

La tuberculose en 2019 Impact du séquençage du génome complet sur la prise en charge

Oana Dumitrescu

Institut des Agents Infectieux, Observatoire Auvergne-Rhône-Alpes des mycobactéries, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie

Conflits d'intérêts

Rien à déclarer

La tuberculose : défit ancien et nouveaux outils

- Prise en charge individuelle adaptée (montée des mono- et multi-résistances)
- Contrôle de la TB (lutte antituberculeuse ARS, CLAT)
- Quel peut-être l'apport des nouveaux outils moléculaires?

Les outils pour la détection de la résistance

- Antibiogramme phénotypique (délai de réalisation)
- Outils moléculaire ciblés :
 - rpoB (déterminant de la résistance RIF) MTB/RIF Ultra Cepheid IVD
 - rpoB (RIF), inhA, katG (INH): GenoType MTBDRplus HAIN IVD
- Outils basés séquençage nouvelle génération (NGS)
 - Restreint à une partie du génome : Deeplex®-MycTB Geno-screen RUO
 - Génome complet (WGS) « maison » RUO

4

Comparaison des performances des différentes techniques pour la détection de la résistance de Mtb

228 isolats cliniques successifs de Mtb (Nov 2016 à Nov 2018)

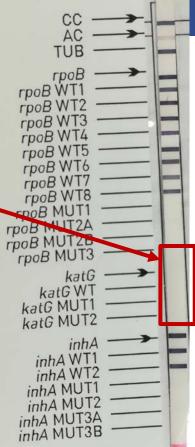
Line probe assay

- Genotype MTBDR plus
- Echantillon (BAAR+) / culture
- Délai : 48h

Antibiogramme

- BACTEC MGIT SIRE
- Culture
- Délai: 10 à 14 jours

WGS


- PhyResSE/ pipeline à façon
- Culture
- Délai: 10 à 14 jours

 Gold standard: antibiogramme + mutations de resistance de haute confiance (rpoB, katG, inhA, promoteur fabG1, embB)

Résultats: détection des résistance INH

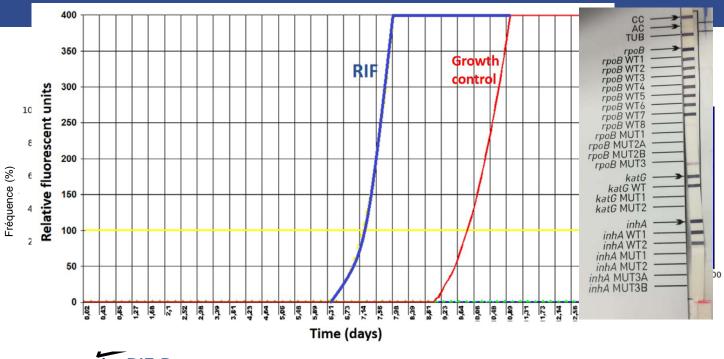
Souches résistantes (GS)	Type de test	Souches résistantes détectées	Variants non-détectés		
Bas niveau R n = 4		3/4	katG Q88P		
Haut niveau R	LPA		katG L343STOP		
n = 9		6/9	katG ∆1-492		
			inhA S94A (+ fabG1 C-151		
Bas niveau R n = 4		4/4	N.A.		
Haut niveau R n = 9	ATB	9/9	N.A.		
Bas niveau R n = 4		4/4	N.A.		
Haut niveau R n = 9	WGS	9/9	N.A.		

Résultats : détection de la résistance EMB

Souches résistantes (GS)	Type de test	Souches résistantes détectées	Variants non-détectés		
			<i>emb</i> B M306I		
n = 5	ATB	1/5	embB Q497R		
			embB S297A		
n = 5	WGS	5/5	N.A.		

L'interprétation prudente des mutations embB :

- Polymorphismes sans lien causal avec la résistance EMB
- Bio-marqueurs de résistance EMB (due à d'autres mutations ou au dérèglement de pompes à efflux)
- Discordance entre les techniques ATB : Bactec MGIT (cc 5 mg/L) versus méthode proportions LJ (cc 2 mg/L)

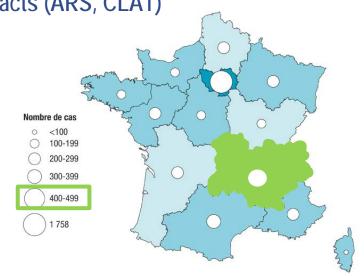

Résultats : détection de la résistance RIF

Souches résistantes (GS)	Type de test	Souches résistantes détectées	Variants non-détectés
n = 5	LPA	3/5	rpoB L452P* (L533P) rpoB S450L (S531L)
n = 5	ATB	4/5	<i>rpo</i> B L452P* (L533P)
n = 5	WGS	5/5	N.A.

- rpoB L452P résistance de bas niveau RIF ("disputed" Miotto et al, J. Clin. Microbiol. 2018)
 - Non-détectées par le systèmeBactec MGIT
 - Parfois détectées par GenoType MTBDRplus (signal affaibli de la bande rpoBWT8)

Résultats : le cas des co-infections

Conclusions : comparaison des techniques


- Pour la détection de la résistance RIF :
 - Seulement le WGS a permis la détection des 5/5 souches RIF-R
- Pour la détection de la résistance INH :
 - Bonne concordance entre la prédiction WGS et l'ATB
 - Les prédictions du test Genotype MTBDR étaient fausses 4/13 souches INH-R
- Pour la détection de la résistance ETB :
 - 4 souches ETB-R détectées en WGS et non détectées pat Bactec MGIT SIRE
- Apport indiscutable du WGS de routine pour Mtb pour la détection correcte de la résistance aux anti-TB et pour la détection des co-infections
- Besoin d'algorithme combinant les données ATB et WGS pour guider le traitement anti-TB et éviter l'échec thérapeutique

Nouveaux outils pour le contrôle de la TB

Stratégie nationale basée sur le dépistage des contacts (ARS, CLAT)

Surveillance moléculaire systématique

- Identifier des situations à risque nos détectées par les enquêtes classiques
- Identifier de patients hautement contagieux
- Améliorer l'exhaustivité de la détection des cas secondaires (parfois liés à des circonstances non-explorées initialement)

Observatoire Auvergne-Rhône-Alpes des mycobactéries

- Suivi moléculaire systématique depuis 2000
- approx. 400 isolats/ an

Bulletin épidémiologique hebdomadaire, mars 2015

Surveillance moléculaire prospective

2008 2017

Spoligotypage

+

MIRU-VNTR

Librairies Nextera

Illumina

MiSeq, NextSeq

Pipeline « à façon »

BOWTIE2

SAM tools

Détection SNP

Genotype (lingnée)
Spoligotypage in silico
Comparaison SNPs
Seuil 12 SNPs

2018

Souches Mtb collectées 2008 - 2018 (n=3230)

211 grappes identifiées (n = 662)

96 grappes avec transmission **confirmée** (n=341)

Transmission communautaire

- _ 64 intrafamiliale (n=233)*
- 3 prisons (n=8)
- _ 25 autres (n=92)

*2 MDR-TB

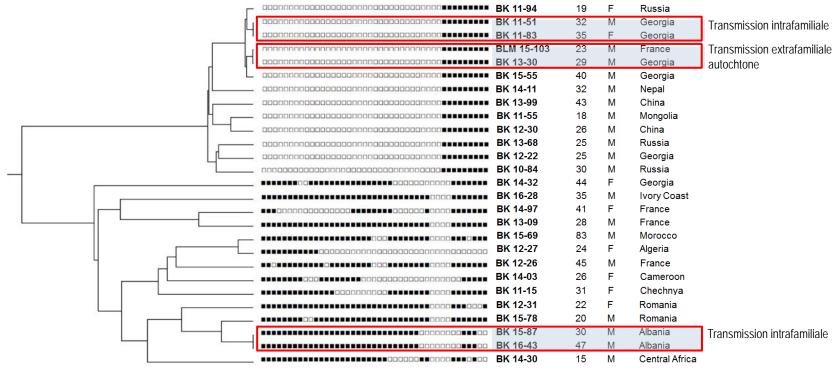
Une chaine unique

Transmission nosocomiale

- 4 grappes (n=8) *
- * 1 MDR-TB

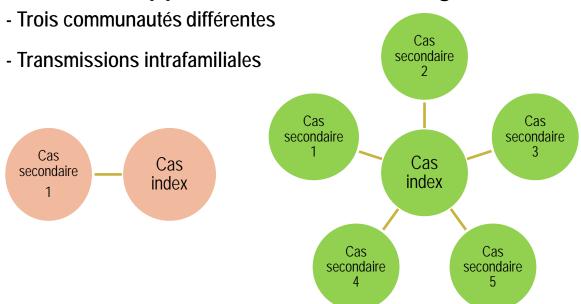
12

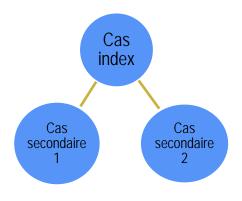
Identification des transmissions de TB inattendues dans une population hautement réceptive Poster BK-02


	Cas Index			_	Cas secondaire				
	Age	Sexe	Pathologie sous-jacente	BAAR	Temps contact estimé	Age	Sexe	Pathologie sous-jacente	N° SNP distance
1	52	M	BPCO Emphysème	+	Qqs min	24	F	Mucoviscidose Greffe pulmonaire	0
2	76	M	BPCO DNID	-	<1 heure	36	F	Mucoviscidose Greffe pulmonaire	1
3	44	M	HTA Alcoolisme	-	< 1 heure	40	F	FPI Greffe pulmonaire	4

Mise en place de mesures de prévention : éviction des patients TB des services et plateaux techniques prenant en charge les greffés

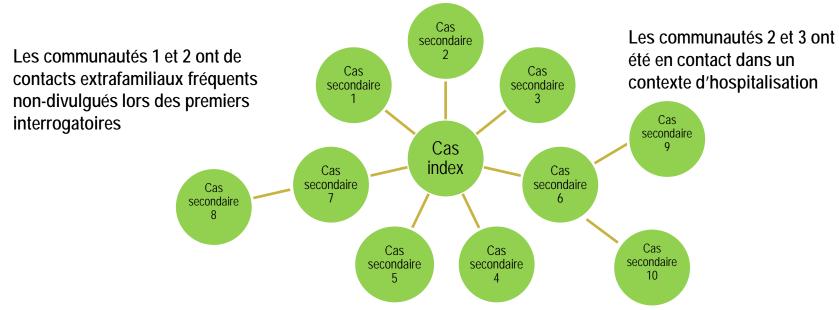
Identification de transmission autochtone de TB-MDR

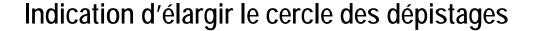

Phylogénie basée sur WGS des Mtb isolés en Rhône-Alpes



Identifier de cas index hautement contagieux

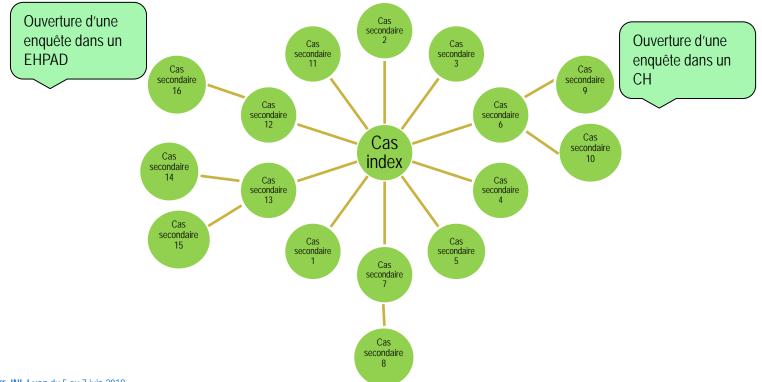
Situation supposée suite à l'interrogatoire





Identifier de cas index hautement contagieux

Situation déduite après WGS (génotypage prospectif)



16

Identifier de cas index hautement contagieux

Situation réactualisée après WGS et ré-interrogatoire

Conclusions : l'apport du séquençage dans le diagnostic de la TB

- En complément de l'ATB Bactec MGIT, pour la détection correcte de la résistance aux anti-TB
- Pour la détection des co-infections (attention aux co-infections Mtb-S / Mtb-MDR qui prennent en défaut tous les tests diagnostiques)
- Surveillance moléculaire systématique
 - En synergie avec les enquêtes classiques
 - Identifier de patients hautement contagieux et de situations à risque de transmission
 - Améliorer l'exhaustivité de la détection des cas secondaires (parfois liés à des circonstances non-explorées initialement)
 - Mettre en place de mesures de prévention adaptées

Merci pour votre attention

Équipe du laboratoire des mycobactéries HCL
Participants au réseau ORAM
ARS ARA, CLAT69, CLAT01
Lyon TB study group

