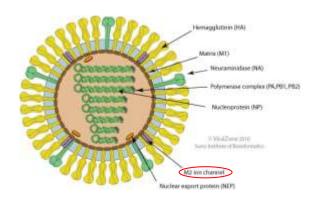
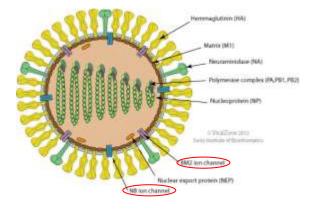
Non adéquation des souches vaccinales et circulantes : rôle des virus de type B

Laurence Josset

Institut des Agents Infectieux - Hospices Civils de Lyon


Liens d'intérêt

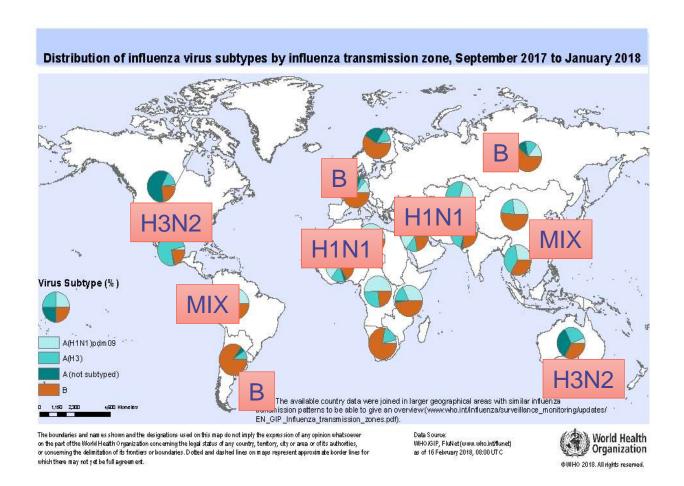
- Participation à un comité consultatif organisé par Sanofi Pasteur
- Coordonnateur scientifique du PHRC-I BMiG
- Membre du conseil scientifique d'ESWI (European Scientific Working group on Influenza).


Diversité des virus influenza responsables des grippes saisonnières

Orthomyxoviridae

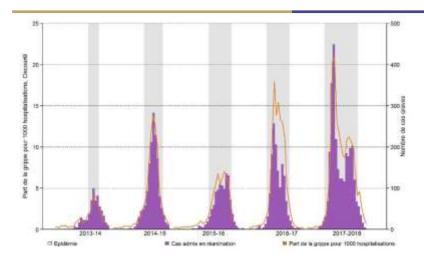
Virus influenza de type A :

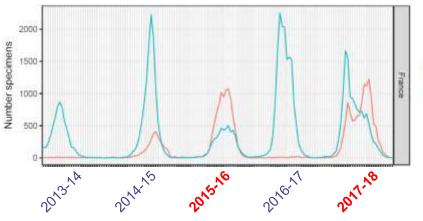
- Infecte l'homme et de nombreuses espèces animales (réservoir : oiseaux aquatiques sauvages)
- Nombreux sous-types: H1N1, H3N2, H5N1, H7N9... 18 HA et 11 NA
- Responsable des épidémies et pandémies de grippe


https://viralzone.expasy.org/223, accédé le 8 juin 2018

Virus influenza de type B :

- Infecte presque exclusivement l'homme
- 2 lignages : Victoria et Yamagata
- Responsable des épidémies saisonnières de grippe


Répartition du virus influenza (sept. 17-janv. 18)



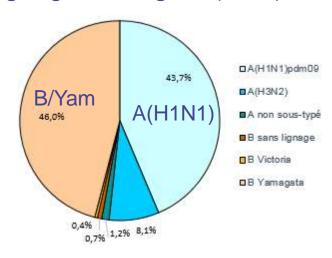
WHO/GIP, FluNet: www.who.int/flunet

Saison grippale 2017-2018 en France^{1,2}

- Epidémie précoce et exceptionnellement longue (16 semaines)
- Impact important sur les hospitalisations et la mortalité
- Co-circulation des virus A(H1N1)pdm09 et B
- Les virus B prédominent dans la seconde vague de l'épidémie

- INF A

^{2.} FluNet. http://apps.who.int/flumart/Default?ReportNo=12, accédé le 8 juin 2018



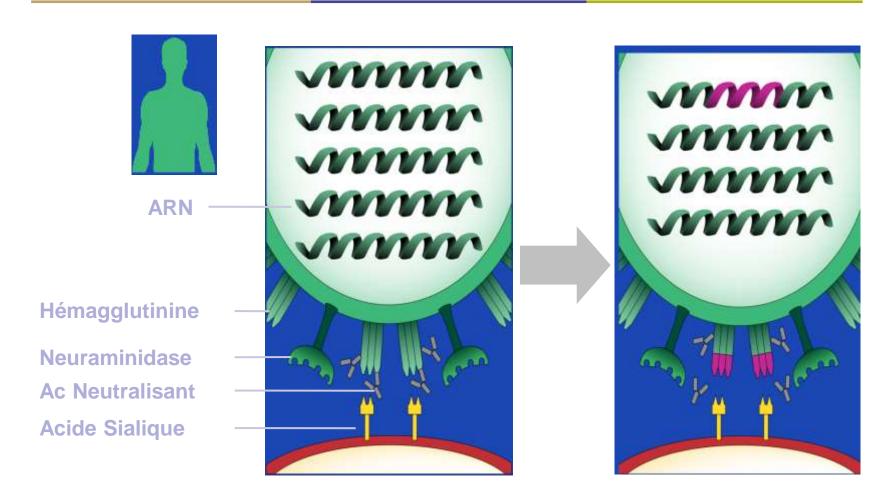
^{1.} http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-prevention-vaccinale/Grippe/Grippe-generalites/Donnees-de-surveillance/Bulletin-epidemiologique-grippe-semaine-16.-Bilan-preliminaire.-Saison-2017-2018, accédé le 8 juin 2018

Non adéquation de la souche vaccinale B et de la souche circulante

- Composition du vaccin trivalent 2017-2018 :
 - A/California/7/2009 (H1N1)pdm09
 - A/Hong Kong/4801/2014 (H3N2)
 - B/Brisbane/60/2008 : lignage Victoria

Virus B circulant : <u>lignage Yamagata</u> (98%)

Non adéquation/mismatch B : Pourquoi ? Est-ce fréquent ?


http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-prevention-vaccinale/Grippe/Grippe-generalites/Donnees-desurveillance/Bulletin-epidemiologique-grippe-semaine-16.-Bilan-preliminaire.-Saison-2017-2018, accédé le 8 juin 2018

Choix des souches vaccinales

Glissement antigénique : échappement immunitaire

Lina. Grippe. Dans : Traité de virologie médicale. 2018 (en cours de publication)

Evolution permanente des prototypes des virus circulants

	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	201
A(H3N2)																					
A/Sydney/5/97																					
A/Moscow/10/99																					
A/Fujian/411/2002																					
A/California/7/2004																					
A/Wisconsin/67/2005																					
A/Brisbane/10/2007																					
A/Perth/16/2009																					
A/Victoria/361/2011																					
A/Texas/50/2012																					
A/Switzerland/9715293/2013																					
A/Hong Kong/4801/2014																					
A/Singapore/INFIMH-16-0019/2016																					
A(H1N1)																					
A/Beijing/262/95																					
A/New Caledonia/20/99																					
A/Solomon Islands/3/2006																					
A/Brisbane/59/2007																					
A/California/7/2009																					
A/Michigan/45/2015																					
В																					
B/Beijing/184/93 (Yam)																					
B/Sichuan/379/99 (Yam)																					
B/Hong Kong/330/2001 (Vic)																					
B/Shanghai/361/2002 (Yam)																					
B/Malaysia/2506/2004 (Vic)																					
B/Florida/4/2006 (Yam)																					
B/Brisbane/60/2008 (Vic)																					
B/Wisconsin/1/2010 (Yam)																					
B/Massachusetts/2/2012 (Yam)																					
B/Phuket/3073/2013 (Yam)																					//
B/Colorado/06/2017 (Vic)																					

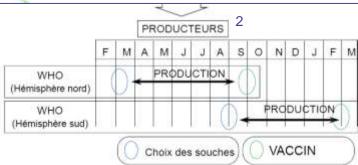
2nd B strain for quadrivalent vaccine if needed 2nd B strain for quadrivalent vaccine OMS recommendation

Lina. Grippe. Dans : Traité de virologie médicale. 2018 (en cours de publication)

Surveillance des virus circulants

Surveillance internationale (OMS)

- 1. Caractérisation phénotypique (antigénique) : Technique de référence basée sur l'inhibition d'hémagglutination (IHA)
- 2. Caractérisation moléculaire (génétique) : Séquençage de HA et NA ou du génome complet
- 3. Données épidémiologiques


http://www.who.int/influenza/surveillance_monitoring/updates/EN_GIP_Influenza_transmission_zones.pdf, accédé 7 juin 2018

Surveillance et choix des souches vaccinales

Surveillance internationale (OMS)¹

- 1. http://www.who.int/influenza/surveillance_monitoring/updates/EN_GIP_Influenza_transmission_zones.pdf, accédé 7 juin 2018
- 2. Chalumeau et al., Vaccine manufacture at the time of a pandemic influenza. Eur J Epidemiol. 1994;10(4):487-90.

Prédiction du virus circulant la prochaine saison

Les modèles d'étude de fitness intègrent les données dans les prédictions

Données génétiques

Données de l'arbre

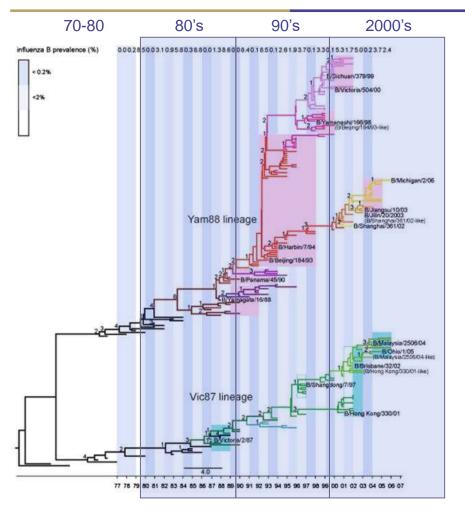
Données antigéniques

Données épidémiologiques

Prédictions d'évolution génétique

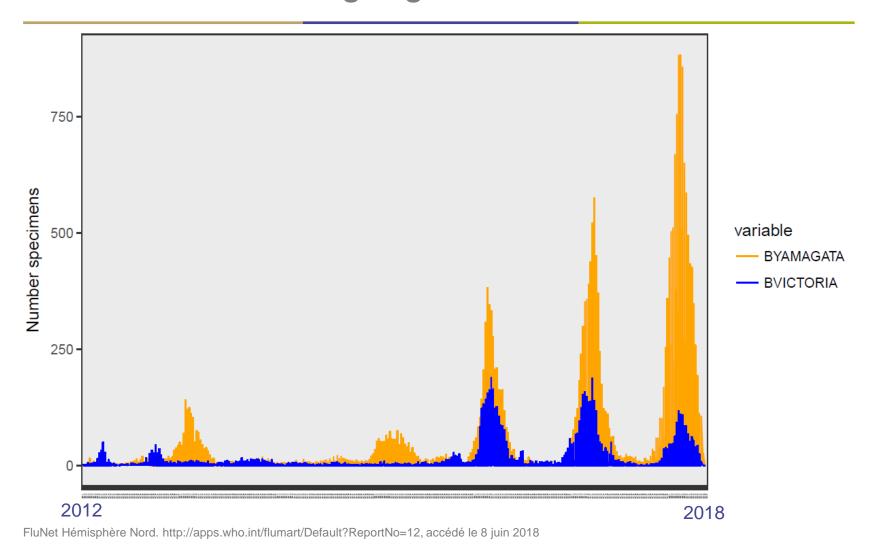
Prédictions d'évolution antigénique

- Difficultés pour la prédiction de la souche circulante B :
 - Prédiction du lignage prédominant (Victoria ou Yamagata) impossible
 - Au sein du lignage, prédiction du clade le plus « fit » mais persistance de plusieurs clades possibles pour les virus B


Łuksza and Lässig. A predictive fitness model for influenza. Nature. 2014;507:57-61.

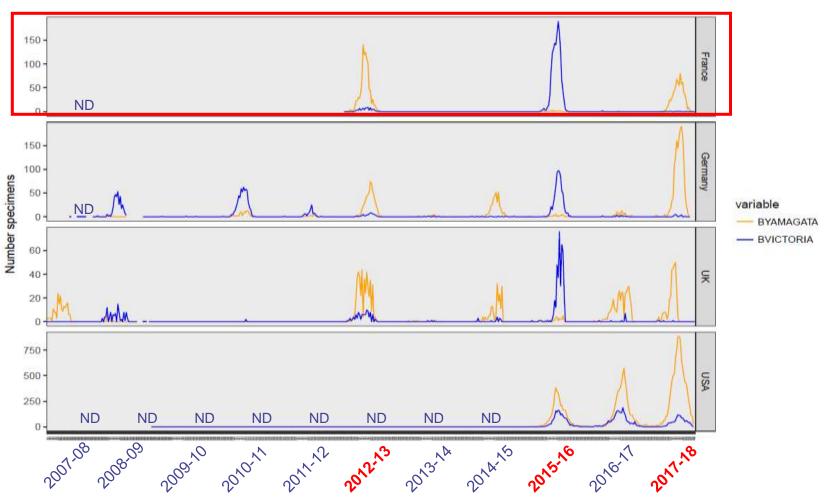
Évolution des virus influenza B

Emergence des 2 lignages B

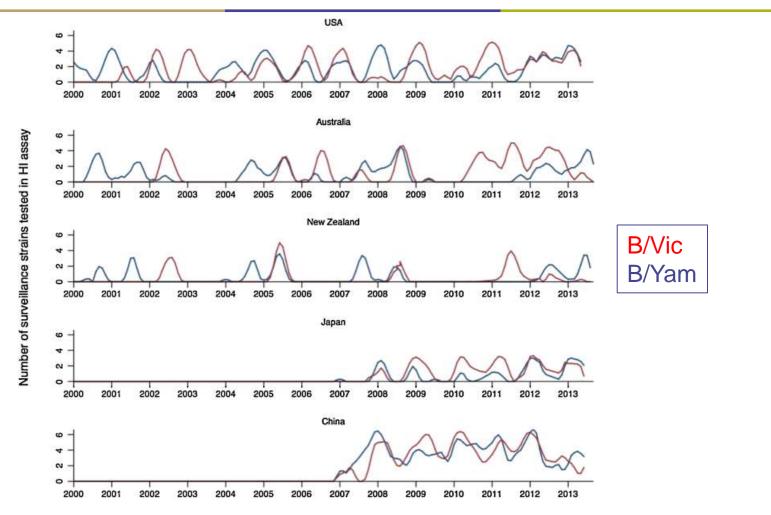


- 1940 : 1er virus B isolé
- Années 70-80 : Divergence en 2 lignages Victoria et Yamagata suite à des insertions-délétions dans la boucle 162-164 de HA
- Années 80 : Prédominance de Victoria
- Années 90 : Prédominance de Yamagata
- 2001 : Ré-émergence de Victoria
- Depuis 2001 : Co-circulation

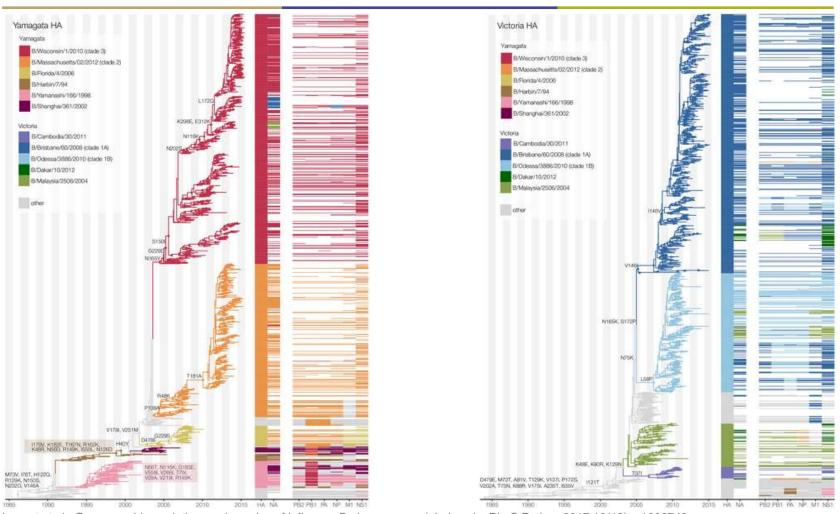
Chen and Holmes. The evolutionary dynamics of human influenza B virus. J Mol Evol. 2008;66(6):655-63.



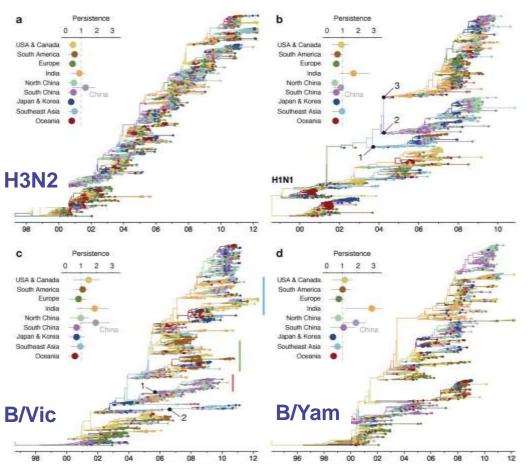
Au niveau mondial, co-circulation des lignages B/Yam et B/Vic


Au niveau national, prédominance d'1 lignage le plus souvent

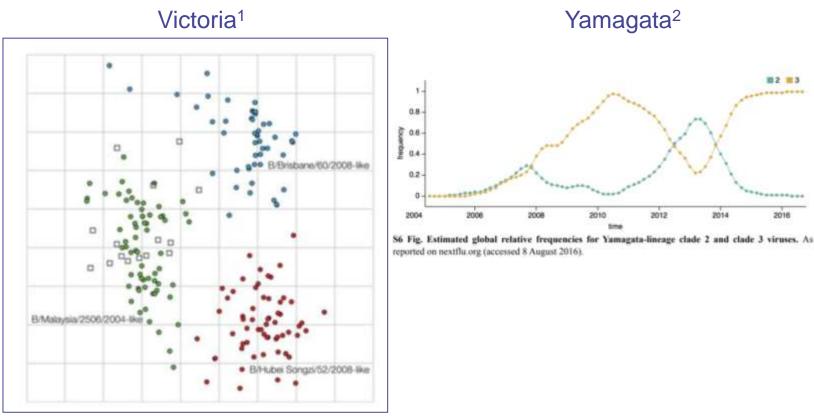
FluNet. http://apps.who.int/flumart/Default?ReportNo=12, accédé le 8 juin 2018


Hétérogénéité spatio-temporelle de circulation des lignages B

Mosterín Höpping et al., Influenza B vaccine lineage selection--an optimized trivalent vaccine. Vaccine. 2016;34(13):1617-1622.


Nombreux réassortiments inter- et intra-lignages B

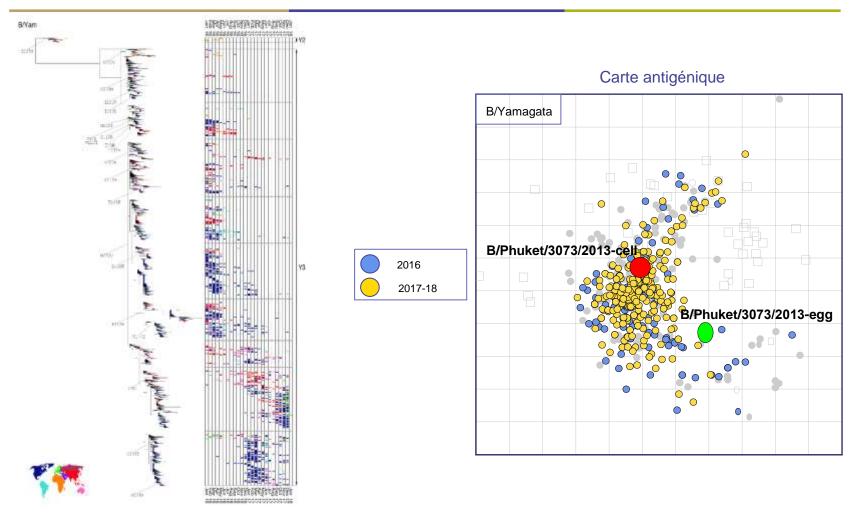
Les virus B ont une plus longue persistance que les A(H3N2)


- H3N2 : 'Trunk tree' :

 1 nouveau clade
 majoritaire à chaque
 saison
- Virus B : Persistance régionale de plusieurs clades (en particulier en Asie) sans propagation à d'autres régions

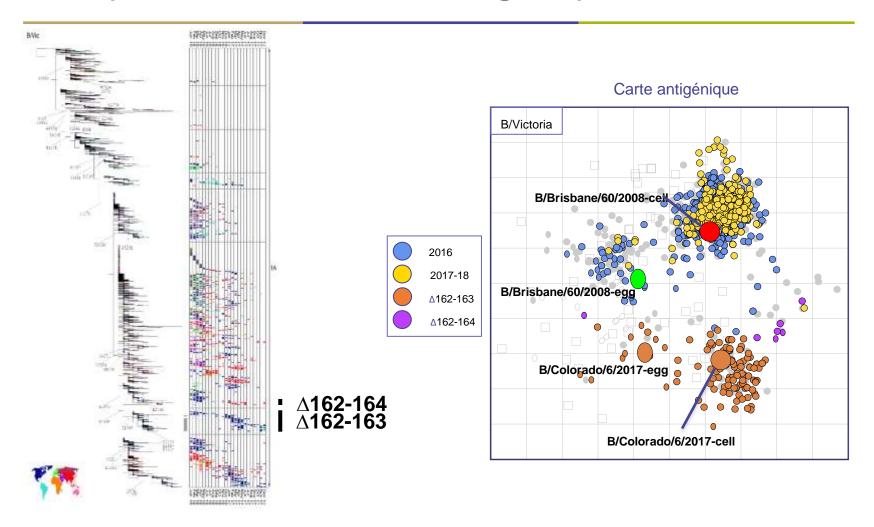
Bedford et al., Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015 Jul 9;523(7559):217-20.

Co-circulation de plusieurs clades antigéniquement distincts au sein d'un même lignage au cours d'une même saison



Antigenic map of Vic viruses primarily collected in 2008

- 1. Bedford et al., Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015 Jul 9;523(7559):217-20.
- 2. Langat et al., Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLoS Pathog 2017;13(12): e1006749.


B/Yamagata: saison 2017-2018

Pr Derek Smith and Dr Sarah James, Univ. de Cambridge (données personnelles)

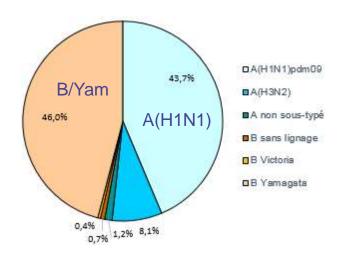
B/Victoria : minoritaire pendant la saison 2017-2018 mais présente une dérive antigénique

Pr Derek Smith and Dr Sarah James, Univ. de Cambridge (données personnelles)

Les mécanismes d'évolution des virus influenza B sont très complexes

- Variants antigéniques par insertions/délétions dans HA
- Nombreux réassortiments entre lignages et entre clades
- Persistance de clades antigéniquement distincts
- Pas de périodicité ni de régularité dans la circulation des 2 lignages B

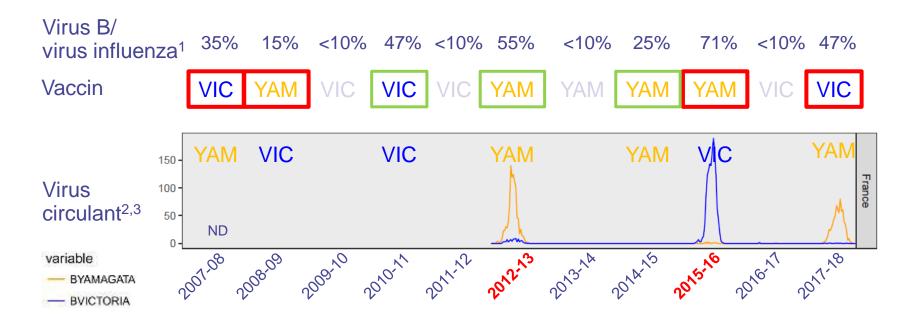
Mismatch vaccinal B



Mismatch **complet** par inadéquation de lignage

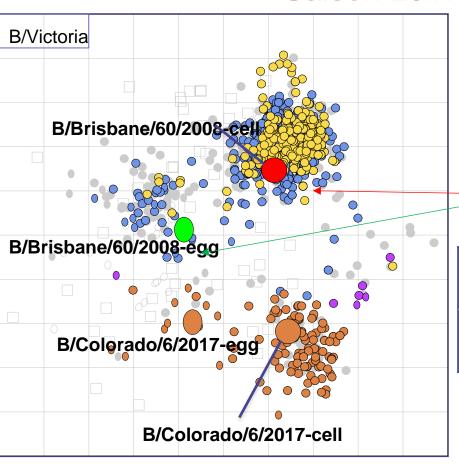
Saison 2017-2018

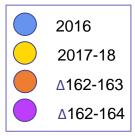
- Composition du vaccin trivalent 2017-2018 :
 - A/California/7/2009 (H1N1)pdm09
 - A/Hong Kong/4801/2014 (H3N2)
 - B/Brisbane/60/2008 : <u>lignage</u>
 Victoria


 Virus B circulant : <u>lignage Yamagata</u>

http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-prevention-vaccinale/Grippe/Grippe-generalites/Donnees-desurveillance/Bulletin-epidemiologique-grippe-semaine-16.-Bilan-preliminaire.-Saison-2017-2018

Mismatch **complet** par inadéquation de lignage


En France sur la période 2007-2018 (11 saisons) : le virus B a circulé (>10%) lors de 7 saisons ; un mismatch vaccinal complet par inadéquation de lignage a été observé pour 4 des 7 saisons (57%)


- 1. Mosnier et al., Clinical Characteristics Are Similar across Type A and B Influenza Virus Infections. PLoS One. 2015 Sep 1;10(9):e0136186.
- 2. Santé publique France INVS. http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-prevention-vaccinale/Grippe/Grippe-generalites/Donnees-de-surveillance/, accédé le 11 juin 2018
- 3. FluNet. http://apps.who.int/flumart/Default?ReportNo=12, accédé le 8 juin 2018

Mismatch partiel par dérive antigénique au sein d'un lignage

Saison 2017-2018

Souche vaccinale 2017-2018

WHO CC	B/Brisbane/60 /2008-like - egg	Low (≥ 8 fold)			
TOTAL	152 (50%)	153 (50%)			

"Low" représente les titres ≥8 fois inférieurs à la souche vaccinale

Données personnelles

Mismatch vaccinal 2000-2015 (Etats Unis)

Season	Vaccine strain	Dominant circulating strain	Secondary strain (if co-circulation)	Interim drift in Yam	Interim drift in Vic
2000/2001	Yam—Beijing/93	Yam—Sichuan/99	None	Some, SI/99 distinct from BE/93	_
2001/2002	Yam-Sichuan/99	Vic—Brisbane/02	Yam—Sichuan/99	None	_
2002/2003	Vic—Hong Kong/01	Vic—Brisbane/02	None	None	Some, BR/02 distinct from HK/01
2003/2004	Vic—Hong Kong/01	Yam-Shanghai/02	None	Some, SH/02 distinct from SI/99	None, very little Vic and BR/02-like
2004/2005	Yam—Shanghai/02	Yam—Shanghai/02	Vic—Brisbane/02	None	None
2005/2006	Yam-Shanghai/02	Vic-Malaysia/04	Yam—Shanghai/02	None	Some, ML/04 distinct from BR/02 and HK/01
2006/2007	Vic-Malaysia/04	Vic-Malaysia/04	YamShanghai/02 & Florida/06	Minor, mainly genetic change, SH/02 and FL/06 antigenically similar	None
2007/2008	Vic—Malaysia/04	Yam—Florida/06 & Bangladesh/07	None	Some, FL/06 and BA/07 different enough to warrant vaccine update	None
2008/2009	Yam-Florida/06	Vic—Brisbane/08	Yam—Florida/06 & Bangladesh/07	None	Some, BR/08 distinct from ML/04
2009/2010	Vic—Brisbane/08	Vic—Brisbane/08	very little Yam	None	None
2010/2011	Vic—Brisbane/08	Vic—Brisbane/08	YamWisconsin/10	None	None
2011/2012	Vic—Brisbane/08	Vic—Brisbane/08	YamFlorida/06 & Wisconsin/10	To previous Florida/06 like (except China Wisconsin/10 like)	None
2012/2013	YamWisconsin/10	Vic—Brisbane/08	Yam—Florida/06 & Wisconsin/10	None	None
2013/2014	Yam—-Massachusetts/12	Yam—Wisconsin/10	Vic—Brisbane/08	To Wisconsin/10 everywhere Clade 2 > 3	None
2014/2015	Yam—Massachusetts/12	Yam—Phuket/13	Vic—Brisbane/08	None	None

- Mismatch complet par inadéquation de lignage :
 - Entre la souche B dominante et le vaccin : 6/15 saisons (40%)
 - Entre la souche B minoritaire et le vaccin (co-circulation) : 6/15 saisons (40%)
- Mismatch partiel par dérive antigénique ou co-circulation de clades distincts antigéniquement (persistance): 8/15 saisons (53%) dont 3 avec adéquation de lignage

Mosterín Höpping et al., Influenza B vaccine lineage selection--an optimized trivalent vaccine. Vaccine. 2016;34(13):1617-1622.

Conséquences des mismatchs sur la production d'anticorps anti-HA?

- Vaccin grippal trivalent inactivé (TIV) chez des enfants naïfs avec des antigènes B/Yamagata/16/88¹:
 - Réponse anticorps anti-lignage Yam. mais pas anti-lignage Vic.
- TIV + adjuvants sous forme d'émulsion^{2,3} :
 - Pas d'induction de réponse anticorps cross-réactive chez les adultes ni chez les enfants
- Vaccin vivant atténué (LAIV)⁴:
 - Pas d'induction d'anticorps cross-réactive en modèle animal (furet)

Quel que soit le type de vaccination, faible cross-réactivité entre les lignages B

- 1. Levandowski et al., Antibody responses to influenza B viruses in immunologically unprimed children. Pediatrics. 1991;88(5):1031-6.2.
- 2. Camilloni et al., Cross-reactive antibodies in middle-aged and elderly volunteers after MF59-adjuvanted subunit trivalent influenza vaccine against B viruses of the B/Victoria or B/Yamagata lineages. Vaccine. 2009;27(31):4099-103.
- 3. Vesikari et al., Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr Infect Dis J. 2009;28(7):563-71.
- 4. Belshe et al., Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine. 2010;28(9):2149-56.

Conséquences des mismatchs sur l'efficacité vaccinale ?

Méta-analyse d'études prospectives randomisées d'efficacité vaccinale :

Efficacité vaccinale du TIV chez l'adulte :

- 52% (IC 95% : 19%-72%) pour des virus B en cas de <u>mismatch</u>
- 77% (IC 95% : 18%-94%) pour des virus B sans mismatch

Efficacité vaccinale du LAIV chez l'enfant :

- 34% (IC 95% : 4%-59%) pour des virus B en cas de <u>mismatch complet</u>
- 62% (IC 95% : 21%-81%) pour des virus B en cas de mismatch partiel
- 79% (IC 95% : 58%-90%) pour des virus B sans mismatch

TIV : vaccin grippal trivalent inactivé

LAIV : vaccin vivant atténué

Tricco et al., Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis. BMC Med. 2013;11:153.

Conclusion

- Non-adéquation complète entre souche vaccinale et circulante B : fréquente avec le vaccin trivalent
- Non-adéquation partielle possible
- Pourquoi ?
 - Evolution des virus B très complexe basée sur des insertions/délétions dans HA et des réassortiments
 - Hétérogénéité spatio-temporelle dans la circulation des virus B alors que les souches vaccinales sont choisies pour 1 hémisphère entier
- Conséquences des mismatchs : diminution de l'efficacité vaccinale

Remerciements

NIC & Hôpitaux de Lyon :

- Bruno Lina
- Maxime Pichon
- Vanessa Escuret
- Maude Bouscambert
- Jean-Sébastien Casalegno
- Emilie Frobert
- Martine Valette
- Florence Morfin

WHOcc :

- John McCauley
- Rod Daniels
- Jackie Katz
- Takato Odagiri

