

Inserm 1111, Centre International de Recherche en Infectiologie (CIRI),

Université Claude Bernard Lyon 1

Déclaration d'intérêts de 2014 à 2018

• Intérêts financiers : NON

- Liens durables ou permanents : NON
- Interventions ponctuelles : NON
- Intérêts indirects : NON

CMV exponential phase replication

Target cell

Firas El Chaer et al. Blood 2016;128:2624-2636 Griffiths, PD. NEJM 2014;370:1844

Difference between CMV controllers and non controllers at 12 months after allogeneic HSCT recipients : **defect in T cell effector/memory T CD8⁺ cells**

Unrelated donor cell reconstitution postransplant	No CMV reactivation	CMV reactivation
Naīve T cells		
CD8 ⁺ T effector memory diversity		
CD8 ⁺ T effector memory repertoire integrity	L E	

Everett Meyer Blood 2015;125:3827-3828

T-cell phenotypes after transplantation

The ability of a CMV ELISPOT assay to predict outcome of low-level CMV reactivation in hematopoietic cell transplant recipients.

El Haddad et al., J Infect Dis 2018; doi: 10.1093/infdis/ jiy592

A prospective multicenter observational study of cell-mediated immunity as a predictor for CMV infection in kidney transplant recipients

Inclusion centers (US, UK, Can), n=43; patients eligible for analysis, n=368; follow-up 12 months

Kumar et al., Am J Transplant 2019, doi: 10.1111/ajt.15315

Deep functional immunophenotyping predicts risk of CMV reactivation after hematopoietic cell transplantation

Single center (US), n=56 allo-HSCT, CMV-seropositive patients,

Ex vivo CD8⁺ T-cell cytokine production in response to CMV-pp65 peptides (13-color flow cytometry):

Post-transplant days

 EC/SC 80 of responsive cells 15 % of responsive cells EC: elite controllers (n=19) P=0.07 P=0.003 60 0 SC: spontaneous controllers (n=16) 10 NC: non controllers (n=21) 40 0 5 20 28 0 IL2-IFNy+TNFa-MIP1a+ IL2+IFNy+TNFa+MIP1a+ Non-protective signature Protective signature 100 NPS low 100 PS low **Clinically significant** Clinically significant PS high **CMV** reactivation NPS high CMV reactivation Log-rank P=0.05 Log-rank P=0.02 35% 50 50 50 100 50 0 0

Camargo et al., Blood 2019;133(8):867-877

Post-transplant days

40%

12%

100

EC/SC

Future directions and challenges of predictive biomarkers of CMV immune status

Factors influencing the burden of CMV

Antiviral strategies

Anti-CMV treatment : subsets of suboptimal outcomes

	Refractory	Resistant	Intolerant	
Definition	 > 1 log₁₀ increase in CMV viremia > 2 w appropriately dosed ATV therapy 	Viral mutation(s) ! CNR Limoges !	Dose-limiting adverse event(s)	
Mechanism	Inadequate ATV drug delivery/dose or potency	One or several CMV gene point mutation(s)	Bone marrow toxicity Renal impairment	
Consequence(s)	Persistent viral load despite ATV	Exponential increase in viral load		
Complication(s)	End-organ disease	End-organ disease		

Chemaly et al., Clin Infect Dis 2019;68(8):1420–6 for the Resistant Definitions Working Group of the Cytomegalovirus Drug Development Forum

Immunoglobulin-based treatment

IVIG or highly enriched Free particle clearance "tip of the iceberg" Transient effect Cost/benefit CMV pneumonia (?)

The addition of IV pooled or CMV-specific Igs to antiviral treatment did not improve overall or attributable mortality

Overview of current developments

New drugs : MBV/LTV Adoptive T-cell transfer

	MARIBAVIR (MBV)		LETERMOVIR (LTV)	
Drug <i>vs.</i> placebo	Lancet Infect Dis 2011	n=90, double-blind 2:1 randomization, oral MBV 100 mg twice daily	N Engl J Med 2017	n=67, double-blind, 2:1 randomization, oral or IV LTV 480 mg once daily (or 240 mg if taken with cyclosporine)
Patients		HSCT recipients		HSCT recipients
Primary end- point		Incidence of CMV disease within 6 months of transplantation		Clinically significant CMV infection through week 24 after transplant
Study outcome		CMV disease: 4.4% at month 6 (placebo 4.8%; OR 0.90) CMV infection: 34.6% at day 100 (placebo 40.5%; OR 0.77)		CMV disease: 1.5% at week 24 (placebo 1.8%) CMV infection: 37.5% at week 24 (placebo 60.6%; <i>p</i> < 0.001)
Mortality		All-cause mortality at day 100: 7% (placebo 9%)		All-cause mortality at week 24: 10.2% (placebo 15.9%; $p = 0.03$)
Most recent study	Clin Infect Dis 2019	n=120, phase II trial, randomized, double-blind, 1:1:1 twice-daily dose-ranging MBV 400, 800, or 1200 mg	Transplantation 2019	n=6, salvage therapy in refractory CMV disease
Patients		HSCT and SOT recipients		HSCT and SOT recipients
Primary end- point		Proportion of patients with confirmed undetectable plasma CMV DNA within 6 weeks of treatment		Mixed efficacy in patients with refractory CMV infection suggesting that LTV may be a useful therapeutic adjunct, potentially in combination with
Study outcome		CMV infection: 25% vs. 17.5% vs. 25% CMV disease : 15% vs. 17.5% vs. 7.5%		other ATV . RESISTANCE
Mortality	Marty et alṢiˈnːjəəəəˈ/////////////////////////////////			

Adoptive immunotherapy of viral infections: should infectious disease embrace cellular immunotherapy?

Editorial commentary. J Infect Dis 2017; 926-928

Immunotherapy of cancer

Combined approaches including active immunotherapy

Immunotherapy of CMV infection

- timely production of T-cells,
- donor product issues (matching, donor seropositivity),
- . exposure of products to CST and IS drugs,
- . no controlled trials (non-inferiority),
- . management of cytokine release Sd,
- cost/benefit

Many of these issues have been addressed:

- availability of multi-target T-cell products in an "off the shelf " approach,
- reports of *in vivo* antiviral activity and clinical responses, under certain conditions.

"The feasibility to manufacture multi-target cellular therapies has been demonstrated; the time is now to systematically assess their value in infectious disease."

ssues and limits

Ex vivo manufacturing of virus-specific T-cells (VST)

Virus-derived peptides, proteins, viral lysate APC from autologous or CMVpositive donor or genetically-engineered APC

Ag-specific T-cell induction and expansion CMV-specific T-cell transfer for refractory CMV infection after haplo-identical stem cell transplantation: the quantitative and qualitative immune recovery for CMV

Pei et al., J Infect Dis 2017

Design:

Single-center, n=32 infused PBMCs from healthy CMV-positive donors, 7d expansion Flow cytometry = count of IFN- γ -producing CD4⁺ and CD8⁺ specificity = 51.2%

Primary end-point = safety (infused-related toxicities)

Safety: Adverse events: nausea, fatigue

Efficacy:

Improvement in proliferative capacity of the CMV-specific CD8+ T cells Decreased expression of PD-1 on CMV-spcfq T cells CMV clearance: 27/32 Autologous adoptive T-cell therapy for recurrent or drug-resistant CMV complications in solid organ transplant recipients: a single-arm open-label phase I clinical trial

Smith et al., Clin Infect Dis 2018

Design:

Clinical Infectious Diseases

ш

RTICLE

4

0 R

NAJ

Single-center, n=13 infused Autologous PBMCs – 14d expansion Median Ag IFN- γ -producing CD8⁺ specificity = 51.2%

Primary end-point = safety

Safety:

Adverse events: nausea, fatigue No change in graft status

Efficacy:

Clinical response 11/13 Anti-CMV response (median) : $3.2x10^4$ to $1.2x10^3$ copies/mL (> 1 log) ATV discontinuation: 5/13

Future directions and challenges of anti-CMV immunotherapy

- 1. Standardization of manufacturing
- 2. Storage and quality control : assessment of poly-functional T-cell repertoire
- 3. T-cell stocks: "off the shelf samples" ready for infusion
- 4. Open randomized controlled trials of <u>non-inferiority</u> vs. ATV prophylaxis or preemptive strategy
- 5. Long-term evaluation on immune reconstitution and graft tolerance

Conclusions

Cell-mediated immune assays = characterizing **CMV-specific signature** composite immune biomarkers associated with control

Antiviral drug pipeline : MBV and LTV

Harmonization of definitions: refractory/resistant/intolerant CMV infections

2018: 3^d international consensus guidelines on the management of CMV in solid organ transplantation

T-cell adoptive transfer

CMV vaccine

Alternatives : « repurposing »

Inhibiteurs de mTOR: EVEROLIMUS, Sirolimus

Kidney transplantation Cross-effect BK virus nephropathy

> Pacual J et al. Transpl Infect Dis. 2016 Dec;18(6):819-831 Hocker B et al. Am J transplant 2016

ARTESUNATE (accès palustre) Inhibition des l'expression des protéines très précoces du CMV

> Efferth and Kaina, Critical Reviews in Toxicology, 2010, 1–17 Shapira et al., CID 2008:46 Wolf et al.,Antiviral research 2011

LEFLUNOMIDE (polyarthrite rhumatoïde) Inhibe les étapes tardives du cycle viral (tégumentation du virion)

Chacko and John, Transplant infectious disease 2012;14: 111-120

Leflunomide

- Immunosuppressant agent (indication arthritis)
- Activity against CMV *in vitro*: inhibits apoptosis
- Case reports and small series for refractory CMV infection and disease
- May work in combination
- Monitoring for toxicity required: Hematologic
 - Hepato-pancreatic
- Systematic evaluation needed