

Pneumonies et pleuropneumonies de l'enfant : quelle prise en charge en 2018 ?

Pr Yves GILLET

Hôpital femme mère enfant, Lyon
yves.gillet@chu-lyon.fr

JNI Nantes, 13 juin 2018

Liens d'intérêts Pr Yves Gillet – Mai 2018

Intérêts financiers vis-à-vis de l'industrie (actions, parts etc...)

- Aucun

Rémunération en tant qu'expert/investigateur

OUI: Sanofi Pasteur MSD/ Pfizer /GSK

Participation à des groupes d'experts soutenus par l'industrie

 OUI: Avancées Vaccinales (SPMSD) / Groupe experts MMRV (GSK) / Observatoire des pneumonies (Pfizer)

Invitations congrès (ESPID, ICAAC, IDSA...)

- OUI: GSK /Sanofi Pasteur MSD/ Pfizer

Autres liens

- **OUI** : licencié FF Voile et FF Montagne Escalade

Pneumonies de l'enfant : qu'est ce qui n'a pas changé ?

Première cause de mortalité infantile d'origine infectieuse dans le monde

- 150 millions de cas / an
- 2 millions de décès

Diagnostic microbiologique difficile

- Différenciation virus/bactérie
- Type de bactéries
- Seule exception : pleuro-pneumopathies

Bactérie n°1 = pneumocoque

Rappel: pas de légionellose chez l'enfant

Les pleuropneumopathies avant...

Peu de données fiables avant vaccins pneumo. conjugués

Documentation rare :

```
Angoulvant CID 2014: 58 = 35,3%
```

Segerer *Pediatr Pulmo* 2016 = 31,1%

Un dogme : pleuro-pneumopathie grave = pneumocoque

Pas de lien entre résistance et sévérité

Paramètres PK/PD de l'amoxicilline très favorables

Pratiquement jamais d'échec bactériologique

Etude française empyèmes pleuraux 2003-2004

Weil-Olivier Arch Pediatr 2005; 12

Tableau 1 Bactéries et sites d'isolement

	N (%)	Pneumocoque	Streptocoque A	Staphylocoque doré	BK	Pyocyanique
Culture de la plèvre +	52/150 (34,7 %)	37	8	5	2	
Examen direct de la plèvre +	44/138 (31,9 %)	8				
Binax plèvre +	5/5	5				
Binax sang	1/1	1				
Antigène plèvre +	9/9	9				
Hémoculture +	27/212 (12,7 %)	26	1			
LBA+						1
ECBC +			1			
Nombre de patients ayant eu une bactérie identifiée	86	69	9	5	2	1

BK : bacille de Koch ; LBA : lavage bronchoalvéolaire ; ECBC : examen cytobactériologique des crachats.

Pneumocoque = 83%

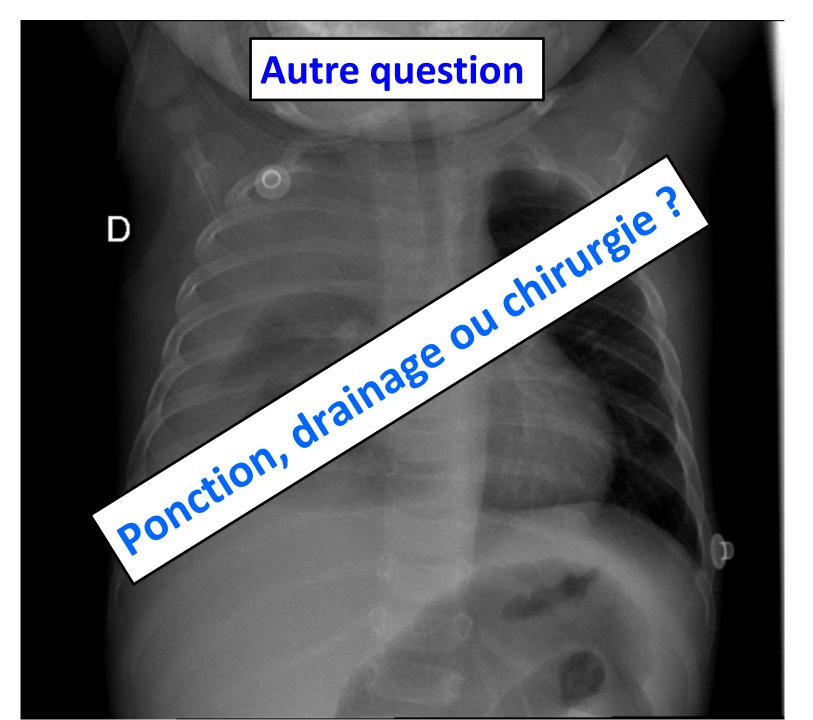
Tt des empyèmes (avant...)

Recommandations?

- La moins consensuelle des infections graves !
- Utilisation large de multithérapies sans justification

Arch Pediatr 2005;12(6):823-6.

Antibiothérapie (GPIP 2008 puis 2011)


- Amoxicilline ou Ceftriaxone (si < 4 ans non vacciné)
- Adjonction Rifampicine 20mg/kg/j en 2 prises (jeune enfant)
- Insuffisante à elle seule le plus souvent

Reco IDSA 2011

Clinical Infectious Diseases 2011;53(7):617-630

IDSA GUIDELINES

47. Empiric therapy with a third-generation parenteral cephalosporin (ceftriaxone or cefotaxime) should be prescribed for hospitalized infants and children who are not fully immunized, in regions where local epidemiology of invasive pneumococcal strains documents high-level penicillin resistance, or for infants and children with life-threatening infection, including those with empyema (Table 7). Non-

Ponction, drainage ou chirurgie?

Résultats très discordants dans la littérature

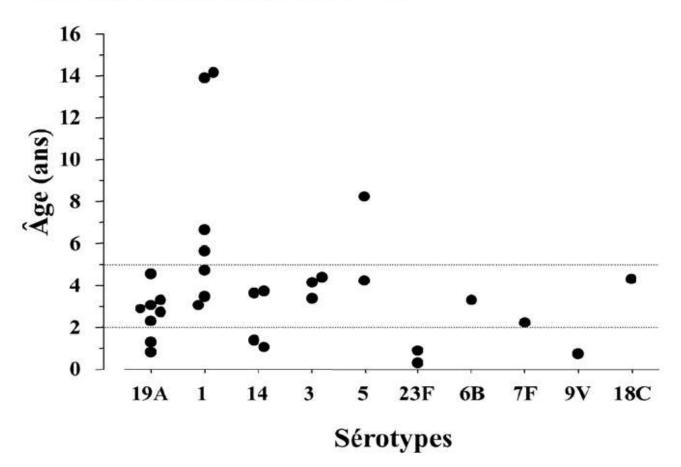
Aucune technique n'a montré de réelle supériorité

A trois mois, l'évolution est identique quelle que soit la modalité choisie

Eléments de choix

- Tolérance clinique +++
- Disponibilité et expérience de la technique

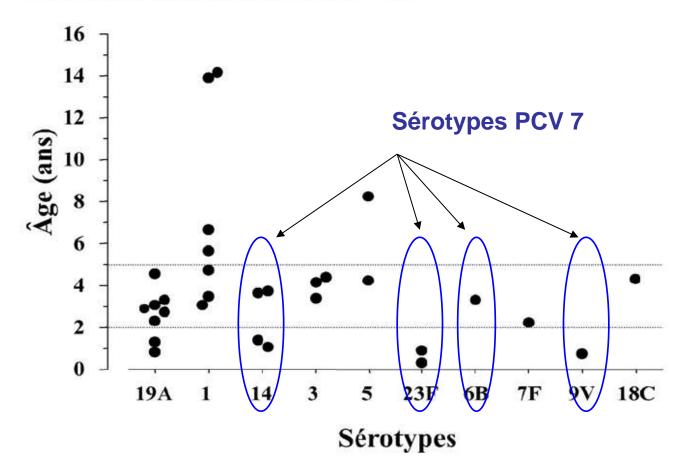
Qu'est ce qui a changé depuis ?


	Couverture vaccinale à 24 mois				
Année de collecte	2008	2012	2013	2014	2015"
Année de naissance	2006	2010	2011	2012	2013*
Pneumocoque 2 doses + rappel	-1	88,9 %	89,2 %	89,2 %	91,1 %

^{*} Estimations provisoires (source: certificats de santé du 24^{ème} mois, DREES-SpF)

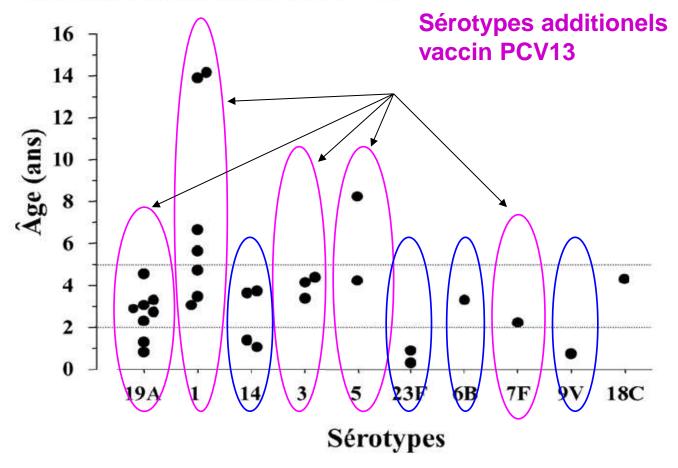
Sérotypes des pneumocoques dans les empyèmes de l'enfant (CNR)

Bekri Arch Pedia 2007; 14


Fig. 1. Distribution des sérotypes des pneumocoques identifiés dans les pleurésies purulentes de l'enfant (nombre = 30).

Sérotypes des pneumocoques dans les empyèmes de l'enfant (CNR)

Bekri Arch Pedia 2007; 14


Fig. 1. Distribution des sérotypes des pneumocoques identifiés dans les pleurésies purulentes de l'enfant (nombre = 30).

Sérotypes des pneumocoques dans les empyèmes de l'enfant (CNR)

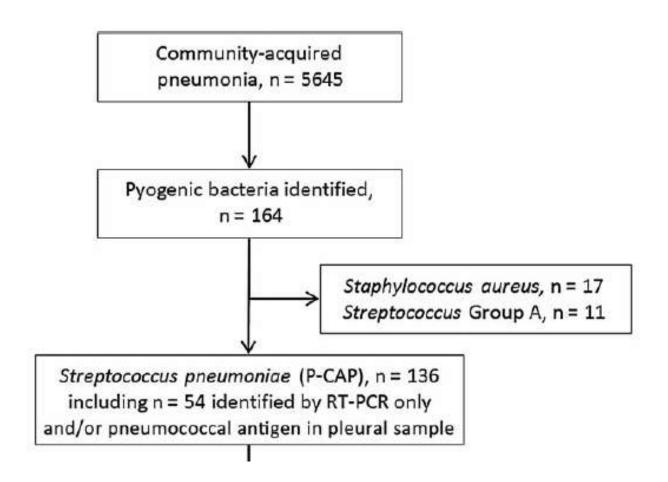
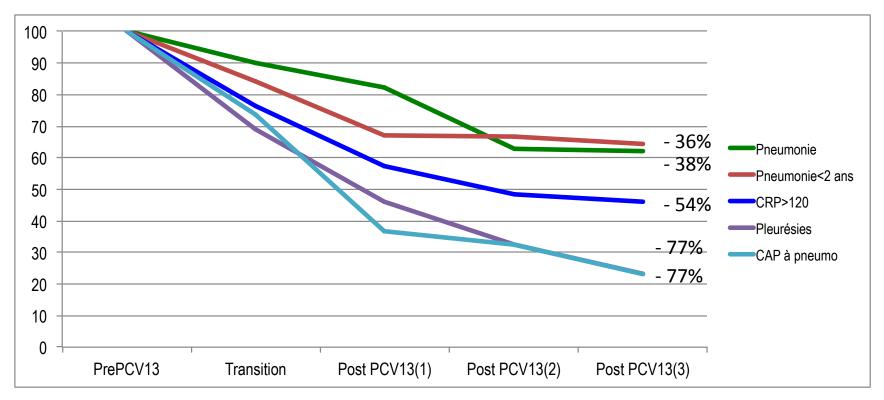

Bekri Arch Pedia 2007; 14

Fig. 1. Distribution des sérotypes des pneumocoques identifiés dans les pleurésies purulentes de l'enfant (nombre = 30).

Observatoire des pneumonies de l'enfant

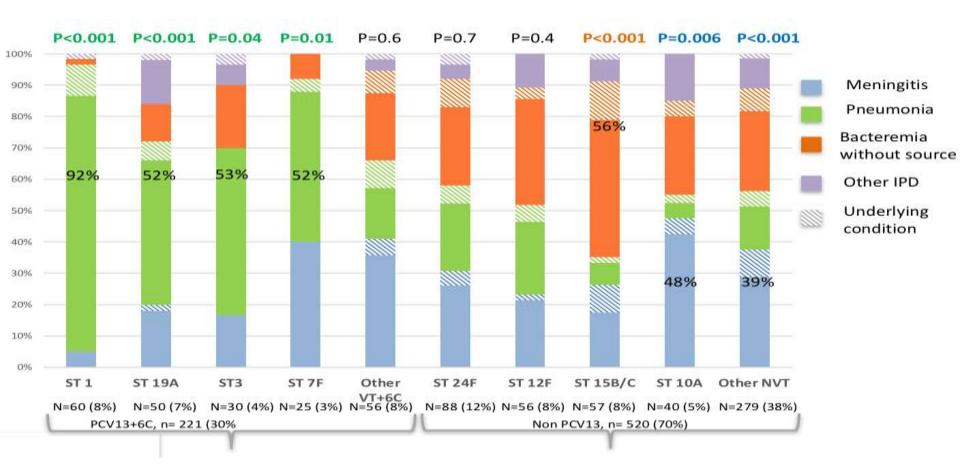
Angoulvant CID 2014


Effets du PCV 13 sur les pneumopathies à pneumocoque Angoulvant CID 2014

			% of Reduction		
Characteristic	Pre-PCV13 ^a (n = 2060)	Transitional (n = 1860)	Post-PCV13 (n = 1725)	P Value ^b	Comparing Pre vs Po
Age, y, median (Q1-Q3)	2.9 (1.4–4.7)	3.1 (1.4–5.3)	3.4 (1.7–5.6)	<.001	
<2 y	757 (36.8%)	645 (34.7%)	516 (29.9%)	<.001	-31.8%
2–5 y	833 (40.4%)	723 (38.9%)	695 (40.3%)	<.001	-16.6%
≥5 y	470 (22.8%)	492 (26.5%)	514 (29.8%)	<.001	
CRP level >120 mg/dL	408 (41.3%)	312 (37.2%)	235 (29.7%)	<.001	-42.4%
PCT level >4 ng/mL	116 (40.1%)	87 (34.4%)	63 (27.3%)	.002	-45.7%
Pleural effusion	167 (8.1%)	119 (6.4%)	79 (4.6%)	<.001	-52.7%
P-CAP	64 (3.1%)	48 (2.6%)	24 (1.4%)	.002	-62.5%

CRP level >120 mg/dL	-42.4%
PCT level >4 ng/mL	-45.7%
Pleural effusion	-52.7%
P-CAP	-62.5%

Update avec 2 ans de plus


© R. Cohen / ACTIU

Angoulvant et al - CID 2014 updated

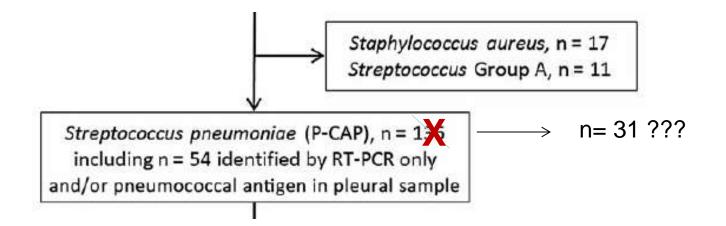
2017 : Pneumocoque = 36,4 % des empyèmes documentés (Madhi et al : soumis)

Variation du profil des Infections Invasives à Pneumocoque en fonction des sérotypes

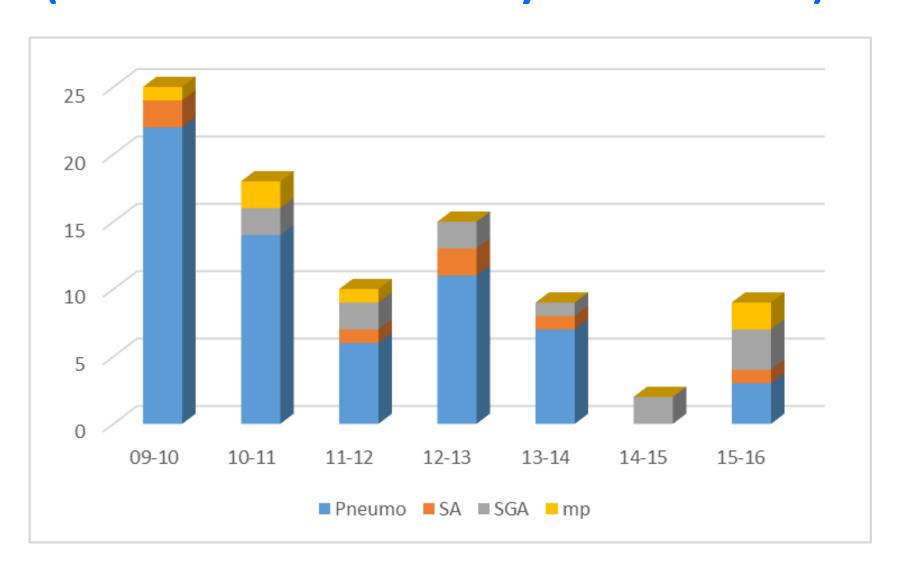
Levy Clin Infect Dis. 2016 Jan 1;62(1):131-2. updated

Conséquences PCV13

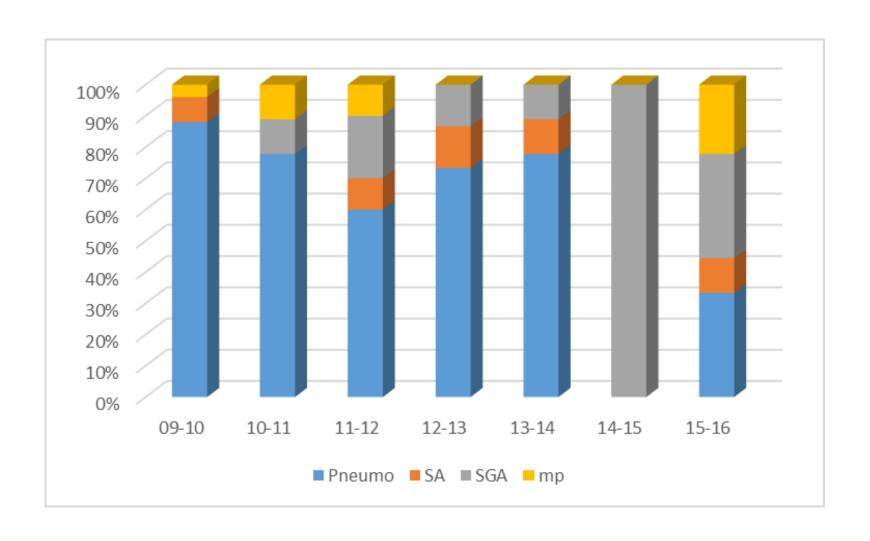
Diminution nette de l'incidence des pleuro PNP

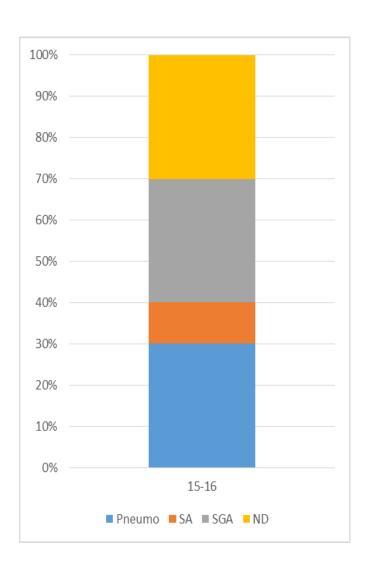

Changement de l'antibiothérapie des pneumonies et pleuroPNP à pneumocoque ?

- Oui et Non!
- Presque plus de place pour les Céphalosporines (sauf allergie amoxicilline)
- Certains les traitaient déjà à l'amoxicilline!
- Les posologies très élevées (150-200 mg/kg) ne sont plus justifiée


Un problème : la fin du dogme grave = pneumo ?

Si le pneumocoque diminue de 75 %...


- Le <u>nombre total</u> des pleuropneumopathie va diminuer
- Mais la <u>proportion</u> de pleuropneumopathies graves non pneumococcique risque d'augmenter


Evolution Pleuro PNP (Donnée Observatoire Lyon 2009-2016)

Evolution Pleuro PNP (Donnée Observatoire Lyon 2009-2016)

Choix probabiliste en 2017?

Pas de germe = 30%

Strepto A = 30%

Staph. aureus = 10%

Pneumocoque = 30%

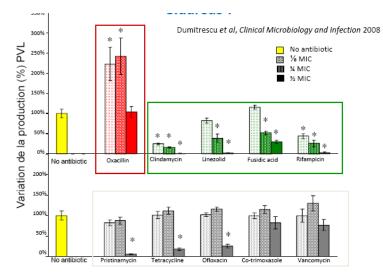
Strepto A vs Pneumocoque

Pas un problème d'antibiothérapie mais

ariables (No (%), or median (range))	GAS (N=50)	S. pneumoniae (N=50)	OR (95% CI)
Duration of fever before admission (days)	3 (0-20)	5 (1–22)	0.82 (0.68 to 1.0)
Signs of circulatory failure*	37 (74)	24 (48)	3.56 (1.35 to 9.38)
Rash	31 (62)	5 (10)	14.08 (3.2 to 61.8)
Haemodynamic support‡	36 (72)	16 (32)	7.28 (2.25 to 23.5)
Respiratory assistance§	18 (36)	6 (12)	4.36 (1.24 to 15.4)
Chest tube placement	33 (66)	25 (50)	1.70 (1.02 to 7.14)
ICU transfer	43 (86)	28 (56)	8.08 (2.00 to 32.75)
Severe sepsis	34 (68)	12 (24)	7.34 (2.37 to 22.87)
Septic shock	15 (30)	1 (2)	

Bellulo S, et al. Arch Dis Child 2016;101:731-735.

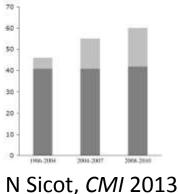
Strepto A : quelles conséquences ?


Instabilité hémodynamique (x 7) + éruption cutanée (x4)

= Super Ag

- Prise en charge spécifique
 - Nécessité d'ATB antitoxines
 - Risque évolutif à considérer
- Sous estimation de l'incidence ?
 - Patients de réa

Pleuropneumopathie staphylococciques


Souches productrices de Panton-Valentine Leucocidin

- Risque de pneumonie nécrosante
- Presque 100 % des pneumonies com. à *S. aureus* < 15 ans (CNR : non publié)

Place des SARM

- Difficile à évaluer (biais de recrutement)
- Probablement surestimée (en France)

Deux entités?

11 51650, 61711 20

- Pneumonie nécrosante (enfant + adultes / gravité +++)
- Staphylococcie pleuropulmonaire du nourrisson

Pneumonies staphylococcique nécrosantes (133 patients)

	S sensibles (n=104)	SARM (n= 29)
Age médian	22 ans	22,5 ans
Absence d'antécédents (%)	88,5	75,9
Sd pseudo grippal	59,8	65,5
Hémoptysie (%)	44,2	24,1
Leucopénie < 3 G/L (%)	36,9	44,8
Mortalité (%)	39,4	37,9

Facteurs lié à la mortalité (analyse multi variée)

- Leucopénie (p=0,001)
- Hémorragie des voies aériennes (p=0,004)
- Absence de traitement « antitoxinique » (p=0,002)

Staphylococcie pleuro pulmonaire et PVL

USA: Infections respiratoires à S. aureus PVL+

Carillo-Marquez, Pediatrics 2011

- Peu sévères (mortalité < 1%)
- Nourrissons < 1 an
- 30% de lésions cavitaires // 90% épanchement pleural
- Réapparition des SPP en France ?

Lemaitre PIDJ 2013

- 7 des pneumonies à *S. aureus* de l'enfant
- Présentation proche des SPP classiques
- Souches PVL +

Orientation clinique : résumé

Bactérie	Aspects cliniques/paracliniques	Évolution	Signes de gravité	
Pneumocoque - Pneumopathie unilatérale, systématisée - Épanchement souvent secondaire Tout âge		- Amélioration initiale sous amoxicilline - Cloisonnement de l'épanchement	- Épanchement abondant	
Staphylocoque doré	 Pneumopathie bilatérale d'emblée ou secondairement, aspect "bulleux" Épanchement pleural d'emblée < 1 an ou adolescents 	 Pas d'amélioration sous amoxicilline Évolution vers SDRA Localisations extrarespiratoires 	- Leucopénie - Hémoptysie - SDRA	
Streptocoque A	 Pneumopathie uni- ou bilatérale Signes toxiniques (érythrodermie) Choc précoce - Jeunes enfants 	- Aggravation très rapide - Choc grave, au premier plan	- Érythrodermie - Choc - SDRA	

SDRA : syndrome de détresse respiratoire aiguë.

Antibiothérapie des Pneumonies de l'enfant (2016)

Principes généraux

- Documentation bactériologique ++++
 - Ponction pleurale
 - Culture / Ag pneumocoque / TDR strepo / PCR
- Couvrir Pneumo mais également S aureus et Strepto A si grave ou épanchement pleural
- Couverture des SARM ?
 - Oui si très sévère / leucopénie / hémoptysie (très rare)
- Traitement antitoxinique si gravité ou Rash cutané

29. Cohen R, Angoulvant F, Biscardi S, Madhi F, Dubos F, Gillet Y. Antibiothérapie des infection respiratoires basses (Guide de prescription des antibiotiques en Pédiatrie). Arch Pediatr 2016:23:S16-19.

Pnp et pleuropneumopathies « simples » = pas de signe de gravité / amélioration initiale sous amox

Amoxicilline 100 à 120 mg/kg/j (si réponse initiale)

ou

Amoxicilline / A clavulanique 100 mg/kg/j

PNP ou pleuro PNP graves (choc / leucopénie / rash)

- Amoxicilline / A clavulanique 100 mg/kg/j
- Vancomycine 60 mg/kg/j
- Clindamycine 30 à 40 mg/kg/j

Pleuropneumopathie documentées

Pneumocoque

Amoxicilline 100 à 120 mg/kg/j

Strepto A

- Amoxicilline 100 à 120 mg/kg/j
- Clindamycine 30 mg/kg/j

S aureus métiS

- Cloxacilline 200 mg/kg/j
- Clindamycine 30 mg/kg/j (si Ery S) / Linezolide (hors AMM)

SARM

- Vancomycine 60 mg/kg/j (ou Ceftaroline ?)
- Clindamycine 30 mg/kg/j (si Ery S) / Linezolide (hors AMM)

Autres mesures

PEC « réanimatoire » si besoin

- Traitement du choc
- Ventilation
- Surveillance

Reconsidérer la place du drainage ?

- Dans les cas graves, la question n'est plus l'évolution à 3 mois mais à 3 jours
- Drainage = meilleur rapport efficacité/sécurité à court terme
- Permet de réduire rapidement l'innoculum : traitement anti infectieux et non uniquement ventilatoire

Question subsidiaire

Quid des pays en voie de développement ???

- Implémentation de plus en plus importante des vaccins pneumocoque conjugués
- Épidémiologie différente :
 - Place du S aureus plus importante ?
 - Place des souches « invasives » de S pyogenes ?
- Effet de groupe en l'absence (pour l'instant) de rappels ?

Conclusion & Taikomessaj

La vaccination PCV 13 a nettement diminué l'incidence des pneumonies bactériennes et des pleuropneumopathies

Elle diminue la résistance et permet de se passer des céphalosporines pour le pneumocoque

Mais elle a induit des changement épidémiologique suffisamment significatifs pour modifier les lignes de traitement probabiliste et nécessiter une approche plus individualisée prenant plus en compte les signes associés et la gravité

MERCI DE VOTRE ATTENTION

