

Facteurs de prédisposition à la greffe bactérienne sur l'endocarde

Pr Vincent LE MOING

Maladies infectieuses et tropicales

Je n'ai pas de lien d'intérêt pour cette présentation

De quoi allons-nous parler?

 Physiopathologie: quels facteurs de la bactérie ? et de l'endocarde? induisent la greffe de la première sur le second ?

Clinique: peut-on se passer de l'échographie?

Focus sur Staphylococcus aureus

Etude VIRSTA

- Cohorte observationnelle prospective
- 8 CHU français
- Avril 2009 octobre 2011
- 2091 patients consécutifs dont 2008 non admis pour El

- Inclusion: 1ère hémoculture positive à S. aureus (cas incidents)
- Exclusion: colonisation de cathéter sans bactériémie mineurs, adultes protégés, femmes enceintes

VIRSTA – % d'El en fonction du contexte

Setting of acquisition	Predis	Predisposing heart disease				
	Yes, prosthetic	Yes, native	No			
Community associated – IVDU	2/2 (100%)	1/3 (33.3%)	18/38 (47.4%)	21/43 (48.8%)		
Community associated – non IVDU	20/30 (66.7%)	31/80 (38.8%)	35/369 (9.5%)	86/479 (18.0%)		
Non-nosocomial healthcare associated	6/13 (46.2%)	15/66 (22.7%)	21/274 (7.7%)	42/353 (11.9%)		
Nosocomial	18/94 (19.1%)	20/191 (10.5%)	31/790 (3.9%)	69/1075 (6.4%)		
Unknown	0/1 (0%)	2/10 (20%)	1/47 (2.1%)	3/58 (5.2%)		
Total	46/140 (32.9%)	69/350 (19.7%)	106/1518 (7%)	221/2008 (11%)		

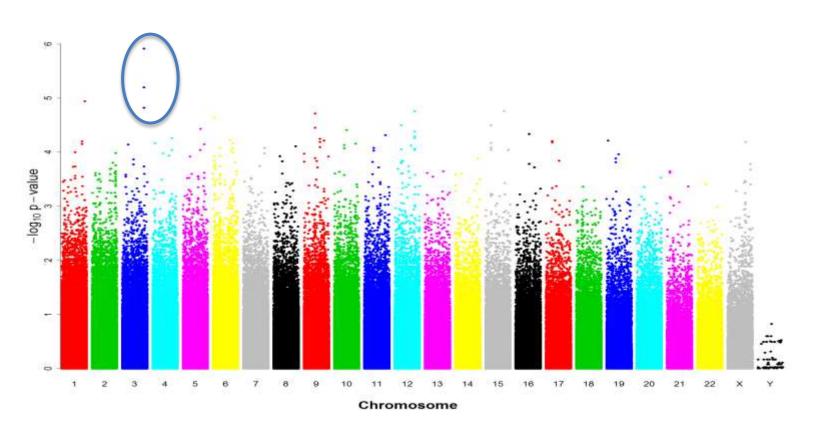
VIRSTA – % d'El en fonction du contexte

Setting of acquisition	Predis	Predisposing heart disease				
	Yes, prosthetic	Yes, native	No			
Community associated – IVDU	2/2 (100%)	1/3 (33.3%)	18/38 (47.4%)	21/43 (48.8%)		
Community associated – non IVDU	20/30 (66.7%)	31/80 (38.8%)	25/369 (9.5%)	86/479 (18.0%)		
Non-nosocomial healthcare associated	6/13 (46.2%)	15/66 (22.7%)	21/274 (7.7%)	12/353 (11.9%)		
Nosocomial	18/94 (19.1%)	20/191 (10.5%)	31/790 (3.9%)	69/1075 (6.4%)		
Unknown	0/1 (0%)	2/10 (20%)	1/47 (2.1%)	3/58 (5.2%)		
Total	46/140 (32.9%)	69/350 (19.7%)	106/1518 (7%)	221/2008 (11%)		

40% des El surviennent en l'absence de prédisposition

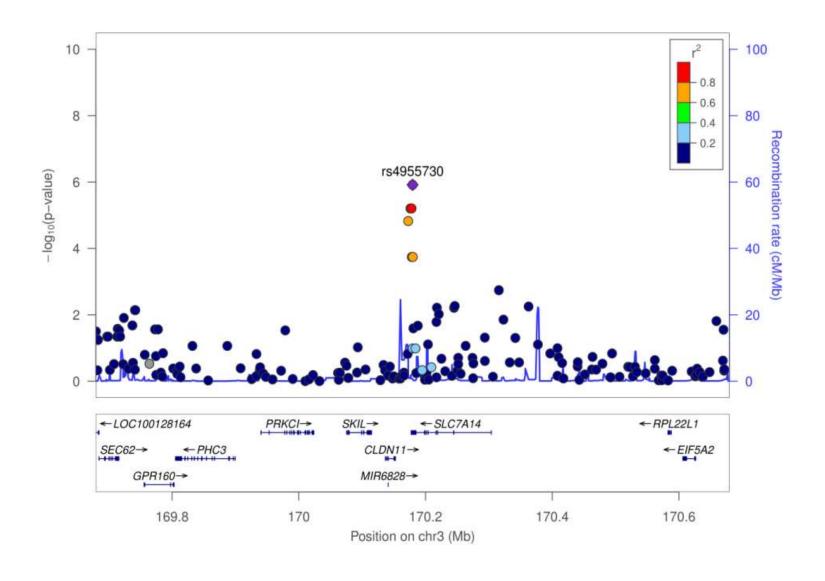
VIRSTA – % d'El en fonction du contexte

Setting of acquisition	Predi	Predisposing heart disease				
	Yes, prosthetic	Yes, native	No			
Community associated – IVDU	2/2 (100%)	1/3 (33.3%)	18/38 (47.4%)	21/43 (48.8%)		
Community associated – non IVDU	20/30 (66.7%)	31/80 (38.8%)	35/369 (9.5%)	86/479 (18.0%)		
Non-nosocomial healthcare associated	6/13 (46.2%)	15/66 (22.7%)	21/274 (7.7%)	42/353 (11.9%)		
Nosocomial	18/94 (19.1%)	20/191 (10.5%)	31/790 (3.9%)	69/1075 (6.4%)		
Unknown	0/1 (0%)	2/10 (20%)	1/47 (2.1%)	3/58 (5.2%)		
Total	46/140 (32.9%)	69/350 (19.7%)	106/1518 (7%)	221/2008 (11%)		


Rarement 100% d'El

Etude VIRSTA –
Facteurs mesurés dans les 48 1ères heures associés à l'El Modèle réduit d'analyse multivariée (N=2008)

	Odds Ratio	(95% CI)	p-value
Central or peripheral emboli	11.0	(6.3; 19.1)	<0.0001
Meningitis	9.7	(3.2; 29.3)	<0.0001
Permanent intracardiac device or previous IE	7.3	(4.9; 10.8)	<0.0001
Native valvulopathy	3.6	(2.3; 5.6)	\0.0001
IV drug user	5.4	(2.7; 10.9)	<0.0001
Prolonged bacteriemia	3.9	(2.7; 5.6)	<0.0001
Spondylodiscitis	3.1	(1.1; 8.5)	0.0297
Community or Non nosocomial HCR acquisition	2.6	(1.8; 3.7)	<0.0001
CRP > 190 mg/L	1.9	(1.3; 2.7)	0.0006
Severe sepsis or shock	1.8	(1.2; 2.6)	0.0016


Ce modèle n'explique que 37% de la variabilité

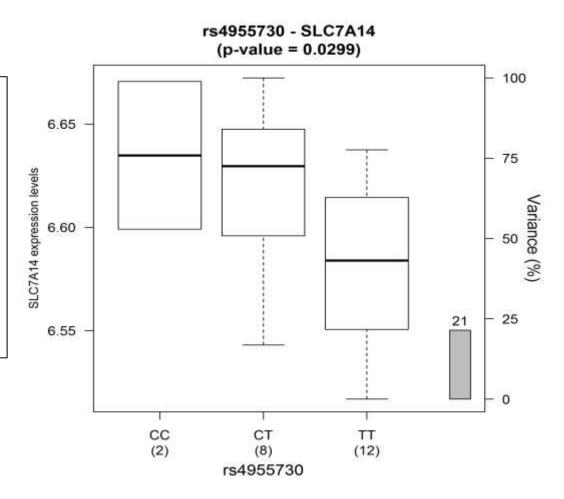
Est-ce l'hôte? VIRSTA: étude cas-témoin nichée Etude d'association pangénomique (GWAS)

4 loci proches situés sur le chromosome 3

K Moreau, Front Microbiol 2018

4 loci proches situés sur le chromosome 3

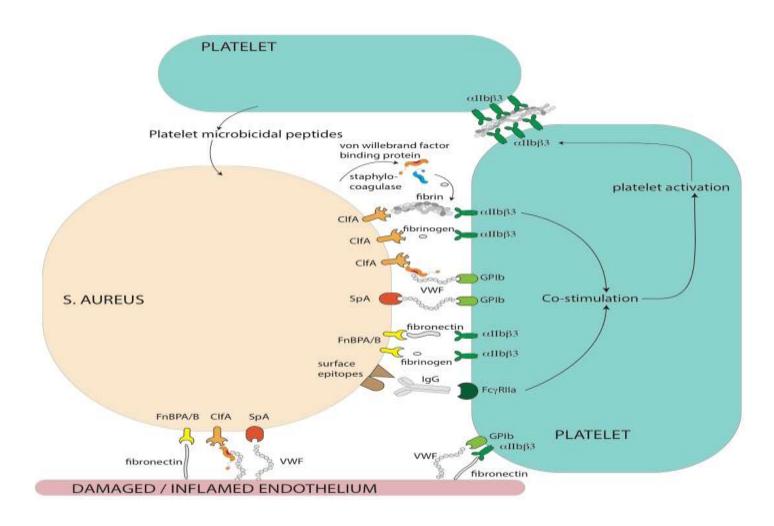
VIRSTA- Etudes génétiques

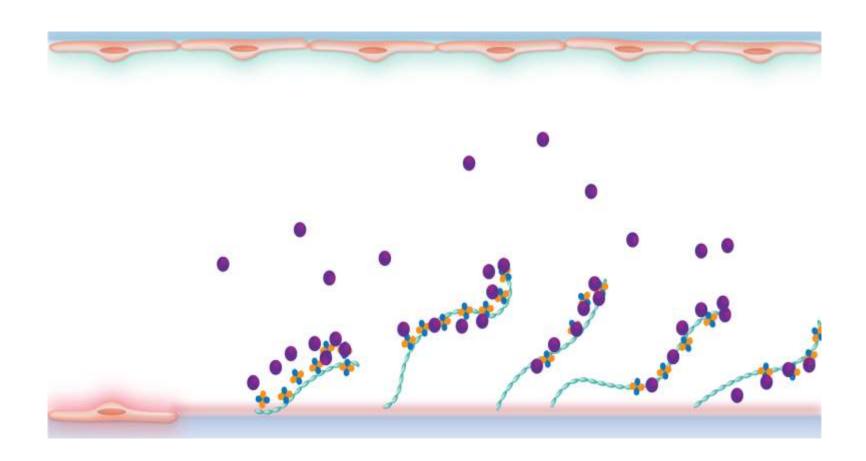

- Les allèles mineurs de ces 4 loci étaient associés à un risque plus faible d'El (OR = 0.36; p < 0.001), suggérant un effet protecteur
- Ces loci sont situés à proximité du gène SLC7A14
- Deux études de réplication:
 - Résultats similaires en comparant les El de VIRSTA à 486 patients de l'étude COFRASA atteints de rétrecissement aortique sans El
 - Effet bien moindre dans la cohorte danoise DANSAB similaire à VIRSTA (OR = 0.84; p = 0.46)

SLC7A14 = le gène de l'El?

- Première suggestion d'un facteur génétique dans l'El
- EI = maladie multifactorielle:
 - prédispositions génétiques éventuelles difficiles à mettre en évidence
 - la contribution génétique ne peut être que partielle
- Une réplication dans une cohorte indépendante génétiquement diverse est indispensable
- Le gène SLC7A14 (Solute Carrier Family 7, Member 14) code pour une protéine de transport glycosylée avec 14 domaines transmembranaires dont la fonction précise n'est pas connue
- Il est exprimé sur les fibroblastes, les astrocytes, et les cellules endothéliales

Niveau d'expression du gène SLC7A14 sur des valves aortiques humaines en fonction des allèles du SNP rs4955730


L'allèle mineur rs4955730-C pourrait protéger contre l'El via une surexpression de la protéine SLC7A14 sur le tissu valvulaire


Est-ce la bactérie ?

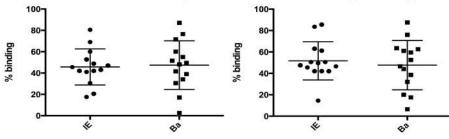
- Facteurs bactériens favorisant l'El :
 - adhésion au fibrinogène et à la fibronectine
 - adhésion aux plaquettes
 - adhésion au facteur Willebrand
 - production de biofilm chez Enterococcus faecalis
 - expression de superantigènes
 - production de staphylokinase
- Aucune association entre l'El et des clones spécifiques ou des gènes de S. aureus n'a été mise en évidence de façon consensuelle jusqu'ici

Les synapses staphylocoque-plaquette et staphylocoque-endothélium

S. aureus et Staph. lugdunensis se lient sur l'endothélium via le facteur de Willebrand

Etude cas-témoin VIRSTA: phénotypes bactériens

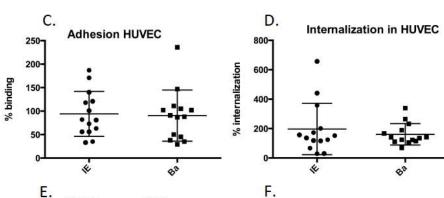
Contents lists available at BoscosOvect

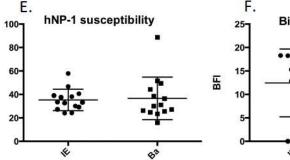

Infection, Genetics and Evolution

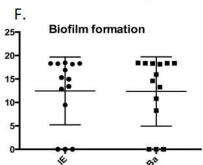
journal homapage: www.elsavier.com/locats/msegid

Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic

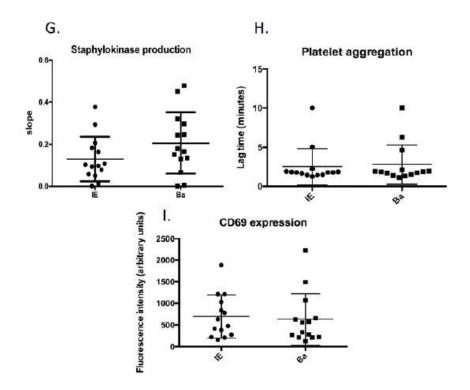
differences at stake
Coralie Bouchiat ^{a,b,a}, Karen Moreau ^b, Sébastien Devillard ^d, Jean-Philippe Rasigade ^{b,a}, Amandine Mosnier ^b,
Tom Geissmann ^b, Michèle Bes ^{a,b,a}, Anne Tristan ^{a,b,a}, Gérard Lina ^{b,a}, Frédéric Laurent ^{b,a}, Lionel Piroth ^c,
Nejla Aissa ^f, Xavier Duval ^a, Vincent Le Moing ^b, François Vandenesch ^{a,b,a,a}, the French VIRSTA Study Group


В.


Fibrinogen binding


A.

% surviving bacteria


Fibronectin binding

Pas de différence significative El/Bactériémie

Etude cas-témoin VIRSTA— Génétique bactérienne (puces ADN)

Table 2
Distribution of clonal complexes (CC) in the two populations.

Clonal complex (CC)	IE (%) $n = 72$	Bacteremia (%) n = 54	P.
CCS	13 (18.1)	12 (22.2)	0.65
CC8	7 (9.7)	4 (7.4)	0.76
CC15	11 (15.3)	2 (3.8)	0.04
CC30	5 (6.9)	7 (13)	0.36
CC45	10 (13.9)	5 (9.3)	0.58
CC398	6 (8.3)	2 (3.8)	0.46
Othersb	18 (25)	22 (40.7)	0.08

Abbreviations: IE, infective endocarditis.

Statistical association was estimated using Fisher's exact test.

b CC1, CC7, CC9, CC12, CC22, CC25, CC59, CC88, CC97, CC101, CC121, CC152, CC182, CC188.

Table 3Frequency of the genes detected by DNA microarray in S. *currens* IE and bacteremia isolate.

Gene or allele	IE isolates (%) n = 72	Bacteremia isolates (%) n = 5	P-value ^(a)
Adhesin encodi	ing genes	CONT. (CONT.)	
fnbA	72 (100)	54 (100)	1.000
fnbB	65 (90.3)	46 (85.2)	0.416
clfA	72 (100)	54 (100)	1.000
clfB	72 (100)	54 (100)	1.000
CT10 (16)	32 (44.4)	26 (48.1)	0.718
spa	72 (100)	54 (100)	1.000
sdrC	72 (100)	53 (98.1)	0.432
sdrD	56 (77.8)	43 (79.6)	0.834
bbp	66 (91.7)	49 (90.7)	1,000
ebpS	72 (100)	54 (100)	1.000
map/eap	71 (98.6)	48 (88.9)	0.042
Toxin encoding	genes		
eta	1 (1.4)	1 (1.9)	1.000
eth	0 (0)	1 (1.9)	0.433
tst1	7 (9.7)	8 (14.8)	0.416
sea	12 (16.7)	5 (9,3)	0,301
seb	6 (8.3)	8 (14.8)	0.272
sec	10 (13.9)	2 (3.7)	0.070
sed	7 (9.7)	5 (9.3)	1.000
see	0 (0)	0 (0)	1,000
seg	34 (47.2)	35 (64.8)	0.074
seh	2 (3.2)	4 (7.4)	0.400
sei	34 (47.2)	35 (64.8)	0.072
sej	7 (9.7)	5 (9.3)	1,000
lukSF-PV	0 (0)	4 (7.4)	0.031
fila (c)	71 (98.6)	49 (90,7)	1.000
hlb123 (d)	48 (66.7)	44 (81.5)	0.074
func_hlb (e.f)	9 (12.5)	9 (16,7)	0.601
Other putative	virulence factors encodin	g genes	
icaA	72 (100)	54 (100)	1.000
chp (8)	46 (63.9)	32 (59.3)	0.453
Regulation enc	oding genes		
agri	33 (45.8)	22 (40.7)	0.587
agrII	28 (38.9)	17 (31.5)	0.446
agrill	8 (11.1)	11 (20.4)	0.213
agrIV	3 (4.2)	4 (7.4)	0.462

- → Pas d'association de l'El avec
 - des complexes clonaux spécifiques
 - des gènes spécifiques

Modèle prédictif basé sur 8 marqueurs

Marker	Weight	-
setC/selx	1.000	-
sea	0.620	Ces marqueurs ne sont
seb	-0.510	probablement causaux
hlb123	-0.463	- résistance aux macrolides
Q2YUB3	-0.460	 béta-hémolysine
<u>ermA</u>	0.442	- superantigènes jouent dans
sec	0.412	des sens opposés
sel	0.412	- Déséquilibre de liaison ?
Constant	-0.527	Desequilible de lidisoli!

Les souches de *S. aureus* avec un score > 0 sont assignées au groupe Ei

Peut-on se passer de l'échocardiographie en cas de bactériémie à CG+ responsable d'EI?

 Devant une bactériémie à S. aureus, entérocoque, streptocoque non groupable, la réalisation d'une échocardiographie est le plus souvent nécessaire à la validation des critères de la Duke University

 Les indications et les modalités (ETT ? ETO ?) de cet examen ne sont toutefois pas consensuelles

Le score VIRSTA, estimation *a priori* du risque d'El en cas de bactériémie à *S. aureus*

Variables mesurées à 48 heures	.632 Boots	.632 Bootstrap procedure		
	$\overline{eta'}$	Weight		
Cerebral or peripheral emboli	2.37	5		
Meningitis	2.31	5		
Permanent intracardiac device or previous IE	2.02	4		
Pre-existing native valve disease	1.29	3		
Intravenous drug use	1.77	4		
Persistent bacteremia	1.40	3		
Vertebral osteomyelitis	1.15	2		
Community or non nosocomial health care	0.96	2		
associated acquisition				
Severe sepsis or shock	0.72	1		
C-reactive protein >190 mg/L	0.65	1		

Performances du score VIRSTA pour prédire l'existence d'une El

Score	Sensitivity	Specificity	PPV	NPV	Patients with IE with the corresponding value	Total Nb of patients with the corresponding value
0	99.29 (99.23 ;99.34)	18.4 8 (17.29 ;19.60)	13.14 (12.15 ; 14.20)	99.52 (99.49 ; 99.55)	1	331
1	97.16 (96.06 ;98.65)	32.20 (30.80. 33.51)	15.09 (13.93 ; 16.24)	98.92 (98.42 ; 99.47)	5	250
2	95.83 (94.31 ; 97.79)	44.18 (42.60 ;45.59)	17.55 (16.22 ;18.86)	98.83 (98.41 ; 99.40)	3	217
3	95 53 (92 25 · 99 64)	61 93 (60 51 · 63 32)	21 77 (20 04 · 22 52)	07 19 (06 54 · 07 91)	72	341
4	Score VIR	STA < 3				239
5	• VPN	l: 98,8%				174
6	• IR-	= 0.2				169
7						99
8	• 40%	de la po	pulation			55
9	• Prob	pabilité d	'EI: 1.1%			51
≥ 10	20.36 (17.02 ; 23.81)	99.44 (99.21 ; 99.65)	81.82 (75.00 ; 88.24)	90.99 (90.12 ; 91.79)	59	82

Performances du score VIRSTA pour prédire l'existence d'une El

Score	Sensitivity	Specificity	PPV	NPV		Patients with IE with the corresponding value	Total Nb of patients with the corresponding value
S	Score VIRS	STA > 5		9).55)	1	331
•	VPP: 44	,6%		9	9.47)	5	250
•	LR+ = 6			9	9.40)	3	217
•	10% do	la popula	ation	7	7.81)	23	341
				7	7.14)	16	239
•	Probab	ilité d'El (de 32%)6	5.37)	18	174
6	57.92 (53.90 ; 62.06)	91.10 (90.18 ; 92.02)	44.60 (40.92 ; 48.37)	94.60 (93.90 ; 95	5.26)	27	169
7	45.70 (41.51 ; 49.65)	95.13 (94.47 ; 95.84)	53.72 (49.14 ; 58.57)	93.41 (92.67 ; 94	1.10)	27	99
8	38.46 (34.55 ; 42.35)	97.31 (96.83 ; 97.80)	63.91 (58.38 ; 69.14)	92.75 (91.97 ; 93	3.45)	16	55
9	26.70 (23.18 ; 30.24)	98.71 (98.39 ; 99.04)	71.95 (65.42 ; 78.43)	91.59 (90.77 ; 92	2.38)	26	51
≥ 10	20.36 (17.02 ; 23.81)	99.44 (99.21 ; 99.65)	81.82 (75.00 ; 88.24)	90.99 (90.12 ; 91	L. 79)	59	82

Stratification du risque d'El pour guider la réalisation de l'échographie

Trois groupes de patients atteints de bactériémie à *S. aureus* pourraient être distingués:

- faible risque d'El (faible probabilité pré-test) = pas d'ETT
- risque intermédiaire d'EI = ETT et ETO si anormale
- risque élevé d'El (probabilité pré-test élevée) = ETO systématique

En fonction du score VIRSTA:

- faible risque d'EI = Score VIRSTA < 3
- risque élevé d'EI =Score VIRSTA > 5

Streptocoques non β-hémolytiques: Score HANDOC

Comparaison des El certaines (Duke) aux patients avec El esclue (ETO négative ou absence de rechute à M6 après un traitement court) dans deux cohortes de bactériémies à streptocoque

Acronyme	Variable	Cotation
Heart	Valve disease	+1
Aetiology	S. bovis, S. sanguinis, S. mutans	+1
	S. anginosus	-1
Nb cultures	> 2 blood cultures +	+1
Duration	Symptoms ≥ 7 jours	+1
Only one	Monomicrobial	+1
Communautary	Community-acquired	+1

Streptocoques non β-hémolytiques: risque d'El

Espèce	N bactériémies évaluables	%EI
S. mitis	65	6%
S. mutans	8	50%
S. sanguinis	39	28%
S. salivarius	27	7%
S. bovis	16	31%
S. anginosus	64	0%
Autres	13	8%

⇒ Faut-il préciser la liste des microorganismes typiques dans les critères de la Duke University ?

(actuellement: S. viridans, S. gallolyticus (S. bovis)

Figure: The three-stop itinerary of S gallolyticus gallolyticus endocarditis

Damaged heart valve

Endocarditis

, Glucose metabolites

Healthy'situation

Circulation

Subclinical infection

Immunodiagnosis

of the ileum (stop one). Upon passage into the nutrient-poor environment of a healthy colon, the bacterium is outcompeted by resident microbiota and exits through faecal excretion. However, colonic neoplasia provides a second *S gallolyticus* colonisation site because of altered nutrient availability (eg, glucose metabolites) and exposure of collagen fibres. This crucial second stop forms the transit into the circulation where its inert surface allows *S gallolyticus* to pass innate immune security. In a few susceptible patients with colorectal cancer and coincidental damaged heart valves (collagen deposition), the bacterium might eventually become noticeable by the phase of *S gallolyticus* infection are valuable diagnostic devices for occult colonic malignancy.

S gallolyticus enters the human intestine via dietary factors and can survive in the carbohydrate-rich surroundings

Risque d'EI: 75% au moins

Le paradoxe de *Streptococcus gallolyticus*

Bolleij, Lancet Infect Dis 2013

Entérocoques: score NOVA

Pas d'échographie si score < 4

Table 4. Score for Assessing the Risk of Infective Endocarditis in Patients With Enterococcal Bloodstream Infections

Variable	Points	Odds Ratio (95% Confidence Interval)
Number of positive blood cultures (N)	5	9.9 (2.2–40.6)
Unknown origin of bacteremia (O)	4	7.7 (2.5–23.8)
Prior valve disease (V)	2	3.7 (1.6–8.7)
Auscultation of a heart murmur (A)	1	1.8 (.77–4.3)
Total	12	

Certaines variables sont communes avec les scores staphylococciques.

Possibilité d'un score global pour les CG+?

En bref

- La recherche de facteurs de prédisposition de l'El autres que ceux déjà bien établis (valvulopathie, matériel, toxicomanie) est décevante
- L'approche diagnostique d'un patient atteint de bactériémie à risque d'El pourrait être orientée par des scores clinico-biologiques
- La liste des streptocoques typiques d'El des critères de Duke pourrait être précisée
 - S. mutans et S. sanguinis mais pas S. mitis ni S. salivarius
 - S. gallolyticus plutôt que S. bovis

Virsta study group

Clinical centres: Besançon: Catherine Chirouze, Elodie Curlier, Cécile Descottes-Genon, Bruno Hoen, Isabelle Patry, Lucie Vettoretti. Dijon: Pascal Chavanet, Jean-Christophe Eicher, Marie-Christine Greusard, Catherine Neuwirth, André Péchinot, Lionel Piroth. Lyon: Marie Célard, Catherine Cornu, François Delahaye, Malika Hadid, Pascale Rausch. Montpellier: Audrey Coma, Florence Galtier, Philippe Géraud, Hélène Jean-Pierre, Vincent Le Moing, Catherine Sportouch, Jacques Reynes. Nancy: Nejla Aissa, Thanh Doco-Lecompte, François Goehringer, Nathalie Keil, Lorraine Letranchant, Hepher Malela, Thierry May, Christine Selton-Suty. Nîmes: Nathalie Bedos, Jean-Philippe Lavigne, Catherine Lechiche, Albert Sotto. Paris: Xavier Duval, Emila Ilic Habensus, Bernard lung, Catherine Leport, Pascale Longuet, Raymond Ruimy. Rennes: Eric Bellissant, Pierre-Yves Donnio, Fabienne Le Gac, Christian Michelet, Matthieu Revest, Pierre Tattevin, Elise Thebault.

<u>Coordination and statistical analyses:</u> François Alla, Pierre Braquet, Sébastien Devillard, Sébastien Dufour, Marie-Line Erpelding, Laetitia Minary. Soline Siméon, Sarah Tubiana

<u>Centre National de Référence des staphylocoques:</u> Michèle Bès, Coralie Bouchiat, Jérôme Etienne, Karen Moreau, Anne Tristan, François Vandenesch.

Erasmus University Rotterdam: Alex Van Belkum, Willem Vanwamel

<u>Institut universitaire de cardiologie et de pneumologie de Québec</u> Emilie Lavoie-Charland, Yohann Bossé

Département de cardiologie GH Bichat Paris: David Messika-Zeitoun

<u>Sponsor CHU de Montpellier:</u> Sandrine Barbas, Christine Delonca, Virginie Sussmuth, Anne Verchère.

Fundings: French ministry of Health, Inserm

