

Bactériémies et endocardites à Staphylococcus aureus Actualités diagnostiques et thérapeutiques

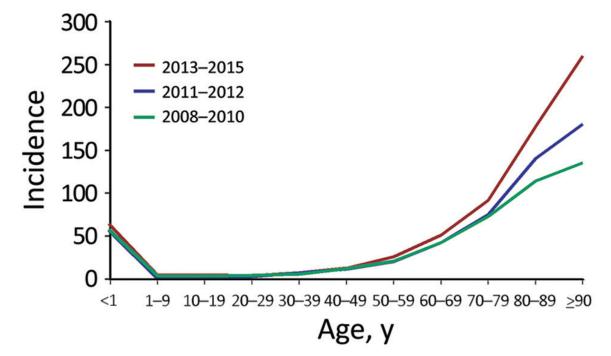
Pr Vincent LE MOING

Maladies Infectieuses et Tropicales, CHU de Montpellier

JNI 2021 Montpellier

et la région Occitanie - Méditerranée LE CORUM, Montpellier

Liens d'intérêt avec les industries de santé pour cette présentation


• Membre de conseil scientifique: Pfizer

Incidence des bactériémies à S. aureus au Danemark

Registre en population Incidence 2015: 30/10⁵/an

+ 48 %/2008 Explications ??

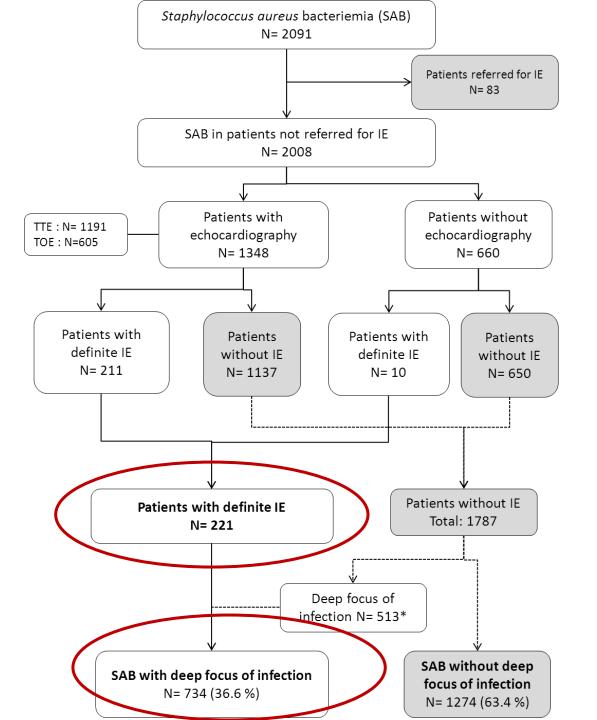
Mortalité J30 24% stable

Figure 1. Temporal changes in *Staphylococcus aureus* bacteremia incidence (cases per 100,000 person-years), by age group and years, Denmark, 2008–2015.

Thorlacius-Ussing L. et al, Emerg Infect Dis 2019

Comment détecter les bactériémies compliquées ?

Bactériémie non compliquée


Définition IDSA

- (i) El exclue par échographie
- (ii) Absence de matériel et/ou prothèse
- (iii) Hémoculture négative en 2-4j
- (iv) Apyrexie à 72 de traitement efficace
- (v) Pas de localisation secondaire
- Si un seul de ces critères manquent : Bactériémie compliquée

Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children

Catherine Lin,¹ Arnold Bayer,^{2,4} Sara E. Congrove,⁶ Robert S. Daum,² Scott K. Fridkin,⁸ Rochol J. Gorwitz,⁸ Sheldon L. Kaplan,¹⁰ Adolf W. Karchmer,¹¹ Donald P. Levine,¹² Barbara E. Murray,¹⁴ Michael J. Rybak,^{12,12} David A. Talan,^{4,6} and Henry E. Chambers^{1,2}

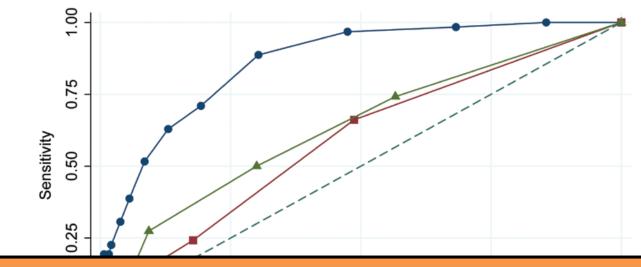
Liu C, et al. Clin Infect Dis 2011

Etude VIRSTA 2009-2011 8 CHU français

Le score VIRSTA, estimation *a priori* du risque d'ENDOCARDITE en cas de bactériémie à *S. aureus*

Variables mesurées à 48 heures	.632 Bootstrap procedure		
	β	Weight	
Conchuct on a crick and conchedi			
Cerebral or peripheral emboli	2.37	5	
Meningitis	2.31	5	
Permanent intracardiac device or previous IE	2.02	4	
Pre-existing native valve disease	1.29	3	
Intravenous drug use	1.77	4	
Persistent bacteremia	1.40	3	
Vertebral osteomyelitis	1.15	2	
Community or non nosocomial health care associated acquisition	0.96	2	
Severe sepsis or shock	0.72	1	
C-reactive protein $>190 \text{ mg/L}$	0.65	1	

Tubiana S, J Infection 2014


Performances du score VIRSTA pour prédire l'existence d'une El

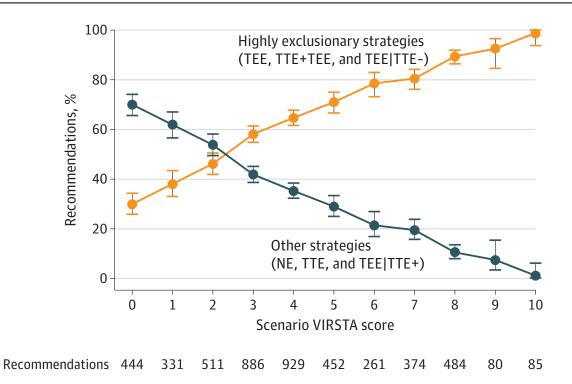
Score	Sensitivity	Specificity	PPV	NPV	Patients with IE with the corresponding value	Total Nb of patients with the corresponding value
0	99.29 (99.23 ;99.34)	18.4 8 (17.29 ;19.60)	13.14 (12.15 ; 14.20)	99.52 (99.49 ; 99.55)	1	331
1	97.16 (96.06 ;98.65)	32.20 (30.80. 33.51)	15.09 (13.93 ; 16.24)	98.92 (98.42 ; 99.47)	5	250
2	95.83 (94.31 ; 97.79)	44.18 (42.60 ;45.59)	17.55 (16.22 ;18.86)	98.83 (98.41 ; 99.40)	3	217
3	85 52 (82 35 · 88 64)	61 93 (60 51 · 63 32)	21 77 (20 04 · 23 53)	97 18 (96 54 · 97 81)	23	341
4	Score VIR	STA < 3				239
5	• VPN	I: 98,8%				174
6	• RV(-	-) = 0.2				169
7	•	•				99
8	• 40%	6 de la po	pulation			55
9	Prol	babilité d	'EI : 1.1%	,)		51
≥ 10	20.36 (17.02 ; 23.81)	99.44 (99.21 ; 99.65)	81.82 (75.00 ; 88.24)	90.99 (90.12 ; 91.79)	59	82

Tubiana S., J. Infect 2016

Validation du score VIRSTA sur une cohorte indépendante

- Medellin, Colombie
- Etude rétrospective 2012-2018
- 922 bactériémies à *S. aureus* consécutives
 - 16% communautaires
 - 26% SARM
 - 65% avec échographie
 - 62 EI (6,7%)

Score VIRSTA < 3

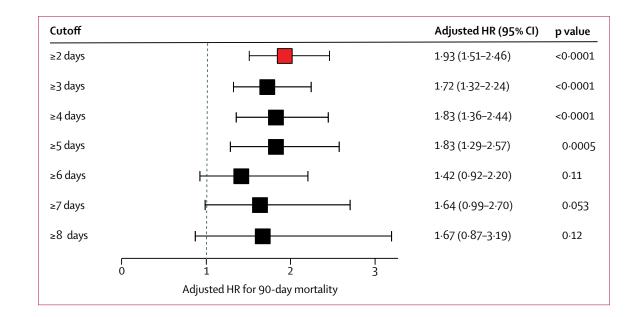

- VPN: 99,5%
- RV(-) = 0.06
- 49% de la population
- Probabilité d'EI : 3,2%

Peinado-Acevedo JS, Clin Infect Dis 2021

Les cliniciens appliquent le score VIRSTA sans le savoir

Figure. Recommendations in Favor of a Highly Exclusionary Echocardiography Strategy by Scenario VIRSTA Score

- 50 scénarios
- 656 cliniciens (infectiologues: 78%)
- Européens plus invasifs



Heriot G, Jama Open Network 2020

Bactériémie persistante, c'est bien > 48 heures

Cohorte ISAC-10 987 patients 17 centres
987 patients
17 centres
Durée de bactériémie sous AB efficace

	1 day (n=672)	2–4 days (n=218)	5–7 days (n=69)	>7 days (n=28)	Total (n=987)	p value
Outcome						
30-day mortality	84 (13%)	60 (28%)	21 (30%)	9 (32%)	174 (18%)	<0.0001
90-day mortality	148 (22%)	85 (39%)	30 (43%)	10 (36%)	273 (28%)	<0.0001
In-hospital mortality	101 (15%)	72 (33%)	26 (38%)	9 (32%)	208 (21%)	<0.0001
Any new metastatic focus*	39 (6%)	22 (10%)	15 (22%)	3 (11%)	79 (8%)	<0.0001
New metastatic focus >7 days†	22 (3%)	8 (4%)	6 (9%)	3 (11%)	39 (4%)	0.040

Kuehl et al., Lancet Infect Dis 2020

Etude TEPSTAR: recherche d'un consensus sur la recherche des autres foyers profonds

- Objectif: harmonisation des pratiques
- Méthode Delphi
- Accord fort (2^{ème} tour):
 - IRM crâne si El ou manifestations neurologiques
 - IRM rachidienne orientée par symptômes (après J7)
 - TDM thorax et/ou abdomen si symptômes

• Pas de consensus:

- TDM TAP systématique
- Diagnostic des thrombophlébites septiques

Place du ¹⁸FDG TEP-TDM dans la recherche de foyers infectieux ?

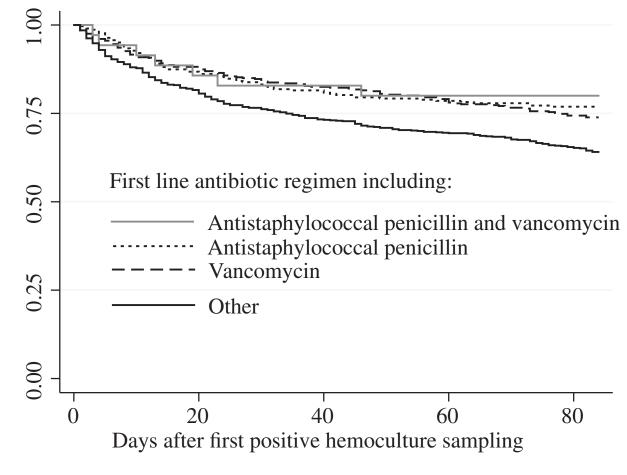
- Outil diagnostique valide et précoce dans l'endocardite sur prothèse, la spondylodiscite, les artérites natives ou sur matériel
- Performant pour la détection de foyers inflammatoires en cas de fièvre persistante d'origine indéterminée, sa négativité autorise l'utilisation d'immunosuppresseurs pour la plupart des experts
- Dans deux études écologiques avant-après, les infectiologues et nucléaristes néerlandais ont suggéré que l'utilisation systématique du TEP-TDM dans les bactériémies à CG+
 - augmentait la mise en évidence de foyers secondaires
 - diminuait le risque de rechutes
 - réduisait la mortalité de 40 à 60%

Vos FJ J Nucl Med 2010, Berrevoets M, J Nucl Med 2017, Duval X, CID 2020, Casali M, Clin Transl Imag 2021

Antibiothérapie à la phase aiguë: monothérapie ou association ?

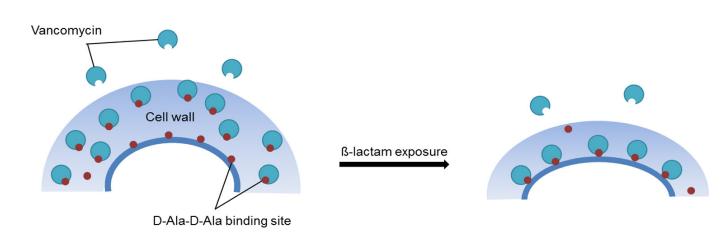
Etude TEPSTAR: recherche d'un consensus sur le traitement antibiotique initial

Antibiothérapie empirique :

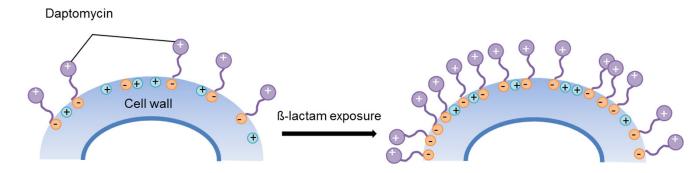

Origine communautaire : céfazoline ou pénicilline M Origine nosocomiale : ajout de la vancomycine ou daptomycine Critère de gravité : ajout de la gentamicine

Antibiothérapie documentée :

Sensibilité à la méticilline : céfazoline ou pénicilline M (accord fort, 1^{er} tour)


Allergie aux bétalactamines ou résistance à la méticilline : vancomycine ou daptomycine (accord relatif, 2^{ème} tour)

Traitement initial: la base est un antistaphylococcique



Braquet et al., Clin Microbiol Infect 2016

Lipo-glycopeptides et bétalactamines: l'effet bascule (*seesaw effect*)

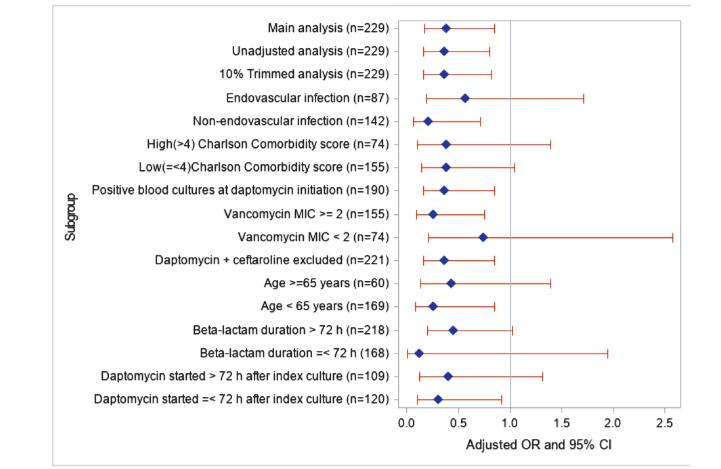
Figure 1. Proposed mechanism for vancomycin and beta-lactam synergy. Repeated exposure to vancomycin increases the cell wall thickness leading to increased target sites for vancomycin, ultimately reducing the effectiveness of vancomycin. Exposure to beta-lactams thins the cell wall increasing the ability for vancomycin to bind and inhibit target sites during cell wall synthesis.

Figure 2. Proposed mechanisms for daptomycin and beta-lactam synergy. Daptomycin acts like a cationic peptide antibiotic and is attracted to the negative charge of the bacterial cell membrane. Once in contact with the cytoplasmic membrane (CM) daptomycin disrupts the CM causing a rapid release of electrolytes from the cytoplasm leading to depolarization and death of the cell. Exposure to beta-lactams increases the negative charge of the cell surface leading to an increase in daptomycin binding and improved bactericidal activity.

Essais d'associations sur le SARM:

Vancomycine ou daptomycine +/bétalactamine antistaph. (étude CAMERA-2)

• Essai randomisé


- Vancomycine: 99%
- Cloxacilline: 65%
- Patients relativement peu graves
- Toxicité rénale augmentée (pas avec céfazoline)

	No./Total No. (%)			P Value
Outcomes	Combination Therapy	Standard Therapy	Risk Difference, % (95% CI)	
Primary Outcome ^{a,b}				
Primary analysis population	59/170 (35)	68/175 (39)	-4.2 (-14.3 to 6.0)	.42
Per protocol	47/144 (33)	68/175 (39)	-6.2 (-16.7 to 4.3)	.25
Secondary Outcomes ^c				
All-cause mortality ^d				
Day 14	13/170 (8)	13/174 (7)	0.2 (-5.4 to 5.8)	.95
Day 42	25/170 (15)	19/174 (11)	3.8 (-3.3 to 10.8)	.29
Day 90	35/170 (21)	28/174 (16)	4.5 (-3.7 to 12.7)	.28
Persistent bacteremia ^e				
Day 2	50/167 (30)	61/173 (35)	-5.3 (-15.3 to 4.6)	.29
Day 5	19/166 (11)	35/172 (20)	-8.9 (-16.6 to -1.2)	.02
Microbiological relapse ^a	14/169 (8)	18/175 (10)	-2.0 (-8.1 to 4.1)	.52
Microbiological treatment failure ^a	16/170 (9)	17/175 (10)	-0.3 (-6.5 to 5.9)	.92
Acute kidney injury ^f	34/145 (23)	9/145 (6)	17.2 (9.3 to 25.2)	<.001
Duration of intravenous antibiotics, mean (SD), d	29.3 (19.5)	28.1 (17.4)		.72

Daptomycine + céphalosporines = à voir

Etude de cohorte comparative 229 bactériémies à SARM Deux HU américains OR ajusté d'échec vs daptomycine monothérapie = 0,38

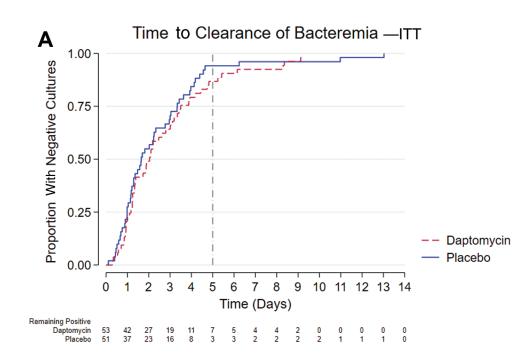
Biais d'indications probables: 65% des associations utilisées pour traitement empirique ou infection associée

Jorgensen et al., Clin Infect Dis 2020

Daptomycine + ceftaroline = à confirmer

Bactériémies à SARM Essai randomisé ouvert dans 3 HU américains interrompu précocement (40 patients/50 prévus) du fait du bénéfice significatif sur la mortalité **Nombreuses incohérences méthodologiques**

DAP: 6-8 mg/kg/24h; CPT: 600 mg/8H; VAN résiduelle: 15-20 mg/L

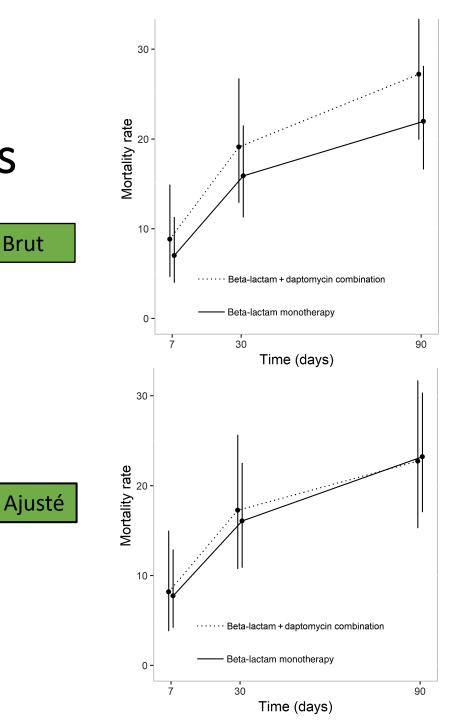

	Values by treatment, n (%):			
		ycin plus ne ($n = 17$)	Vancomycin ($n = 2$ daptomycin ($n = 2$	
Mortality, <i>n</i> (%)				
In hospital		0 (0)	6 (26)	0.02
30 day		0 (0)	6 (26)	0.02
90 day		0 (0)	7 (30)	0.03
Bacteremia duration, median	(IQR) days	3 (1.5, 5.5)	3 (1, 5.3)	0.56
Length of stay, median (IQR) of	days	11 (6, 14)	12 (8, 23)	0.24

DAP + BL sur le SAMS ? Essai québécois négatif

Essai randomisé de supériorité

104 patients (puissance suffisante pour détecter une différence de durée de bactériémie de 1 jour)

Céfazoline (73%) ou cloxacilline + daptomycine ou placebo



	Daptomycine	Placebo	р
Durée médiane de bactériémie (j)	2,04	1,65	0,4
Mortalité à J30	15%	12%	0,62
Mortalité à J90	18%	19%	1
Foyer infectieux profond => J30	25%	18%	0,47
Néphrotoxicité	48%	29%	0,15

Cheng et al., Clin Infect Dis 2021

DAP + BL sur le SAMS ? Données d'observation catalanes

- Etude rétrospective à Barcelone, 2011-2017
- Traitement par bétalactamine
 - monothérapie 214, + daptomycine dès le début de la bactériémie 136
- Patients plus graves qu'à Montréal
- Biais d'indication pour la daptomycine

Grillo et al., Clin Infect Dis 2019

Daptomycine-fosfomycine: clairance plus rapide de la bactériémie au prix d'effets indésirables

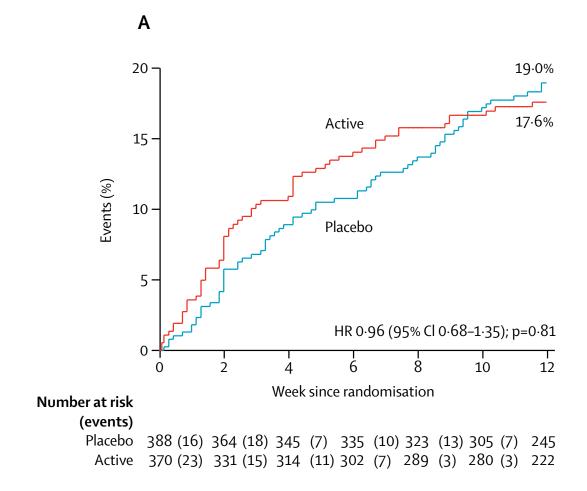
Essai randomisé ouvert en Espagne; SARM

DAP: 10 mg/kg/j; FOS: 2 g/6h

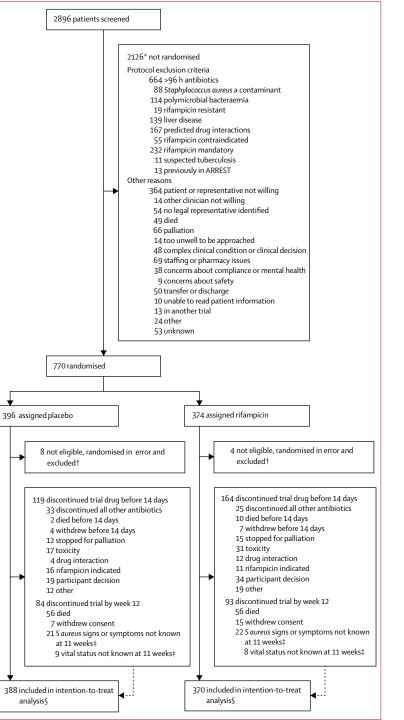
Arrêts pour EI : OAP, troubles électrolytiques; DOOR favorable à association

Outcome	Daptomycin Plus Fosfomycin, No. of Patients/Total (%)	Daptomycin Alone, No. of Patients/Total (%)	Relative Risk (95% Cl)
Primary endpoint			
Treatment success at TOC	40/74 (54.1)	34/81 (42.0)	1.29 (.93–1.8)
Secondary endpoints	\frown		
Positive blood cultures at day 3	2/74 (2.7)	15/81 (18.5)	0.15 (.04–.63)
Positive blood cultures at day 7	0/74 (0.0)	5/81 (6.2)	-6.2 (-11.4 to9) ^a
Positive blood cultures at TOC	0/74 (0.0)	4/81 (4.9)	-4.9 (-9.7 to2) ^a
Microbiological failure at TOC	0/74 (0.0)	9/81 (11.1)	–11.1 (–18.0 to –4.3) ^a
No. of episodes of complicated bacteremia at TOC	12/74 (16.2)	26/81 (32.1)	0.51 (.28–.94)
Any AE leading to treatment discontinuation	13/74 (17.6)	4/81 (4.9)	3.56 (1.21–10.44)
Overall mortality at day 7	3/74 (4.1)	6/81 (7.4)	0.55 (.14–2.12)
Overall mortality at TOC	18/74 (24.3)	22/81 (27.2)	0.9 (.53–1.54)

Pujol M. et al., Clin Infect Dis 2021

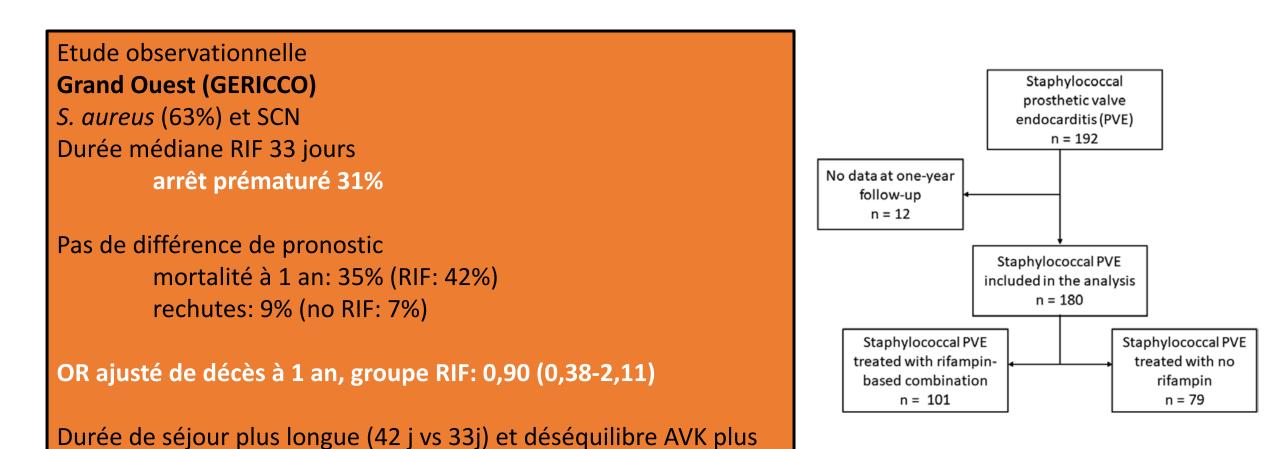

Association à la rifampicine, essai UK, non

ARREST


Essai randomisé en aveugle 94% SASM; 82% cloxacilline

RIF 600 mg ou 900 mg/J

Tolérance comparable



Les essais cliniques dans les BSA sont de réalisation difficile

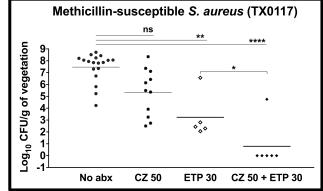
La rifampicine ne serait pas même indispensable dans les El sur prothèse

fréquent (43% vs 22%) sous rifampicine

Le Bot et al., Clin Infect Dis 2020

Bactériémie persistante: quelle prise en charge ?

Il faut contrôler la porte d'entrée et les foyers profonds


- Outre la recherche d'El, toutes les recommandations insistent sur le traitement de la porte d'entrée (*source control*) et des foyers secondaires
- Dans une étude observationnelle (Los Angeles; 2012-2017), le seul facteur modifiable associé à la durée de bactériémie est le contrôle de la porte d'entrée, drainage ou retrait du cathéter; pas d'effet des AB

	Durée bactériémie			р
	Courte (1-2j)	Intermédiaire (3-6j)	Prolongée (> 7j)	
N (%)	555 (63%)	250 (28%)	79 (9%)	
Avis infectiologue	50%	66%	89%	< 0,001
Délai avis	2 jours	2 jours	3 jours	< 0,001
Délai contrôle source	1 jour	3 jours	3,5 jours	< 0,001

Minejima et al., Clin Infect Dis 2020

Modifier le traitement antibiotique ?

- Nombreuses petites séries (SARM surtout) avec des résultats parfois spectaculaires, mais la causalité manque
- Exemple récent (SAMS): céfazoline + ertapénème
 - 8 patients ont vu leurs hémocultures stérilisées en 24 heures après 6 jours de bactériémie
 - Pas de synergie in vitro
 - Confirmation par modèle animal

 Relais de la vancomycine par une association comprenant de la daptomycine HD si SARM = niveau de preuve BIII pour l'IDSA en 2011

Ulloa et al., Clin Infect Dis 2020

Synthèse

- Détection et prise en charge <u>éclairée</u> des foyers profonds
- L'ETT ne paraît pas indispensable si score VIRSTA < 3 = bactériémie sur cathéter cliniquement non compliquée, de durée < 48 heures sous antibiotiques, chez un sujet qui n'est pas porteur de matériel intracardiaque
- La place de l'imagerie systématique dont le TEP à la recherche de foyers profonds reste à déterminer
- Une monothérapie antistaphylococcique reste le traitement le plus efficace à la phase aiguë malgré ses insuffisances
- Bithérapie = patience et longueur de temps
 - daptomycine + ceftaroline ou fosfomycine sur le SARM ???

Les questions qui devraient être prochainement résolues

- Place du TEP-TDM: étude TEPSTAR, recrutement en cours
- Relai oral à J7: Sabato, étude terminée, résultats en attente
- Cloxacilline vs céfazoline: Cloceba, recrutement en cours
- Place de la dalbavancine dans les bactériémies sur KT: étude DALICATH, début proche

• Etat de l'art en 2022: recommandations conjointes IDSA-ESCMID

Remerciements

- Xavier Duval et l'AEPEI
- Les investigateurs des études VIRSTA et TEPSTAR
- Le groupe multidisciplinaire: IDSA-ECSMID: Catherine Liu, Alex Soriano, François Vandenesch
- Achim Kaasch et Jose Miro