

Poitiers et la région Nouvelle Aquitaine Palais des Congrès du Futuroscope

du mercredi 9 septembre 2020 au vendredi 11 septembre 2020

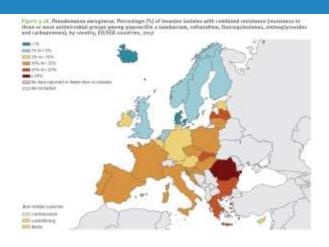
Les nouvelles associations Carbapénème / Inhibiteur de β-lactamases

David Boutoille

Maladies Infectieuses et Tropicales – CHU de Nantes

Liens d'intérêt

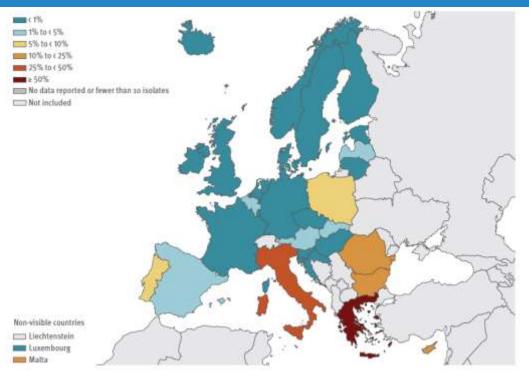
Boards : Astellas, MSD, Shionogi


Invitations congrès : Correvio, Gilead, MSD

2

Résistance de P. aeruginosa aux carbapénèmes : Données EARSS 2018

Données françaises			
Souches sauvages	69,2 %		
Résistance Pipéracilline-tazobactam (PIP/TAZ)	21,5 %		
Résistance Ceftazidime (CAZ)	13 %		
Résistance Carbapénèmes (CARBA)	16 %		
Résistance Fluoroquinolones (FQ)	15,1 %		
Résistance Aminosides (AMG)	9,3 %		
Résistance PIP/TAZ + CAZ + FQ + AMG + CARBA	11 %		

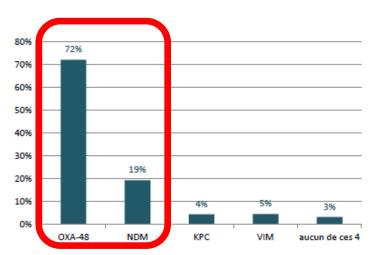


Résistance aux carbapénémes chez P. aeruginosa :

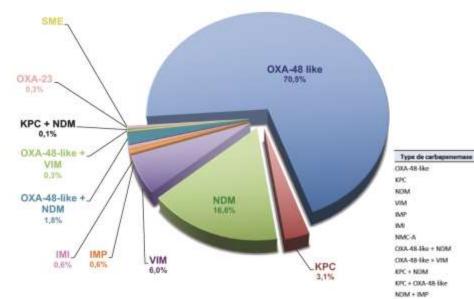
- Seulement 11 % médiée par des carbapénémases
- Associations complexes de différents mécanismes :
 - mutations d'OprD
 - hyperproduction d'AmpC
 - Efflux
 - Mutations des PBP

Entérobactéries productrices de carbapénèmases

Répartition géographique de la prévalence des EPC (Source eCDC : bilan 2017)


Bêta-lactamases: classification d'Ambler

	Classe A	Classe B	Classe C	Classe D
	Sérine β-lactamases	Metallo-β-lactamases	Céphalosporinases	Oxacillinases
Chromosomiques	Pénicillinases (C. koseri, Klebsiella)		AmpC non inductible (E. coli) AmpC inductible AmpC déréprimée	
	TEM, SHV		AmpC plasmidique	OXA spectre étroit
Plasmidiques	BLSE TEM, SHV, CTX-M			BLSE de type OXA
	Carbapénémases KPC	Carbapénémases VIM, IMP, NDM-1		Carbapénémases Ex. OXA-48


EPC: répartition en France

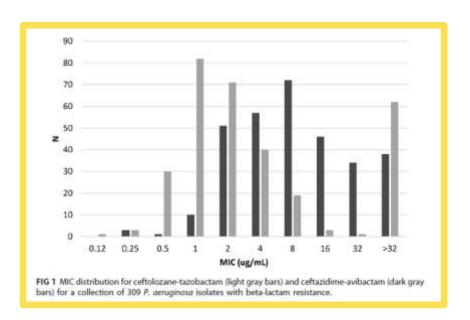
NB: un même SIN peut rapporter plusieurs mécanismes

Distribution des EPC par types des carbapénèmases en 2019

3.1

Ceftolozane-Tazobactam: spectre

	Classe A	Classe B	Classe C	Classe D
	Sérine β-lactamases	Metallo-β-lactamases	Céphalosporinases	Oxacillinases
Chromosomiques	Pénicillinases (C. koseri, Klebsiella)		AmpC non inductible (E. coli) AmpC inductible AmpC déréprimée	
	TEM, SHV		AmpC plasmidique +/-	OXA spectre étroit
Plasmidiques	BLSE TEM, SHV, CTX-M			BLSE de type OXA
	Carbapénémases KPC	Carbapénémases VIM, IMP, NDM-1		Carbapénémases Ex. OXA-48



Ceftazidime/Avibactam: spectre

	Classe A	Classe B	Classe C	Classe D
	Sérine β-lactamases	Metallo-β-lactamases	Céphalosporinases	Oxacillinases
Chromosomiques	Pénicillinases (C. koseri, Klebsiella)		AmpC non inductible (E. coli) AmpC inductible AmpC déréprimée	
Plasmidiques	TEM, SHV BLSE TEM, SHV, CTX-M Carbapénémases KPC	Carbapénémases VIM, IMP, NDM-1	AmpC plasmidique	OXA spectre étroit BLSE de type OXA Carbapénémases Ex. OXA-48

Collection de 309 souches de *P. aeruginosa* multi-résistantes (USA)

Taux de sensibilité			
Imipénème	12 %		
Méropénème	15,9 %		
Pipéracilline/Tazobactam	20,7 %		
Ceftazidime	24,6 %		
Céfépime	25,9 %		
Ceftolozane/Tazobactam	72,5 %		
Ceftazidime/Avibactam	61,8 %		

RM Humphries et al. Antimicrob Ag Chemother 2017

Emergence de résistances

Ceftolozane – Tazobactam:

- Emergence de résistances par mutations sur *ampC*
- Facteurs de risque : foyers mal drainés, faibles posologies.

Haidar G et al. Clin Infect dis 2017

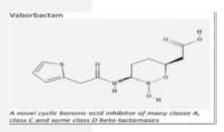
Ceftazidime – Avibactam :

- Jusqu'à 10 % d'émergence de résistance par mutation D179Y dans la boucle ω de KPC (site de fixation de l'enzyme)
- Facteurs de risque : hémodialyse, posologies insuffisantes

Shields RK et al. Clin Infect Dis 2016 Shields RK et al. Antimicrob Ag Chemother 2017

21es JNI. Poitiers du 9 au 11 septembre 2020

Associations carbapénème / inhibiteur de β-lactamase


- Méropénème/Vaborbactam :
 - Avis favorable HAS février 2020

- Imipénème/Cilastatine/Relebactam :
 - Disponibilité 2021

Meropenem + Vaborbactam

- Vaborbactam = inhibiteur de la famille de l'acide boronique
- Action sur enzymes de classes A et C : très actif sur les KPC
- Inactif sur les enzymes de classes B et D

- Résiste à la mutation D179Y de KPC : seulement 20 % de résistance croisée avec Ceftazidime/Avibactam (par mutation de la porine ompK36)
- N'augmente pas l'efficacité du méropénème sur les souches de P. aeruginosa méropénème-R

D. Boutoille - JNI 2020

21es JNI. Poitiers du 9 au 11 septembre 2020

Méropénème/Vaborbactam: AMM

- Infections urinaires
- Infections intra-abdominales
- Pneumopathies, y compris PAVM
- Traitement de recours réservé aux patients atteints d'infections à entérobactéries sensibles à Méropénème/Vaborbactam et pour lesquels le recours aux carbapénèmes n'est pas envisageable, notamment avec un mécanisme de résistance de type KPC.
- Vaborem* ne doit pas être utilisé comme alternative aux carbapénémes pour le traitement des entérobactéries résistantes aux C3G, et pour le traitement des infections à *Pseudomonas aeruginosa*.

D. Boutoille - JNI 2020
21es JNI, Poitiers du 9 au 11 septembre 2020

Méropénème/Vaborbactam : essais cliniques

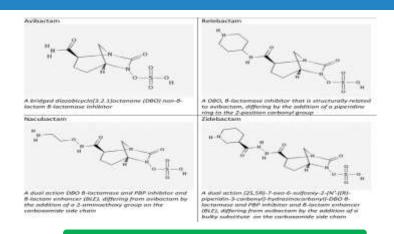
TANGO I:

- Phase III vs Pipéracilline-Tazobactam dans les infections urinaires
- Supériorité clinique
- Non infériorité microbiologique

Kaye JKS et al. JAMA 2018

TANGO II:

• Entérobactérie Carbapénème-I ou R, quel que soit le site d'infection


Essai arrêté à 77 patients du fait de la supériorité de Meropenem-Vaborbactam vs Best Available Therapy.

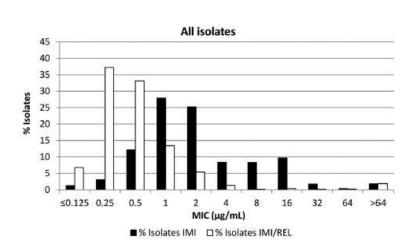
Wunderink RG et al. Infect Dis Ther 2018

TANGO III: Phase III en cours sur les pneumonies associées aux soins et/ou acquises sous ventilation

Inhibiteurs de la famille des diazabicyclooctanes (DBO)

- Avibactam
- Relebactam
- Zidebactam
- Nacubactam

- Inhibiteurs de bêta-lactamases non bêta-lactamines
- Affinité élevée pour les enzymes de classes A et C
- Ne sont pas des molécules suicides : liaisons réversibles leur permettant d'aller se fixer sur d'autres cibles



Imipénème-Relebactam

- Relebactam = molécule proche de l'avibactam, mais avec une affinité plus faible pour OXA-48
- Relebactam baisse les CMI de l'imipénème de 64 X sur les K. pneumoniae productrices de KPC
- Possibilité de récupération de la sensibilité à l'imipénème sur P. aeruginosa (baisse la CMI d'un facteur 8) si imperméabilité + AmpC déréprimée.

Lob SH et al. J Antimicrob Chemother

 ${\rm CMI}_{90}\,$ 16 fois inférieure à celle de l'imipénème seul.

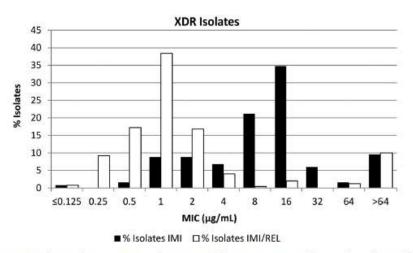


FIG 1 Distribution of imipenem (IMI) and imipenem-relebactam (IMI/REL) MICs for complete collection of clinical isolates and those showing an XDR phenotype.

L'Imipénème – Relebactam reste actif sur 80,5 % des souches résistantes à l'Imipénème.

Association testée sur 1460 souches espagnoles de *P. aeruginosa* Fraile-Ribot PA *et al.* Antimicrob Ag Chemother 2020

Imipénème/Relebactam : activité sur P. aeruginosa

Table 3. In Vitro Susceptibility of All, Difficult-to-Treat Resistance, and Multidrug-resistant Isolates of *Pseudomonas aeruginosa* to Imipenen/Relebactam, Ceftolozane/Tazobactam, and Comparator Antimicrobial Agents

	% Susceptible			
Antimicrobial Agent	All Isolates	DTR Isolates	MDR Isolates	
lmipenem/relebactam	93.9	62.2	82.2	
Imipenem	72.0	0	38.9	
Meropenem ^a	77.0	0	42.7	
Ceftolozane/tazobactama	94.7	67.5	84.0	
Cefepime	75.6	0	29.6	
Ceftazidime	76.9	0	32.4	
Piperacillin/tazobactam	70,2	0	15.8	
Aztreonam	63.1	0	8.1	
Ciprofloxacin	65.7	0	34.2	
Levofloxacin	56.8	0	20.1	
Amikacin	96.0	84.8	89.8	
Colistin	99.6	98.7	99.0	

Sur les souches mutées sur OprD, le relebactam réduit les CMI en inhibant la céphalosporinase AmpC.

Smith JR et al. Pharmacotherapy 2020

Imipénème/Relebactam: activité sur les KPC

	% Susceptible		
Gram-negative Bacilli (n, All Isolates/n, DTR Isolates/n, MDR Isolates) Antimicrobial Agent	All Isolates	DTR ^{a,b} Isolates	MDR ^c Isolates
(lebsiella pneumoniae (2083/62/264)			
Imipenem/relebactam	99.4	85.5	96.2
Imipenem	96.6	0	74.6
Meropenem ^d (1394/35/189)	97.2	0	79.4
Ertapenem	95.3	0	64.0
Ceftolozane/tazobactam ^d (1394/35/189)	94.5	0	60.8
Cefepime	89.3	0	21.6
Ceftazidime	88.7	0	16.3
Ceftriaxone	86.0	0	8.3
Cefotaxime	86.7	0	7.6
Piperacillin/tazobactam	90.2	0	42.4
Aztreonam	88.6	0	14.0
Ciprofloxacin	82.3	0	9.8
Amikacin	98.9	72.6	92.0
Colistin	98.9	90.3	95.5

Excellente activité sur les entérobactéries productrices de KPC-2 et KPC-3

Canver MC *et al.* Antimicrob Ag Chemother 2019, Lomovskaya O *et al.* Antimicrob Ag Chemother 2017)

19

Imipénème/Relebactam: essais cliniques

Phases 2 dans les infections urinaires et infections intra-abdominales.

Sims M *et al.* J Antimicrob Chemother 2017 Lucasti C *et al.* Antimicroc Ag Chemother 2016

Phase 3 (RESTORE-IMI 1)vs Colistine-Imipénème dans les infections à EPC

Motsch J et al. Clin Infect Dis 2019

 Phase 3 (RESTORE-IMI 2) vs Pipéracilline/Tazobactam dans les pneumonies acquises à l'hôpital ou sous ventilation mécanique

Titov I et al. Clin Infect Dis 2020

Imipénème/Relebactam: étude RESTORE - IMI 1

- Etude randomisée 2:1, internationale (33 hôpitaux, 17 pays), en double-aveugle
- IMI/REL 500/250 toutes les 6 h
- Colistine + Imipénème
- Critère principal : Réponse globale à J28
 - _ Pneumonies : mortalité J28
 - Infections intra-abdominales : réponse clinique à J28
 - Infections urinaires : réponse clinique + bactériologique en fin de traitement

J Motsch et al. Clin Infect Dis 2020

Imipénème/Relebactam: étude RESTORE - IMI 1

Baseline characteristic	IMI/REL (n = 21)	Colistin + IMI (n = 10)	Total $(n = 31)$
Primary diagnosis			
HAP, n (%)	1 (4.8)	1 (10.0)	2 (6.5)
VAP, n (%)	7 (33.3)	2 (20.0)	9 (29.0)
cUTI (urinary tract abnormalities), n (%)	5 (23.8)	3 (30.0)	8 (25.8)
cUTI (acute pyelonephritis), n (%)	6 (28.6)	2 (20.0)	8 (25.8)
cIAI, n (%)	2 (9.5) ^a	2 (20.0) ^b	4 (12.9)
Bacteremia ^c			
Yes, n (%)	1 (4.8)	1 (10.0)	2 (6.5)
No, n (%)	5 (23.8)	2 (20.0)	7 (22.6)
Unknown, n (%)°	15 (71.4)	7 (70.0)	22 (71.0)
Qualifying causative pathogens			
Citrobacter freundii, n (%)	1 (4.8)	0 (0.0)	1 (3.2)
Enterobacter cloacae, n (%)	1 (4.8)	0 (0.0)	1 (3.2)
Klebsiella oxytoca, n (%)	0 (0.0)	1 (10.0)	1 (3.2)
Klebsiella pneumoniae. n (%)	3 (14.3)	1 (10.0)	4 (12.9)
Pseudomonas aeruginosa, n (%)	16 (76.2)	8 (80.0)	24 (77.4)

_ AmpC 84 % - KPC 16 % BLSE 35 %

- OXA-48 48,3 %

Imipénème/Relebactam: étude RESTORE - IMI 1

	IMP-Relebactam	IMP + CS	
Réponse globale	71,4 % (n=15)	70 % (n=7)	
Réponse clinique J28	71,4 % (n=4)	40 % (n=4)	
Mortalité J28	9,5 % (n=2)	30 % (n=3)	
Néphrotoxicité	10 %	56 %	P=0,001

J Motsch et al. Clin Infect Dis 2020

CID, mis en ligne Août 2020

A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/ Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study)

hve Tree, "Bishard C. Wenderick," Astoine Rogally," Daniel Rockigous Gozzalos, "Bilens David-Wang," Helen W. Steches," Kach S. Kaye," Meric C. Lannier, "Jospa Dr.," Scher Tipping, "Matthews, Risk," Manjal Patel," Michelle L. Browe, "Ketherine Yanng," Michelen A. Kartsmeis, " Jane R. Bartsmey, "Annada Paralle", "and Laib C. Low?"

- Etude de phase 3, internationale, randomisée, double-aveugle, de non-infériorité
- Pneumopathies acquises à l'hôpital ou sous ventilation mécanique.
- Prélèvement respiratoire bas < 48h
- < 24h antibiothérapie efficace dans les 72h précédant l'inclusion

RESTORE-IMI 2 : design

- Randomisation 1:1:
 Imipénème/Cilastatine/Relebactam 500 mg/500 mg/ 250 mg toutes les 6h
 Pipéracilline/Tazobactam 4g/500 mg toutes les 6h
- Durée 7-14 j
- Critère de jugement principal : Mortalité à J28

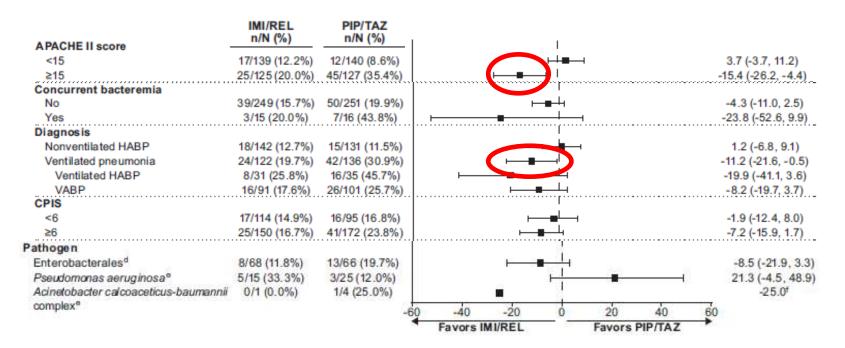
Charactéristiques des patients

Characteristic	IMI/REL (n = 264)	PIP/TAZ (n = 267)	Total (N = 531)
Geographic region			
Americas	59 (22.3)	71 (26.6)	130 (24.5)
United States	5 (1.9)	15 (5.6)	20 (3.8)
Europe	166 (62.9)	160 (59.9)	326 (61.4)
Asia and Australia	39 (14.8)	36 (13.5)	75 (14.1)
APACHE II score			
<15	139 (52.7)	140 (52.4)	279 (52.5)
≥15	125 (47.3)	127 (47.6)	252 (47.5)
Mean (SD)	14.6 (6.2)	14.8 (6.7)	14.7 (6.4)
Median (range)	14.0 (2–31)	14.0 (1–37)	14.0 (1-37)
Primary diagnosis			
Nonventilated HABP	142 (53.8)	131 (49.1)	273 (51.4)
Ventilated HABP/VABP	122 (46.2)	136 (50.9)	258 (48.6)
Ventilated HABP	31 (11.7)	35 (13.1)	66 (12.4)
VABP	91 (34.5)	101 (37.8)	192 (36.2)

Microbiologie

Characteristic	IMI/REL (n = 264)	PIP/TAZ (n = 267)	Total (N = 531)
No. of baseline LRT pathogens	VI. 257	, 2377	11. 5517
Monomicrobial	160 (60.6)	160 (59.9)	320 (60.3)
Polymicrobial	55 (20.8)	58 (21.7)	113 (21.3)
None	49 (18.6)	49 (18.4)	98 (18.5)
Baseline LRT pathogen (≥10% in either treatment arm)°	(n = 215)	(n = 218)	(N = 433)
Klebsiella pneumoniae	58 (27.0)	53 (24.3)	111 (25.6)
Pseudomonas aeruginosa	34 (15.8)	48 (22.0)	82 (18.9)
Acinetobacter calcoaceticus-baumannii complex	32 (14.9)	36 (16,5)	68 (15.7)
Escherichia coli	30 (14.0)	37 (17.0)	67 (15.5)
MSSA	23 (10.7)	22 (10.1)	45 (10.4)

27


Résultats

Endpoint	IMI/REL, no./No. (%) ^a	PIP/TAZ, no./No. (%) ^a	Adjusted Difference ^b , % (95% CI)
Primary endpoint	i Barratagraca Cazat II	Mary Mary Control of the Control of	2001 10 2 € 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Day 28 all-cause mortality (MITT)	42/264 (15.9)	57/267 (21.3)	-5.3 (-11.9 to 1.2)°
Key secondary endpoint			
Favorable clinical response at EFU (MITT)	161/264 (61.0) ^d	149/267 (55.8) ^d	5.0 (-3.2 to 13.2) ^e
Other secondary endpoints			
Day 28 all-cause mortality (mMITT)	36/215 (16.7)	44/218 (20.2)	-3.5 (-10.9 to 3.6)
Favorable microbiologic response at EFU (mMITT)	146/215 (67.9) ^d	135/218 (61.9) ^d	6.2 (-2.7 to 15.0)
Favorable clinical response at EFU (CE)	101/136 (74.3)	100/126 (79.4)	-3.7 (-13.6 to 6.4)

Non-infériorité pour le critère principal et les critères secondaires

Résultats : mortalité à J28

Résultats : réponse clinique favorable

APACHE II score	IMI/REL n/N (%)	PIP/TAZ n/N (%)	
<15	90/139 (64.7%)	98/140 (70.0%)	
≥15	71/125 (56.8%)	51/127 (40.2%)	
Diagnosis			
Nonventilated HABP	95/142 (66.9%)	87/131 (66.4%)	
Ventilated pneumonia	66/122 (54.1%)	62/136 (45.6%)	
Ventilated HABP	15/31 (48.4%)	11/35 (31.4%)	
VABP	51/91 (56.0%)	51/101 (50.5%)	
CPIS			
<6	67/114 (58.8%)	54/95 (56.8%)	
≥6	94/150 (62.7%)	95/172 (55.2%)	
Pathogen			
Enterobacterales ^d	45/68 (66.2%)	43/66 (65.2%)	- E
Pseudomonas, aeruginosa®	7/15 (46.7%)	17/25 (68.0%)	1
Acinetobacter calcoaceticus-baumannii	1/1 (100.0%)	4/4 (100.0%)	
complex		-60	-40 -20
		•	Favors PIP/TAZ

Conclusion

 Intérêt des associations carbapénèmes – inhibiteurs de β-lactamases pour enrichir notre arsenal thérapeutique.

- Meropénème/Vaborbactam : KPC
- Imipénème/Relebactam : KPC, P. aeruginosa IMP-R

 Bon usage +++ : contrôle de la source, posologies adaptées, attention aux hémodialysés / insuffisants rénaux

