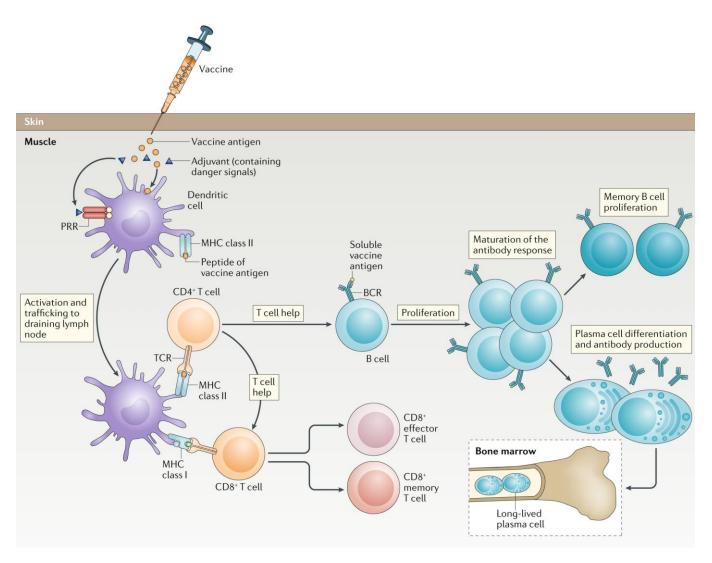
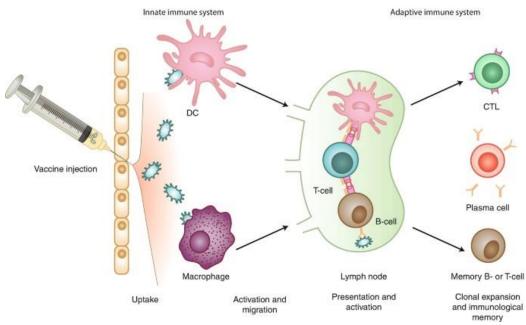


Vaccine administration routes

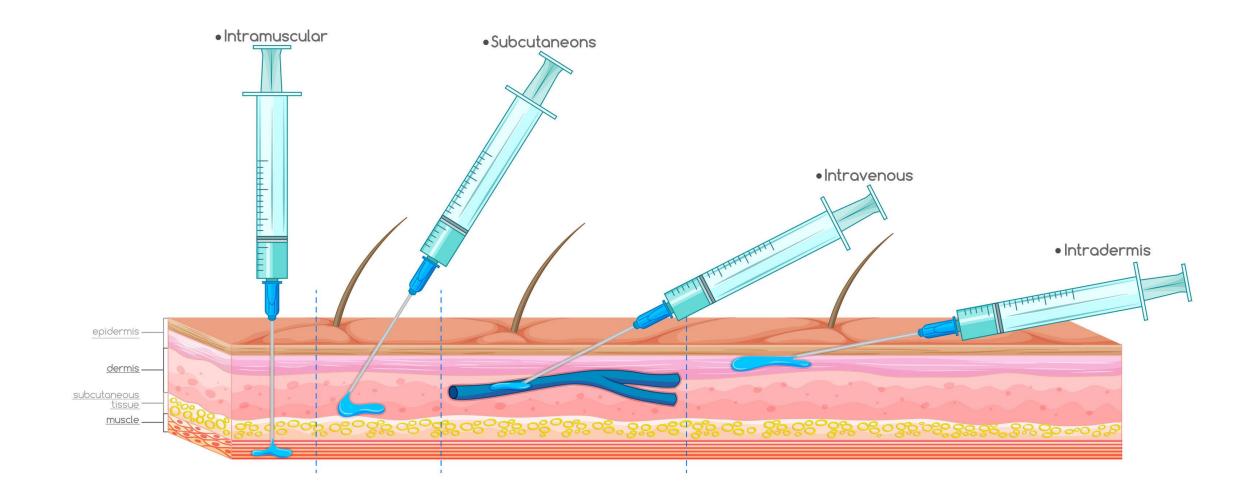
Stephanie Longet, Assistant Professor Université Jean Monnet, GIMAP


Journées inter-DES sur la vaccination 16 octobre 2025


Routes of licenced vaccine administration

List of US-FDA approved live attenuated and killed vaccine.

Type of vaccine	Pathogen	Vaccine name	Route	Manufacturer reference	Reference
Live- attenuated vaccine	Smallpox (Vaccinia) Vaccine	ACAM2000®	Percutaneous	Sanofi Pasteur Biologics co. Cambridge, USA	[38]
	Varicella Virus Vaccine	VARIVAX®	Subcutaneous	Merck & co., Inc. Kenilworth, USA	[39]
	Rotavirus Vaccine	Rotarix®	Oral	GlaxoSmithKline Biologicals, Brentford, UK	[40]
	Influenza Vaccine	FluMist®	Intranasal	Medimmune, LLC. Gaithersburg, MD, USA	[41]
	Ebola Zaire Vaccine	ERVEBO®	Intramuscular	Merck & Co., Inc. Kenilworth, USA	[42]
	Measles, Mumps, and Rubella Virus Vaccine	M-M-R® II	Subcutaneous	Merck & Co., Inc. Kenilworth, USA	[43]
	BCG Live	BCG Vaccine	Percutaneous	Organon Teknika Corp., LLC	[44]
	Chikungunya Vaccine, Live	IXCHIQ	Intramuscular	Valneva Austria GmbH	[45]
	Cholera Vaccine, Live, Oral	VAXCHORA	Oral	Bavarian Nordic A/S	[46]
	Dengue Tetravalent Vaccine, Live	DENGVAXIA	subcutaneous	Sanofi Pasteur, Inc.	[47]
	Influenza Vaccine, Adjuvanted	FLUAD	Intramuscular	Seqirus, Inc.	[48]
	Rabies Vaccine	RabAvert	Intramuscular	Bavarian Nordic A/S	[49]
	Tick-Borne Encephalitis Vaccine	TICOVAC	Intramuscular	Pfizer Ireland Pharmaceuticals	[50]
	Typhoid Vaccine Live Oral Ty21a	Vivotif	Oral	Bavarian Nordic (BN)	[51]
	Yellow Fever Vaccine	YF-Vax	Subcutaneous	Sanofi Pasteur, Inc	[52]
Killed vaccine	Poliovirus Vaccine	IPOL®	Intramuscularly or	Sanofi Pasteur, SA. Lyon, France	[43]
			subcutaneously		
	Hepatitis A Vaccine	HAVRIX®	Intramuscular	GlaxoSmithKline Biologicals. Brentford, United Kingdom	[53]
	Diphtheria and Tetanus Toxoids and Acellular Pertussis Vaccine	INFANRIX®	Intramuscular	GlaxoSmithKline Biologicals. Brentford, United Kingdom	[54]
	Japanese Encephalitis Vaccine	IXIARO®	Intramuscular	Valneva Austria GmbH. Vienna, Austria	[55]
	Diphtheria and Tetanus Toxoids and Acellular	DAPTACEL®	Intramuscular	Sanofi Pasteur, SA. Lyon, France	[56]
	Pertussis Vaccine Adsorbed				
ıbunit vaccine	Anthrax Vaccine Adsorbed, Adjuvanted	CYFENDUS	Intramuscular	Emergent Product Development Gaithersburg Inc	[57]
	Anthrax Vaccine Adsorbed	BIOTHRAX	Intramuscular/	Emergent BioDefense Operations	[58]
			Subcutaneous	Lansing LLC	
	Chikungunya Vaccine, Recombinant	VIMKUNYA	Intramuscular	Bavarian Nordic A/S	[59]
	Haemophilus B Conjugate Vaccine	Liquid PedvaxHIB	Intramuscular	Merck Sharp & Dohme Corp.	[60]
	Hepatitis B Vaccine (Recombinant)	RECOMBIVAX HB	Intramuscular	Merck & Co, Inc	[61]
	Human Papillomavirus 9-valent Vaccine, Recombinant	GARDASIL 9	Intramuscular	Merck & Co., Inc	[62]
	Influenza A (H5N1) Virus Monovalent Vaccine, Adjuvanted	AREPANRIX	Intramuscular	ID Biomedical Corporation of Quebec	[63]
	Meningococcal Group B Vaccine	BEXSERO	Intramuscular	GlaxoSmithKline Biologicals SA	[64]
	Respiratory Syncytial Virus Vaccine, Adjuvanted	AREXVY	Intramuscular	GlaxoSmithKline Biologicals SA	[65]
	Tetanus and Diphtheria Toxoids Adsorbed	TENIVAC	Intramuscular	Sanofi Pasteur Limited	[66]
	Zoster Vaccine Recombinant, Adjuvanted	SHINGRIX	Intramuscular	GlaxoSmithKline Biologicals	[67]
Jucleic acid based	COVID-19 Vaccine, mRNA	COMIRNATY	intramuscular	BioNTech Manufacturing GmbH	[68]
vaccine	COVID-19 Vaccine, mRNA	SPIKEVAX	intramuscular	Moderna Tx, Inc	[69]

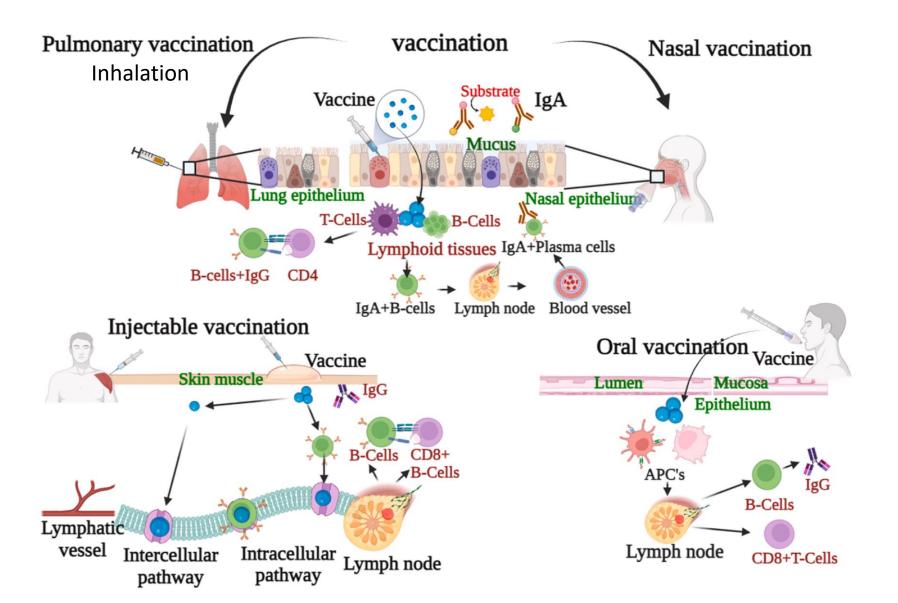

Vaccination via skin injection

https://link.springer.com/chapter/10.1007/978-3-030-00710-2_14

Different types of skin injections

IM vs ID: dose sparing using ID

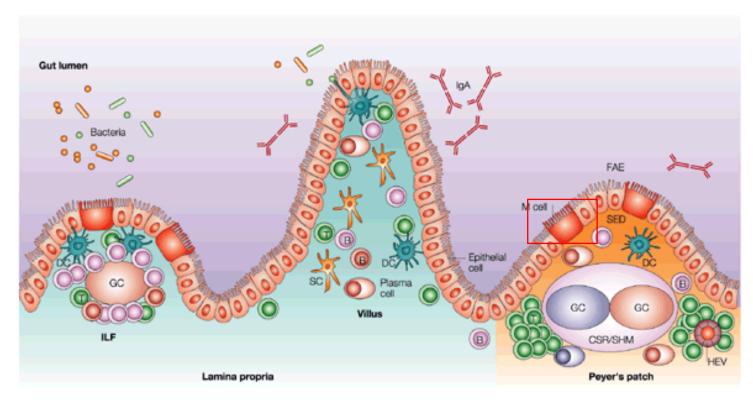
Vaccine	Vaccine type	Subject	Immunogenicity: ID vs IM vaccination	Reference
Hepatitis B vaccine	Plasma-derived hepatitis B subunit vaccine	Healthy adults	ID group had higher serum conversion when using the same dose as IM groups; similar seroconversion rates and antibody titers as ID group with 10% of dose used in IM group.	[158, 159]
Hepatitis B vaccine	Recombinant HBsAg vaccine	Hemodialysis patients	Higher seroprotection rates in the ID groups compared to IM groups	[<u>20</u> , <u>160</u>]
Hepatitis B vaccine	Recombinant HBsAg vaccine	Healthy adults	ID group had higher serum conversion when using the same dose as IM groups; similar seroconversion rates as ID group with 20% of dose used in IM group	[161, 162]
Influenza vaccine	Trivalent inactivated split influenza vaccine	Healthy adults	Similar seroconversion rates as ID group with 20-60% of dose used in IM group	[163, 164]
Influenza vaccine	Trivalent inactivated split influenza vaccine	Infants	Similar seroconversion rates as ID group with 40% of dose used in IM group	[165]
Influenza vaccine	Trivalent inactivated split influenza vaccine	HIV-1 infected adult patients	Similar seroprotection and HAI titers as ID group with 60% of dose used in IM group	[166]
Influenza vaccine	Virosomal adjuvanted trivalent influenza vaccine	Healthy adults	Similar seroconversion rates as ID group with≤40% of dose used in IM group	[167]
Human papillomavirus (HPV) vaccine	HPV16 and HPV18 Recombinant proteins	Healthy adults	Similar seroprotection as ID group with 20% of dose used in IM group	[168]
Hepatitis A vaccine	Virosomal HAV vaccine	Healthy adults	Similar seroprotection rate as ID group with 20% of dose used in IM group	[88]
Rabies vaccine	Inactivated Rabies vaccine	Healthy Adults	Similar immune response as ID group with 10% of dose used in IM group	[169]
Rabies vaccine	Live attenuated Rabies vaccine	Healthy adults	Similar immune response as ID group with 25% of dose used in IM group	[170]


IM vs SC: similar responses but sometimes lower by SC route

Vaccine	Vaccine type	Subject	Immunogenicity: SC vs IM vaccination	Reference
Hepatitis B vaccine	Recombinant HBsAg protein	Healthy adults	Lower level of antibody responses in SC group compared to IM group	[99]
Influenza vaccine	Inactivated split trivalent influenza vaccines	Female elderly	Lower level of antibody responses in SC group compared to IM group	[171]
Influenza vaccine	Inactivated whole-virion influenza A vaccine with alum adjuvant	Adult men	Lower level of antibody responses in SC group compared to IM group	[<u>93</u>]
Influenza vaccine	Inactivated split trivalent influenza vaccines	Children with neuromuscular disease	Similar antibody titers in both SC and IM groups	[172]
Hepatitis A vaccine	Virosomal HAV vaccine	Healthy adults	Similar seroprotection rates in both SC and IM groups	[88]
Hepatitis A Vaccine	Inactivated HAV Vaccine	Healthy Adults	Similar antibody titers in both SC and IM groups	[<u>133</u>]
Measles-mumps-rubella-varicella (MMRV) vaccine	Live attenuated MMRV vaccine	Healthy children	Similar seroconversion rates in both SC and IM groups	[<u>95</u>]
Measles, mumps and rubella (MMR) vaccine	Live attenuated MMR vaccine	Healthy children	Similar antibody and T cell responses in both SC and IM groups	[173]
Diphtheria, tetanus (DT) vaccine	Toxoid	Children	Similar antibody responses in both SC and IM groups	[94]
Meningococcal vaccine	Quadrivalent polysaccharide vaccine	Adults	Similar antibody responses in both SC and IM groups	[174]
HIV vaccine	DNA vaccine prime - Ad5 viral boost	Healthy adults	Similar antibody and T cell responses in both SC and IM groups	[92]

Impact of site of injection & needle length on immunogenicity

Vaccine type	Subjects	Injection site and needle length	Immunogenicity	Reference
Plasma-derived hepatitis B subunit vaccine	Healthy adults		Injection at arm with 1-inch needle, at buttock using 2-inch needle or 1-inch needle achieved highest, intermediate, or lowest rate of seroconversion and titers to HBsAg, respectively	[100]
Recombinant HBsAg vaccine	Healthy infants	Quadriceps (1-inch or 5/8-inch)	1-inch needle achieved significantly higher antibody titers to HBsAg compared to 5/8-inch needle	[175]
Recombinant HBsAg vaccine	Healthy individuals aged 14-24 years	Deltoid muscle (1 -inch or 1.5-inch)	1.5-inch needle achieved significantly higher antibody titers to HBsAg compared to 1-inch needle	[176]


Why should several vaccine administration routes be used?

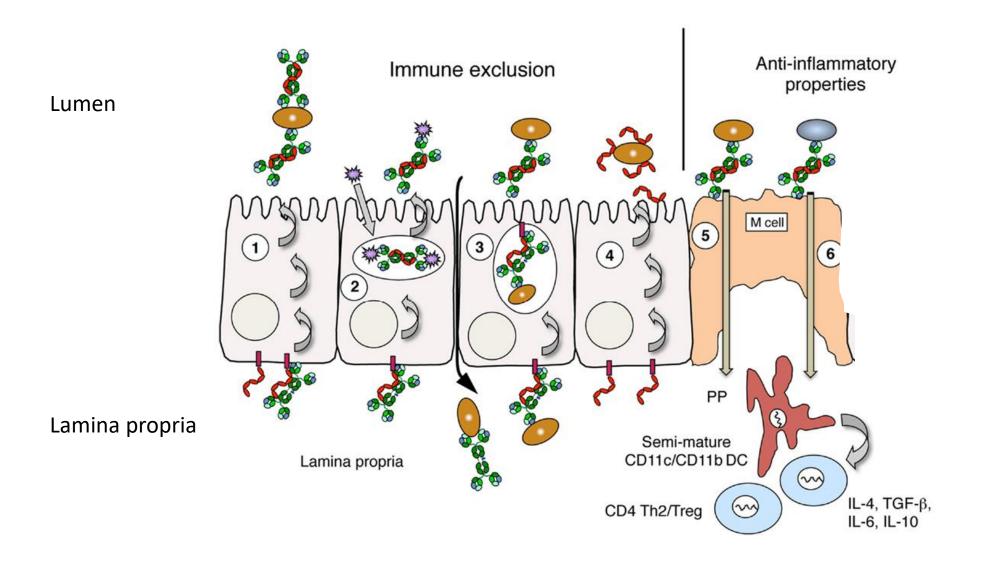
Boosting local immune responses; SIgA responses, tissue-resident memory responses

Common mucosal system

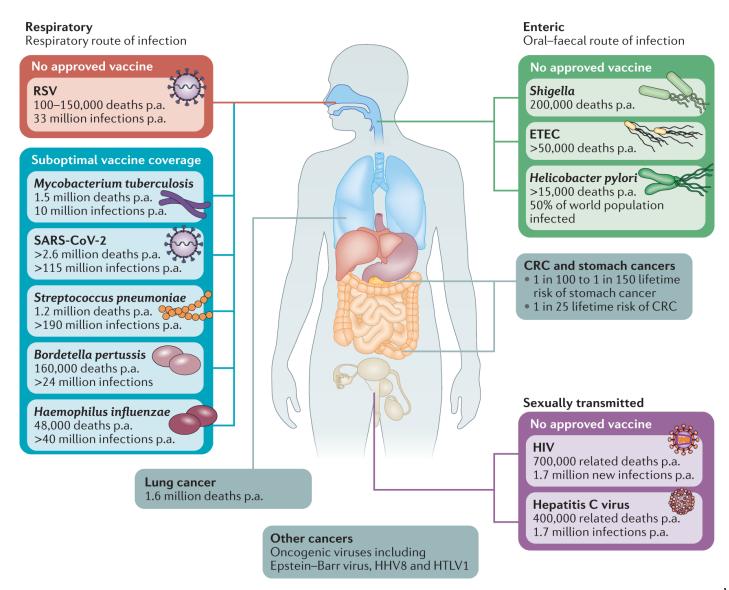
Mucosal-associated lymphoid tissues e.g. gut-associated lymphoid tissues

Nature Reviews | Immunology

Lamina propria (Effector site)

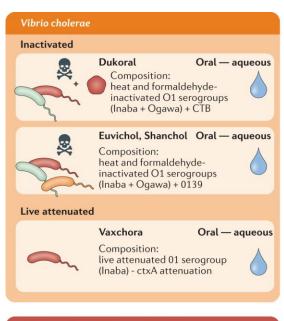

- IgA plasma cells (green)
- Intraepithelial lymphocytes
- CD4 and CD8 T cells
- Macrophages, polymorphonuclear leukocytes

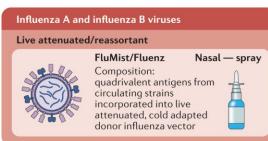
Peyer's patches (Inductive site)

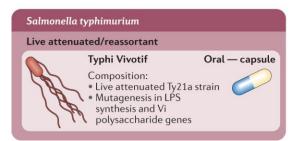

- Subepithelial dome with M cell (blue)
- ➤ Antigen-presenting cells (e.g. dendritic cells)
- Interfolicular regions enriched in naive T cells (red)
- > Follicles enriched in naive B cells (green)

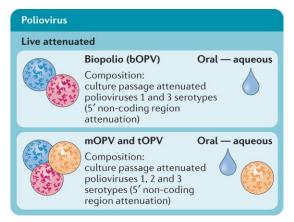
Role of SIgA at mucosal surfaces

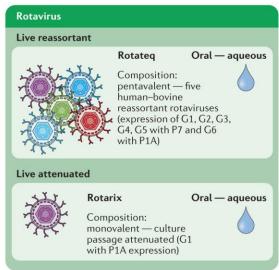
Mucosal pathogens

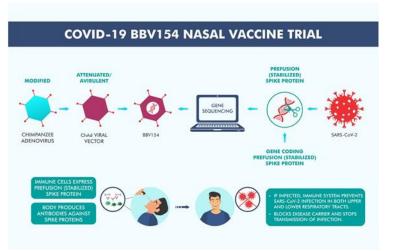



Benefits: mucosal route for vaccination


- 1) Needle-free strategies:
- (i) Ease of administration
- (ii) Non-invasiveness
- (iii) High-patient compliance
- (iv) Suitability for mass vaccination
- (v) High safety


2) Immune responses: induction of local immune responses (mucosal sIgA, mucosal cellular responses; mucosal memory immune responses)


Only a few licensed mucosal vaccines



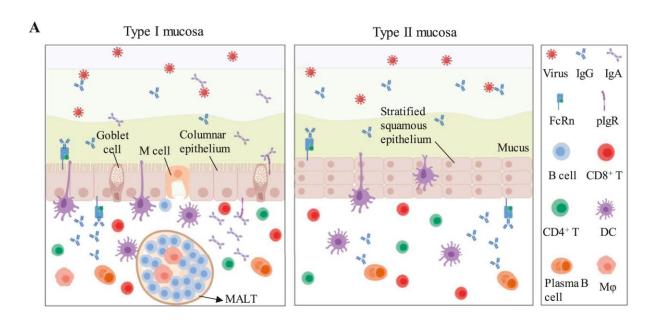
Bharat Biotech: Chimpanzee adenovirus-based vaccine approved in India for emergency use (2022)

CanSino: Inhaled vaccine against COVID-19 based on Adenovirus 5 approved in China (2022) + Morocco, Indonesia

dNS1-nCoV-RBD-LAIV, China

Razi Cov Pars vaccine (Iran)

Gam-COVID-Vac (Russia)


Ward and Lavelle, 2021, Nat Rev Immunol

Challenges: mucosal route for vaccination

- 1) Stability of vaccine formulation and vaccine uptake (delivery of antigens)
- 2) Local tolerance
- 3) Induction of long-term responses
- 4) Criteria to approve a vaccine are currently based on systemic immune responses

Antigen delivery

Challenge: cross the epithelium barrier for inactivated vaccines, subunit vaccines or acid nucleic-based vaccines

Common barriers

☐ Structural barriers:

☐ Determine the route of antigen presentation

☐ Determine the type of antibody

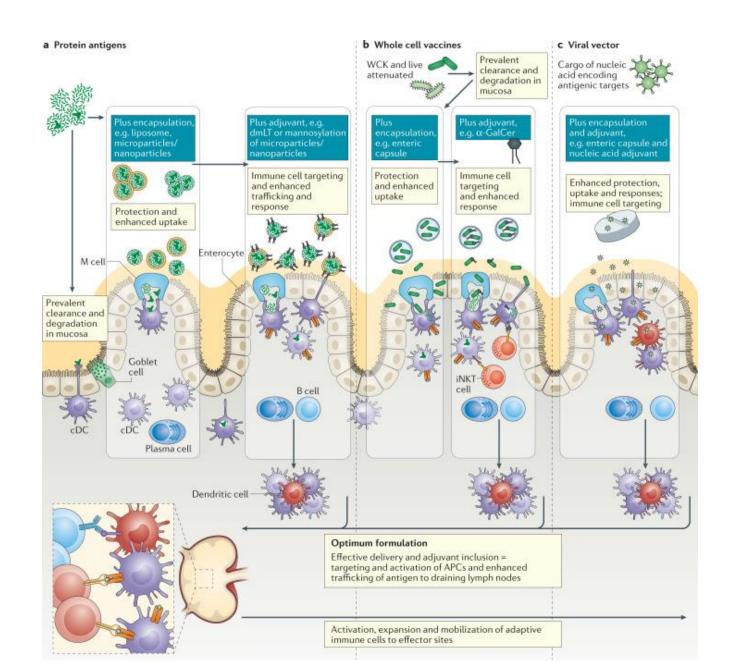
☐ Mucus barriers:

☐ Size exclusion function of mucins

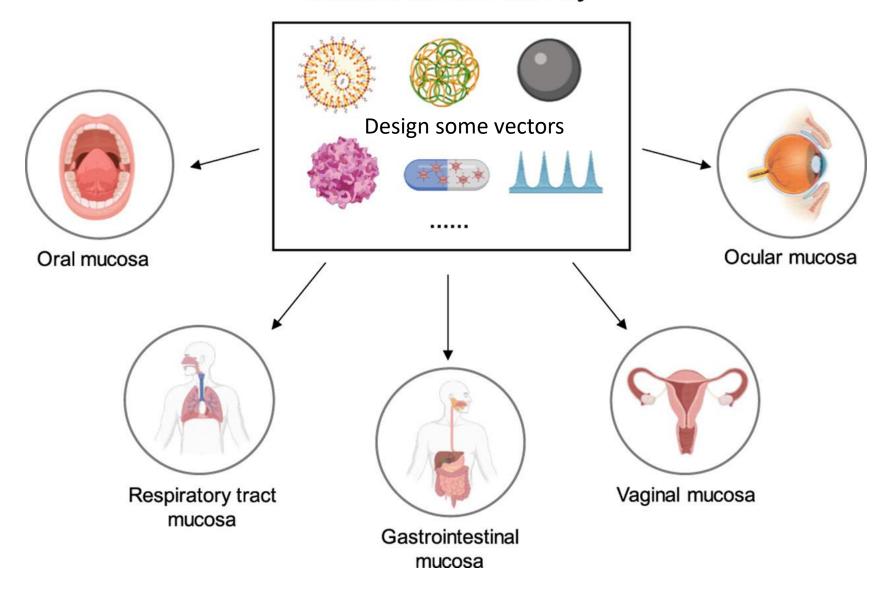
☐ Renewal frequency and flow rate

☐ Thickness of mucus that affects drug penetration

Special barriers ☐ Oral mucosa: ☐ Vaginal mucosa: · Antigens are diluted by abundant saliva • high-density lactobacilli and pH Immune tolerance · menstrual cycle and hormones ☐ Gastrointestinal tract mucosa: ☐ Ocular mucosa: • Gastric: pH 1.5-3.5; high concentrations of · Posterior segment: have to pass through multi biolayers before reaching; enzymes; · Intestine mucosa: restricted penetration; GI · Tear film: high turn over frequency; fast fluid; oral tolerance tear drainage • Optic nerve: may cause neurotoxicity ☐ Respiratory tract mucosa: • mucociliary clearance; proteolytic enzyme


Antigen delivery

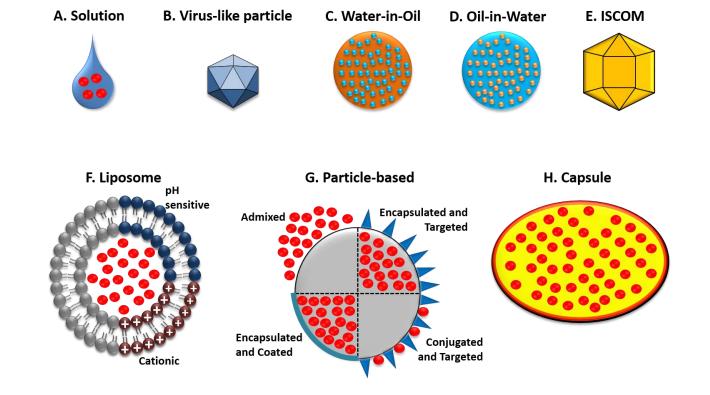
Challenge: pH, mucus, proteases at the mucosal surfaces (e.g. intestinal surfaces, pH differs based on intestinal region)


B Common barriers ☐ Structural barriers: ☐ Mucus barriers: • Determine the route of antigen presentation · Size exclusion function of mucins • Determine the type of antibody · Renewal frequency and flow rate • May need to migrate to nearby lymph nodes · Thickness of mucus that affects drug penetration Special barriers ☐ Oral mucosa: ☐ Vaginal mucosa: · Antigens are diluted by abundant saliva · high-density lactobacilli and pH · menstrual cycle and hormones Immune tolerance ☐ Gastrointestinal tract mucosa: ☐ Ocular mucosa: • Gastric: pH 1.5-3.5; high concentrations of · Posterior segment: have to pass through multi biolayers before reaching; • Intestine mucosa: restricted penetration; GI · Tear film: high turn over frequency; fast fluid; oral tolerance tear drainage • Optic nerve: may cause neurotoxicity ☐ Respiratory tract mucosa: · mucociliary clearance; proteolytic enzyme

- Avoid damaging antigen
- Make sure the antigen will be delivered
- Make sure the antigen will target APCs and that there will be an activation of immune responses in lymph nodes

Challenges linked to mucosal administration

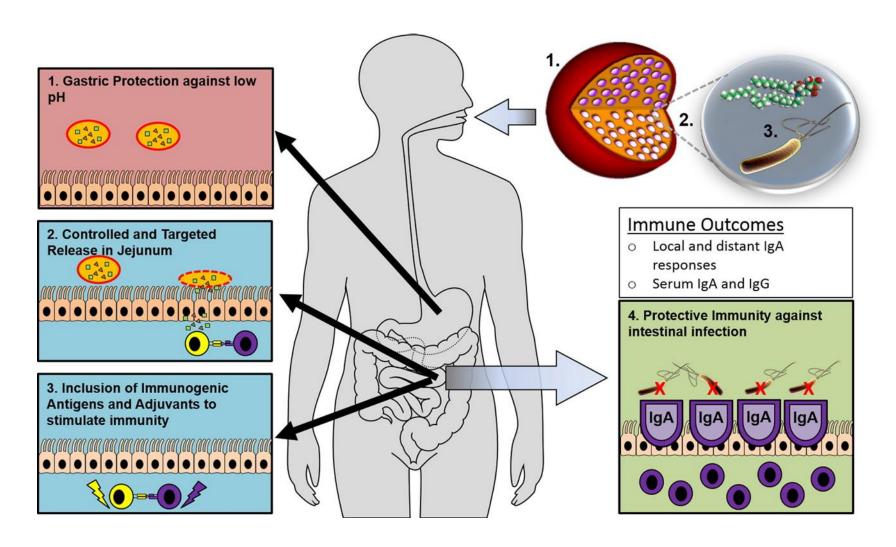
Mucosal vaccine delivery

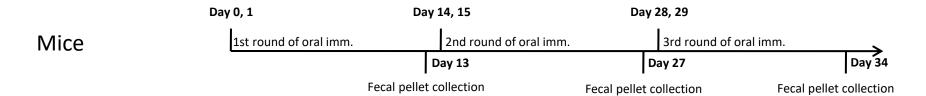


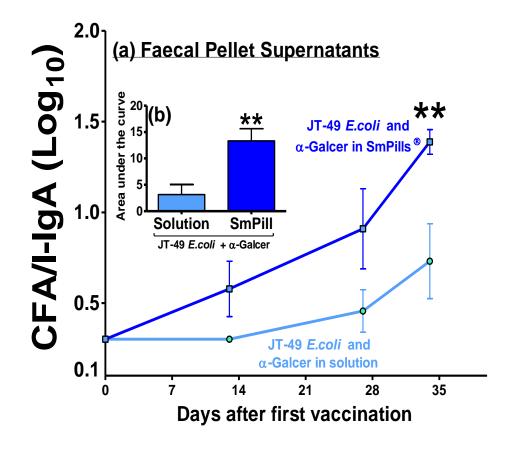
Oral vaccination – main challenges

1. Destruction of the vaccine by stomach acids and enzymes

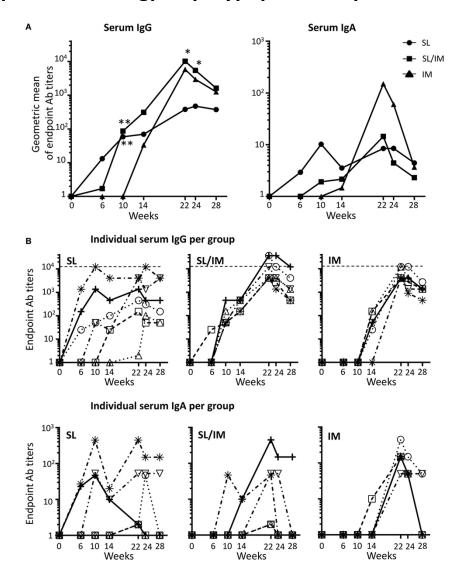
Different oral vaccine delivery strategies


- 2. Poor oral immunogenicity of subunit antigens and but there are some whole cell killed antigens. Absence of licenced oral adjuvants
- 3. Lack of a comprehensive understanding of how orally active adjuvants activate gut immune responses


SmPill to deliver oral vaccines



SmPill® mini-spheres following coating


 $3 \times 10^8 \text{ JT-49 } E.coli + 10 \mu g \alpha$ -GalCer in solution or in SmPill

Sublingual vaccination

Example: modified gp41 polypeptide coupled to the cholera toxin B subunit administered in liquid formulation

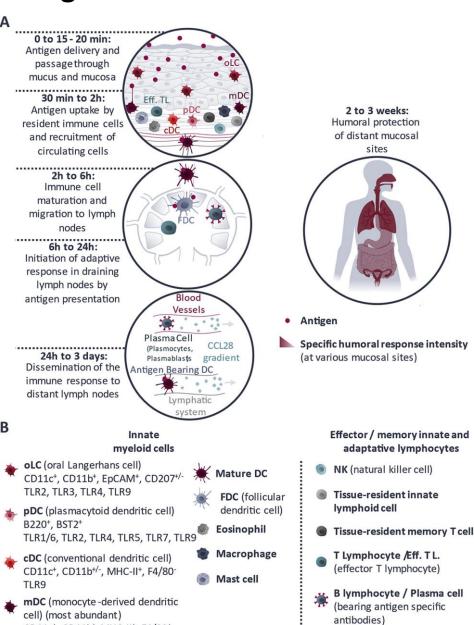
Heterogenous antibody responses

NHP were sedated with ketamine chlorhydrate for 1 h.

Group 1 received five SL immunizations with CTB-mgp41 (100 μ g/dose of mgp41 antigen at W0, 4, and 12 and 50 μ g/dose at W8 and 20) with CT (10 μ g/dose). => **Sublingual**

Group 2 received three SL immunizations with CTB-mgp41 and CT (SL priming) at W0, 4, and 8 similarly to group 1 followed by IM boosts with 100 μ g of mgp41 in Alum (500 μ g/dose) at W12 and 20. => **Sublingual /intramuscular**

Group 3 received a SL priming with CT alone (10 μ g) at W0, 4, and 8 followed by IM boosts with 100 μ g of mgp41 in Alum (500 μ g/dose) at W12, 20, and 28. => **intramuscular**

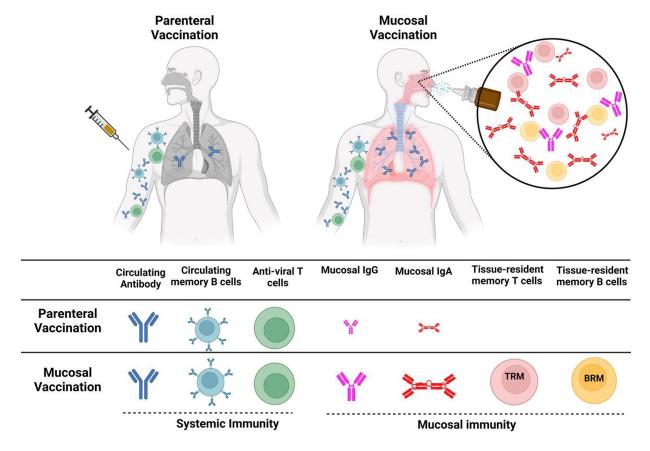

The SL vaccine was administered in a 500 μ L volume of PBS under the tongue of sedated animals with their head bending forward to avoid leakage of excess of vaccine and was then rinsed with PBS 15 min later in order to avoid swallowing.

Sublingual vaccination

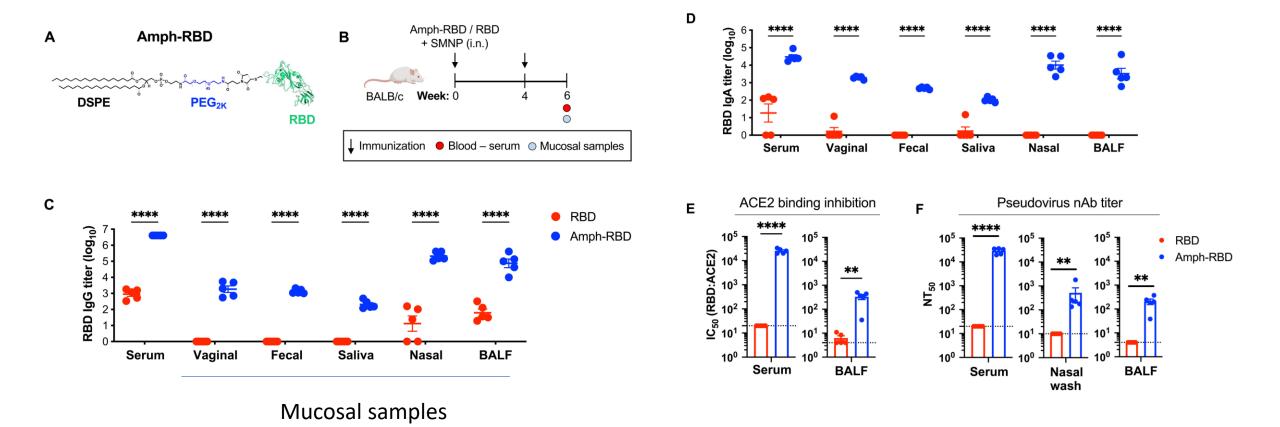
CD11c+, CD11b+, MHC-II+, F4/80+,

TLR2, TLR4, TLR5, TLR7, TLR9

Ly6C+


Antig	ens		Formulations			
Recombinant or subunit proteins	Pathogen mimicking	No formulation	Colloidal formulation	Antigen linked to adjuvant	Studied disease	Refs
subulit proteins	antigens		Torritalation	aujuvant		
		1	lo delivery device			
		LIQUID				_
		rmulation and admin				
	- Hig	h risk of dilution in sa	aliva			
	x	x			Influenza	[21,91]
	x	x			UTIs*	[92]
	x	×			TB†	[93]
	x	×			RSV‡	[50]
	×	x			HIV [§]	[53]
	×	×			JEV	[51]
	x	×			HPV¶	[23]
x		x	х	Х	Influenza	[94]
x		×			PIs#	[58]
x				х	-	[19]
x				х	HIV [§]	[20]
x				x	ETEC**	[56]
x				х	Influenza	[57]
x			x		-	[95]
x			x	x	-	[96]
	x		X		Influenza	[97]
			nucosal delivery dev	rice		
	10 00 00	NEEDLE-FREE INJECTOR			Į l	1
		antigen delivery thro				-
	- Evaluation of loc	al inflammation afte	r delivery needed			(4)
x		×			- HIV [§]	[63]
	х	х			HIVs	[31]
		MICRONEEDLE ARRAY				
		antigen delivery thro orm for various antig	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			*************
		avoid partial dilution				Allenter
		cal inflammation and				
	×	x	u tissue uailiage		Influenza	[65]
×	^		×		illilueliza	[66]
^	×		×		HIV [§]	[67]
	^	Mucoa	dhesive delivery dev	ire	THY	[07]
	Sr	OLID OR SEMI-SOLID FOR		nice .		
		Avoids dilution in sali				
+,		process to preserve		nt		
		hanced thermostabi		100		THE MAN
		ct time between anti				
		ced with biodegrada				
x		x			-	[59]
	x	×			Influenza	[70,72]
	×	×			Poliomyelitis	[47]
	x		x		GAS††	[55]
x			×		-	[71]
	¥		×	¥	HIV§	[73]

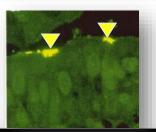
Dilution rate in saliva!


Paris et al 2021, Journal of controlled released

Intranasal vaccination – main challenges

- 1. Destruction of the vaccine by enzymes in nasal area
- 2. Poor oral immunogenicity of subunit antigens. Absence of licenced nasal adjuvants
- 3. Lack of a comprehensive understanding of how intranasal vaccine formulation activate airway immune responses

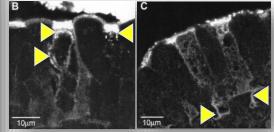
Example: administration of SARS-CoV-2 RBD by intranasal route using an amphilic albumin which can bind to neonatal Fc receptor expressed by mucosal epithelial cells



IgA Reverse Transcytosis

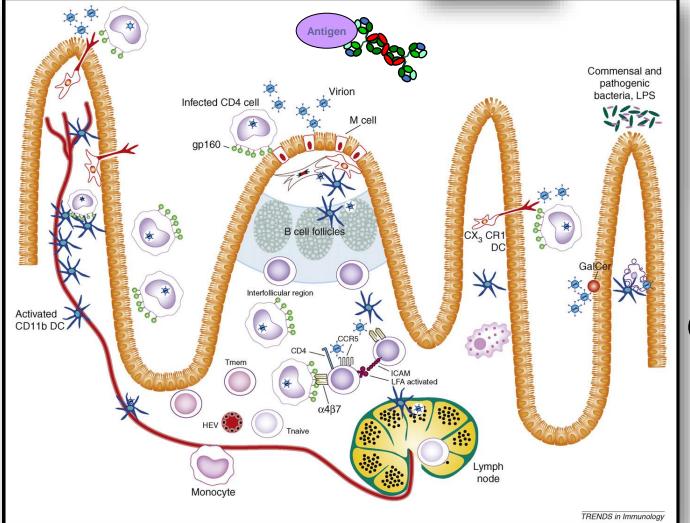
-SIgA binding to the surface of M cells

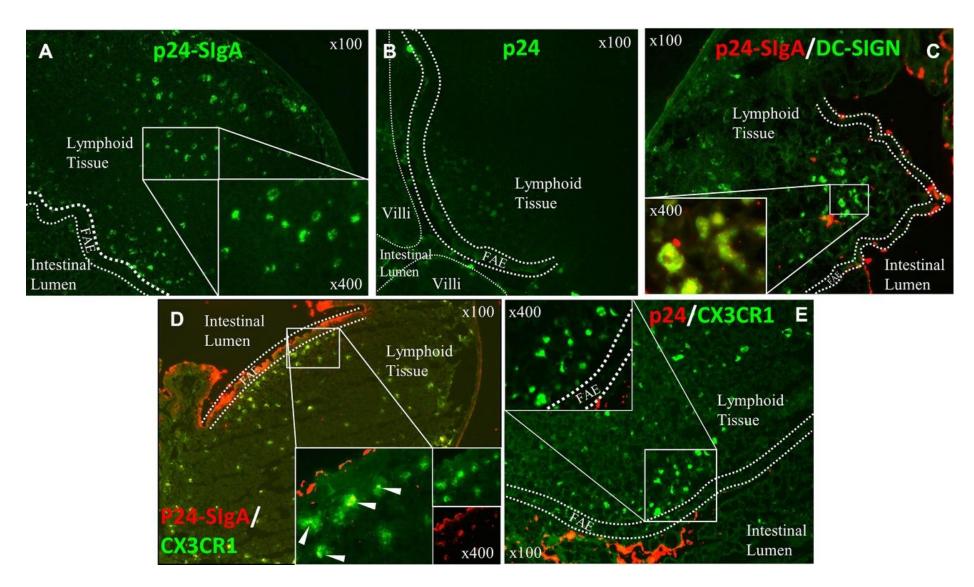
Colocalisation experience IgA - M cell in mice (Corthésy, 2007)



- SIgA entrance at the inner membrane of enterocytes

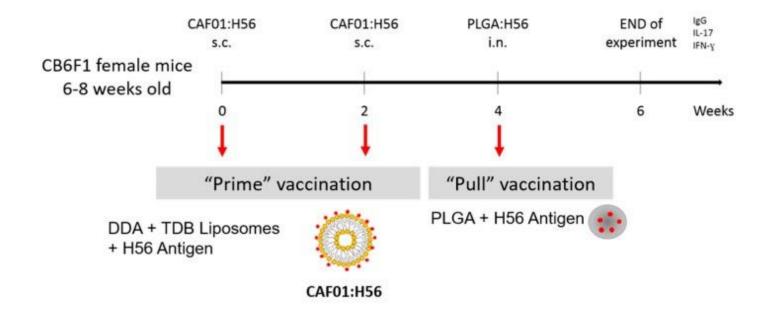
Coeliac: - Abnormal immune response to peptides derived from gluten (gliadin)


- Retro-transport of IgA1gliadin complex



SIgA are associated with the PP immune cells, preferentially with CD11c+ DCs and CD4+ T cells. (Corthésy, 2007)

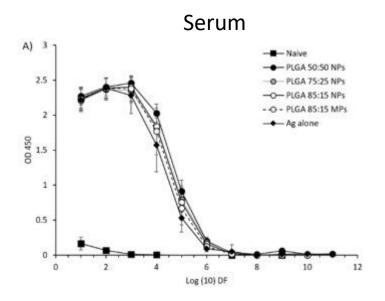
Specific uptake and transport of p24-SIgA across murine follicle-associated epithelium in intestine

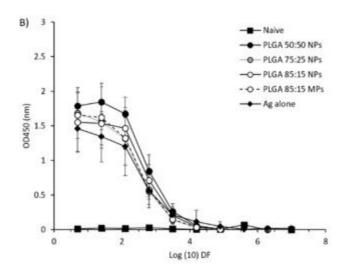


Mouse intestine Rochereau et al 2015

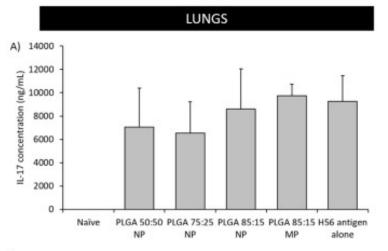
Prime-pull vaccination strategy – 2x SC and 1x IN

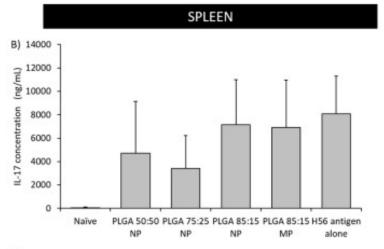
TB vaccine candidate: H56 = antigen; CAF01 = liposome; PLGA =poly(lactic-co-glycolic acid)

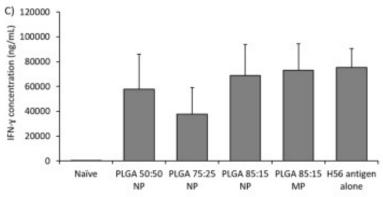

Mouse model

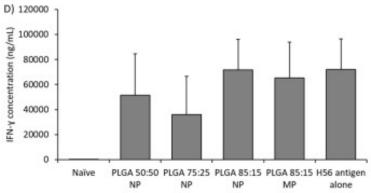

Groups	1 st vaccination (s.c.)	2 nd vaccination (s.c.)	3 rd vaccination (i.n.)
G1: naïve or unvaccinated	N/A	N/A	N/A
G2: PLGA 50:50 NPs	CAF01:H56.	CAF01:H56	H56:PLGA 50:50 NPs
G3: PLGA 75:25 NPs	CAF01:H56	CAF01:H56	H56:PLGA 75:25 NPs
G4: PLGA 85:15 NPs	CAF01:H56	CAF01:H56	H56:PLGA 85:15 NPs
G5: PLGA 85:15 MPs	CAF01:H56	CAF01:H56	H56:PLGA 50:50 MPs
G6: Antigen alone	CAF01:H56	CAF01:H56	H56 alone

Roces et al 2019, Vaccines

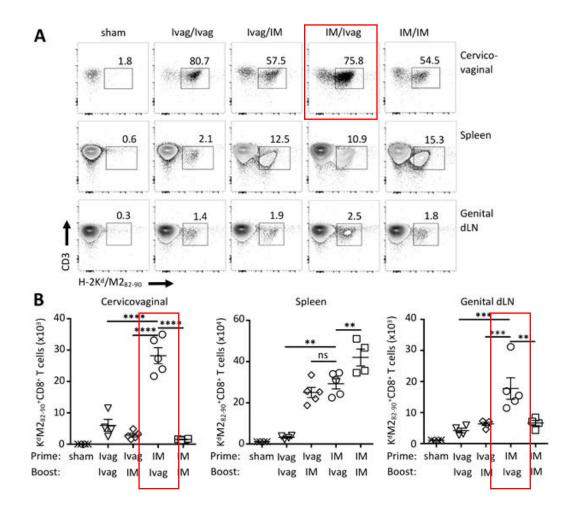

IgG responses - ELISA

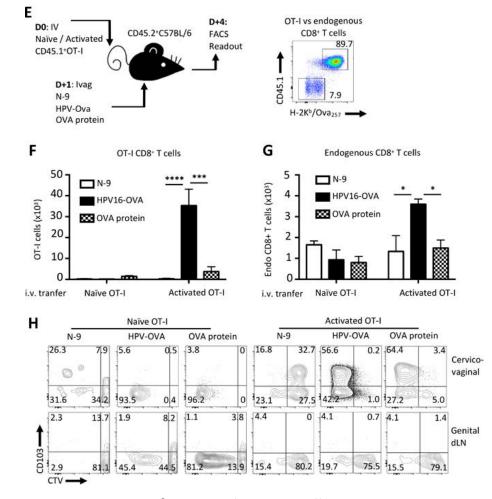



Supernatants from lung lymphocytes



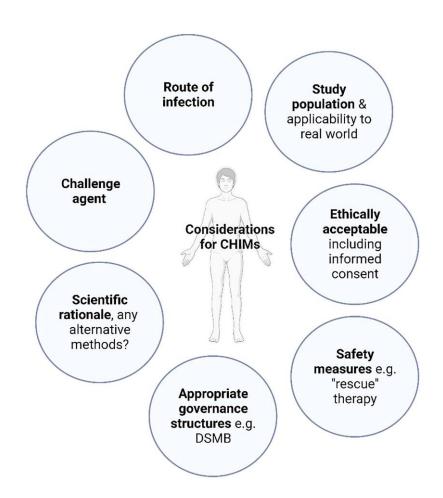
Restimulation of lung cells and splenocytes with H56 for 72h hours - ELISA

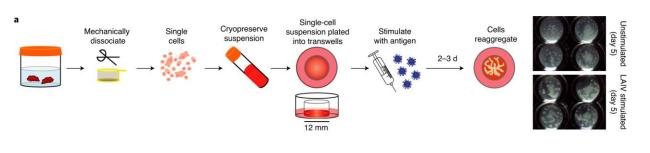



Prime-pull vaccination strategy – combinations IM and IVag

Context – HPV vaccines (IM: Ad5-based vectors and IVag: HPV Pseudovirus)

Mouse model




Local antigen presentation promotes in situ proliferation and upregulation of CD103 (resident marker on genital T cells)

+ recruitment of activated CD8⁺ T cells

Human models to evaluate mucosal vaccines

Wagar et al 2024, Nat Med

Advantages & disadvantages of vaccine routes

Administration Route	Traditional		N	ovel	
	0ral	Intramuscular	Subcutaneous	Microneedle	Inhalation
Advantages	Painless, self-administration, induction	Mildly contact with immune cells to induce	Long induction period by slow and sustained	Comfortable, minimal invasive delivery, self-	Induction of triple immunity, including humoral,
	of mucosal immunity, herd immunity	immune responses	adsorption	administration, superior and rapid	cellular, and mucosal immunity, intercepts
				immunogenicity, longer induction period by	pathogens at the first line when they invade,
				slow and sustained adsorption, less reliance on	dosage sparing effect, self-administration
				cold-chain storage, dosage sparing effect	[<u>6.7.8.9</u>]
				[2,3,4,5]	
Disadvantages, risk or	First pass effect, environmental	Pain, inflammation, anxiety, infection,	Pain, anxiety, inflammation, infection,	Skin allergy, breakage of microneedle tip,	Only suitable for respiratory or gastrointestinal
limitations	pollution caused by feces	contamination, professionals, and cold-chain	contamination, lower immune responses,	foreign substances remaining in the body,	infectious diseases, local protection, induction
		requirement	professionals and cold-chain requirement	thermostability must be monitored,	of immunotolerance, inhalation rate is unstable,
				sterilization is challenging $[2,3,4,5]$	induced immunity is difficult to evaluate
					[6,7,8,9]
Approved vaccine	Rotavirus vaccine: live attenuated	MMR (Measles, mumps, rubella), a live	Bacillus Calmette-Guérin (BCG) vaccine, a live	Influenza vaccine: Intanza $^{\$}$ and Fluzone $^{\$}$ [$\underline{5}$]	Coronavirus Disease 2019 (COVID-19) vaccine:
product example	vaccines Rotarix $^{\mbox{\scriptsize B}}$ and RotaTeq $^{\mbox{\scriptsize B}}$ [$\underline{10}$],	attenuated vaccine [12] or subcutaneaous	attenuated vaccine [15,16] Intradermal		Convidecia Air [®] , an oral recombinant vaccine
	Poliovirus vaccine: Sabin, live	Hexyon [®] (Diphtheria, pertussis, tetanus,	v. II		with adenovirus type 5 vector [<u>17</u>]
	attenuated oral polio vaccine (OPV)	hepatitis B, poliomyelitis, and Hemophilus	Yellow fever vaccine		iNCOVACC, an intranasal live attenuated vaccing
	[11]	influenzae type b (Hib)), an inactivated vaccine			[17,18]
		[13]			Flumist/Fluore
		Poliovirus vaccine: Salk, an inactivated			Flumist/Fluenz
		poliovirus vaccine (IPV) [<u>14</u>]			