

Immunomodulation for difficult-to-treat infections

Antoine Roquilly

University Hospital of Nantes, France

UPRES 3826 Medical University of Nantes, France

UNIVERSITÉ DE NANTES

Conflicts of interest

• Personnal funding + grants from BioMerieux and Merck

What is a "difficult-to-treat infection"?

Difficult-to-treat infections and Resident bugs?

Articles

Attributable deaths and disability-adjusted life-years caused @ . by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

Difficult-to-treat infections

Do we need immunotherapies to improve outcomes of patients with "easy-to-treat infections"?

Antimicrobial therapy and the roof of glass The example of septic shock

De Jong et al. Lancet Infect Dis 2016

Antimicrobial therapy and the roof of glass The example of hospital-acquired pneumonia

Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial

Figure 2: Clinical cure rates at test-of-cure visit Data are number of patients with clinical cure (%). Dashed line indicates non-inferiority margin of -12.5%. Implementation of French Recommendations for the Prevention and the Treatment of Hospital-acquired Pneumonia: A Cluster-randomized Trial

Roquilly et al. Clin Infect Dis 2020

	Before reco. N=600 patients	After reco. N=669 patients	P- value
Treatment failure	99 (66%)	117 (75%)	0.16
Death at day 28	104 (17%)	113 (17%)	0.93

Difficult-to-treat infections

Do we need immunotherapies to improve outcomes of patients with "easy-to-treat infections"?

YES

Special Communication | CARING FOR THE CRITICALLY ILL PATIENT The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

Box 3. New Terms and Definitions

immunotherapy

 Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.

Immune physiology and sepsis

Current gaps in sepsis immunology: new opportunities for \mathcal{W} () translational research

Ignacio Rubio, Marcin F Osuchowski, Manu Shankar-Hari, Tomasz Skirecki, Martin Sebastian Winkler, Gunnar Lachmann, Paul La Rosée, Guillaume Monneret, Fabienne Venet, Michael Bauer, Frank M Brunkhorst, Matthijs Kox, Jean-Marc Cavaillon, Florian Uhle, Markus A Weigand, Stefanie B Flohé, W Joost Wiersinga, Marta Martin-Fernandez, Raquel Almansa, Ignacio Martin-Loeches, Antoni Torres, Evangelos J Giamarellos-Bourboulis, Massimo Girardis, Andrea Cossarizza, Mihai G Netea, Tom van der Poll, André Scherag, Christian Meisel, Joerg C Schefold, Jesús F Bernejo-Martín

Lancet Infect Dis 2020

Immune physiology and (?) sepsis (?)

1.It is critical to differentiate infection of a sterile tissue from mucosal infection

2. Dysbiosis, a refined concept of mucosal infection physiopathology

Roquilly et al. Lancet respir Med 2019

Host-pathogen interactions: a mutual benefit Ex. Immune competence

Beura et al. Nature 2016

Host-pathogen interactions: a mutual benefit

Ex. Immunomudulation by antiobitics

We need more knowledge on the mucosal immunity status before and during mucosal infections to have the full picture

Immunity and hospital-acquired pneumonia defect in myeloid / NK cells interactions

Immunity and hospital-acquired pneumonia Production of IL-12 by DCs is decreased during HAP

Roquilly et al. Immunity 2017

Immunity and hospital-acquired pneumonia

IL12 treatment restored IFNg production by NK cells function in vitro

Immunity and hospital-acquired pneumonia Capacity of phagocytosis by AM is decreased during HAP

Roquilly et al. Nature Immunol 2020

AMs programming is not induced by the pathogens but by 2ary mediators of the inflammatory response

Acquired-immunosuppression during sepsis An active process

Treatment of infections

What can immunotherapies currently afford to the clinicians ?

Mucosal immunity

time for a reappraisal of the physiopathology !

In couples quarrels, no party is innocent !

Restauration of the symbiosis

Modulation of the microbiome to restore symbiosis

Correction of the bacterial metabolic functions

Risk of Mechanical ventilation in children with bronchiolitis Stewart et al. AJRCCM 2017

Modulation of the microbiome to restore diversity

microbiota transplantation to increase diversity

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 31, 2013 VOL. 368 NO. 5

Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile

Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial

Paul Moayyedi,¹ Michael G. Surette,¹ Peter T. Kim,^{2,3} Josie Libertucci,¹ Melanie Wolfe,¹ Catherine Onischi,³ David Armstrong,¹ John K. Marshall,¹ Zain Kassam,⁴ Walter Reinisch,¹ and Christine H. Lee³

Placebo FMT (n = 38)Outcome P value (n = 37)Clinical remission.^a n (%) 9 (24) 2 (5) .03 Clinical response,^b n (%) 9 (24) 15 (39) .16 6.09 Full Mayo score 6.34 .42 **IBDQ** score 149.38 152.13 .44 68.52 .99 EQ-5D score 70.07 CRP, mg/L (n = 17 placebo, 4.9 + 5.9.38 3.3 ± 3.4 n = 15 FMTESR, mm/h (n = 17 placebo, $13.1 \pm 11.2 \ 15.9 \pm 17.0$.59 n = 15 FMTProportion with high ESR, n (%) 3 (20) 1.0 4 (24) Proportion with high CRP, n (%) 5 (29) 2 (13) .40 Patients with serious adverse $2^{\circ}(5)$ 3^d (8) 1.0 events n (%)

Table 2. Outcome Measures Comparing Fecal Microbial Transplantation With Placebo

Immunomodulation: steroids for septic shock ... more than immunosuppressors ?

Annane et al. NEJM 2018

Immunomodulation by steroids

... more than immunosuppressors ?

Immunomodulation by steroids

... more than immunosuppressors ?

Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial

Asehnoune et al. Lancet Respir Med 2014

>@₺

Asehnoune et al. BMJ 2021

Hydrocortisone Therapy for Patients With Multiple Trauma The Randomized Controlled HYPOLYTE Study

Roquilly et al. JAMA 2011

Host-targeted approaches for the treatment of infections Boosting immunity - the future ?

Francois et al. JCI exp 2018

Immunotherapies as a rescue therapy Interferon-γ(Imukin[®])

Treatment of disseminated nocardiosis: a host-pathogen approach with adjuvant interferon gamma

Thomas Derungs, Fabian Leo, Christoph Loddenkemper, Thomas Schneider

RESEARCH ARTICLE

Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series

Open Access

Didier Payen¹²⁵, Valerie Faivre^{1,2}, Jordi Mlatello^{3,4}, Jenneke Leentjens⁵, Caren Brumpt⁶, Pierre Tissières^{1,4}, Claire Dupuis¹, Peter Pickkers²⁷ and Anne Claire Lukaszewicz^{1,25}

Lancet Infect Dis 2021

Host-targeted approaches for the treatment of infections Boosting immunity - the future ?

Neumedicines

rHulL-12 or rHulFN-γ for the treatment of HAP in ICU patients The HAP2 project

HORIZON 2020

Clinical

- Clinical trials
 - Immunology
- Access to IBIS & ATLANREA cohorts
- Big data

1 D I BAPS

- Pr. TORRES
- Lung infections
- HAP
- VAP
- Dr KOULENTI
- HAP
- antibiotic dosage
 optimisation
- infections from multidrug resistant pathogens

- DICKSON
- lung microbiom
- ²⁹ e

Dysbiosis and treatment of mucosal infections ... a therapeutical revolution

Further reduction of the host-microbes interactions

Roquilly et al. Lancet respir Med 2019

Dysbiosis and treatment of mucosal infections ... a therapeutical revolution

Roquilly et al. Lancet respir Med 2019

Boosting tolerance or immunity?

Disease Tolerance as a Defense Strategy Ruslan Medzhitov, *et al. Science* **335**, 936 (2012); DOI: 10.1126/science.1214935

Precision medecine

Integration multi-omics pour biomarqueurs

1.0 0 0.8 Microbe Score 0 0.6 0 0.4 0.2 0 000 0.0 0 -20 -10 10 20 0 **Host Predictions Derivation Cohort** Validation Cohort LRTI+C+M O LRTI+C+M O no-LRTI no-LRTI Langelier PNAS 2018

Man et al. Lancet Respir Med 2019

Precision medecine

Integration multi-omics

Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia

A Roquilly, A Torres, J A Villadangos, M G Netea, R Dickson, B Becher, K Asehnoune

EA 3826 (Pr Roquilly) Cédric Jacqueline (PhD) Marion Davieau Tanguy Roman (PhD) Barbara Misme-Aucouturier (PhD) Alexis Broquet (PhD) Tanguy Chaumette (PhD) Virginie Le Mabecque

Intensive Care Unit - CHU Nantes Pr Karm Asehnoune (MD, PhD) Raphael Cinotti (MD, PhD) Mickael Vourc'h (MD, PhD) Delphine Flattres (TEC) Celine Lerebourg (TEC)

Collaboration with J. Villadangos (PDI & Bio21) H. McWilliam J. Mintern M. Ashayeripanah

Team 1 Régis Josien (MD, PhD) Jeremie Poschmann (PhD) Alice Molle Pierre Solomon Cynthia Fourrgeux

