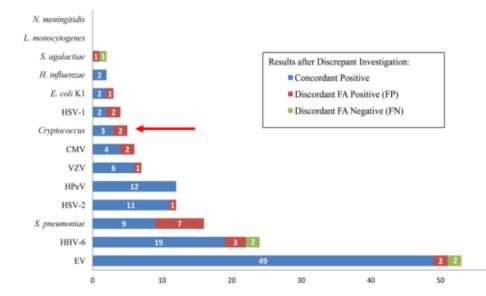
DIAGNOSTIC ZYGOMYCOSE

- Forme sinusienne
- Forme pulmonaire non spécifique
- Diagnostic souvent fortuit, difficile, pas de biomarqueurs disponibles
- Mycologie directe:
 - Filaments mycéliens typiques
 - Culture
 - qPCR 3 cibles: (Lichtheimia, Rhizomucor and Mucor/Rhizopus)
 - Sensibilité 81%, spécificité 92% ++
 - Anticipation du diagnostic: 8 jours, 2 à 3 jours avant signes radiologiques
 - Pronostic: négativation vs taux de survie: 48% and 4%, p < 10-6</p>

survie à J84 plus élevée chez PTs avec qPCR négative

Kits commerciaux disponibles (Mucorgenius, PathoNostics, MycoGENIE, ADEMTECH)

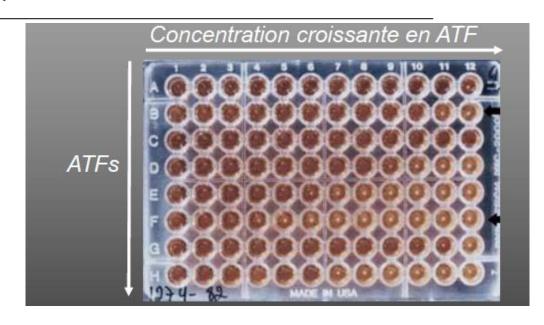
ET LE SYNDROMIQUE....?


Fongémie

Pulmonaire=>

Approche non quantitative

- Neurologique=>
- Sensibilité, Spécificité?
- Coût



Culture-confirmed cryptococcal meningitis not detected by Cryptococcal PCR on the Biofire meningitis/encephalitis panel Chew et al 2018

Fungal Targets

Candida albicans Candida dubliniensis Candida famata Candida glabrata Candida guilliermondii Candida kefyr Candida krusei Candida lusitaniae Candida parapsilosis Candida tropicalis Cryptococcus gattii Cryptococcus neoformans Fusarium Malassezia furfur Rhodotorula Trichosporon

- Détermination de la concentration minimale inhibitrice (CMI)
- Techniques de référence: Comités internationaux
 => Techniques standardisées validées
- Méthodes de microdilution en milieu liquide
 - EUCAST (European Committee on Antimicrobial Suceptibility Testing)
 - CLSI (Clinical and Laboratory Standards Institute
- Inconvenients:
 - Longues et lourdes
 - Nécessité des poudres d'antifongiques

Plusieurs méthodes commercialisées en France:

Etest(AES)

Disques (Bio-Rad)

Fungitest (Bio-Rad)

ATB Fungus ATB Fungus 3 (BioMérieux)

SensititreYeastOne

Colorimetric Method(Trek)

La plus utilisée: Etest

Mode de lecture dépend de l'ATF et champignons testés

=> Lecture 24h possible, rendu de résultat obligatoire à 48h

Avantages:

rapide et simple

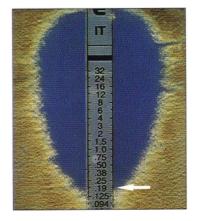
Bonne corrélation avec les méthodes de référence

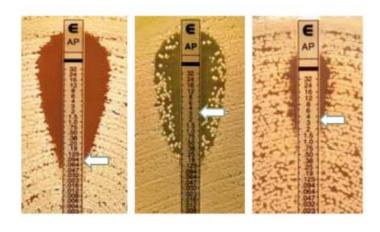
Inconvenients:

Pas reconnue comme méthode de référence

Seuil d'interprétation pas toujours disponible

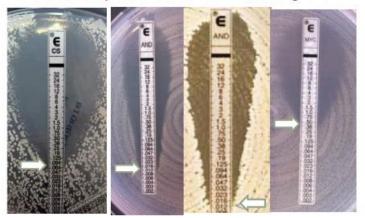
Lecture: Expertise++



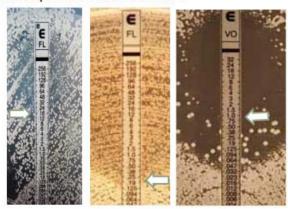


E-test

- Seuils d'interprétation (données microbiologiques et cliniques):
 - Sensible (S), Résistant R), Intermédiaire (I)
- Binôme espèce/ATF
- Pas de réel consensus...
- Détermination des seuils cliniques de sensibilité (CB ou Clinical breakpoints)
 => levures/Aspergillus
- Détermination des seuils épidémiologiques (ECOFF en Europe, ECV aux USA)
- Mise à jour de ces seuils régulièrement:
 - revus à la baisse => pour certains binôme, la zone I passée en S

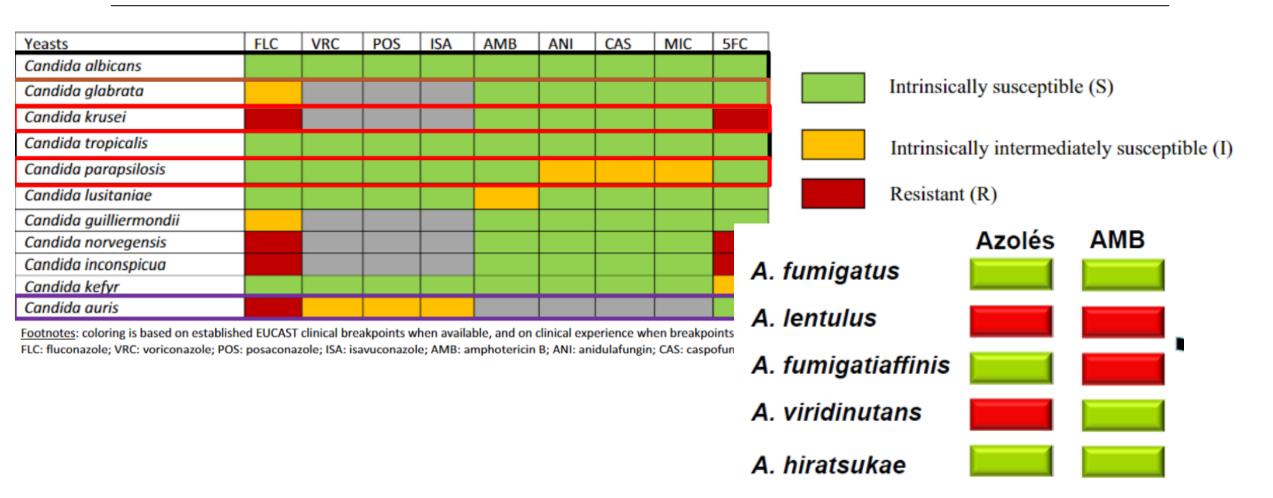

Amphotéricine B

Tenir compte de toute colonie au **contact** de la bandelette: lecture à 100%


Echinocandines

Ignorer les micro colonies **lecture à 80%**Si effet entonnoir: lire en bas de l'entonnoir
Si croissance paradoxale aux CMI hautes: ignorer

Azolés


Effet de traine (microcolonies) fréquent (C. albicans +++)
→ Ignorer les microcolonies: lecture à 80%
Tenir compte des macrocolonies

Yeasts	FLC	VRC	POS	ISA	AMB	ANI	CAS	MIC	5FC
Candida albicans									
Candida glabrata									
Candida krusei									
Candida tropicalis									
Candida parapsilosis									
Candida lusitaniae									
Candida guilliermondii									
Candida norvegensis									
Candida inconspicua									
Candida kefyr									
Candida auris									

<u>Footnotes</u>: coloring is based on established EUCAST clinical breakpoints when available, and on clinical experience when breakpoints are not yet established.

FLC: fluconazole; VRC: voriconazole; POS: posaconazole; ISA: isavuconazole; AMB: amphotericin B; ANI: anidulafungin; CAS: caspofungin; MIC: micafungin; 5FC: flucytosine.

- A ne pas faire de façon systématique
- Isolement d'une souche d'un site normalement stérile
- Suspicion d'un échec thérapeutique
- Infection invasive
- Visée épidémiologique

TAKE-HOME TO MESSAGES

- Application plus importante des méthodes de PCR à la détection d'ADN fongique
 - Excellentes performances analytiques et cliniques
 - Détection des mutations=> espèces résistantes
 - Pathogènes environnementaux ou commensaux/ exigences de qualité

Positionnement dans les algorithmes diagnostiques

Diagnostic des IFI performant: Combinaison des tests

TAKE-HOME TO MESSAGES

- Techniques innovantes
 - T2MR CANDIDA
 - Syndromique

A long terme, Séquençage nouvelle génération NGS

.

TAKE-HOME TO MESSAGES

Un besoin accru d'expertise biologique

Une collaboration clinico-biologique essentielle

OUTILS DIAGNOSTIQUES ET INFECTIONS FONGIQUES INVASIVES (IFI)

Dr Lilia HASSEINE – hasseine.l@chu-nice.fr

Service de Parasitologie-Mycologie, CHU de Nice Université Côte d'Azur

Merci de votre attention

