

et la région Occitanie - Méditerranée

LE CORUM, Montpellier

du lundi 30 août 2021 au mercredi 1^{er} septembre 2021

JNI 2021 «Séance Best of »

Résistance bactérienne et nouveaux antibiotiques

Aurélien Dinh

Service des Maladies Infectieuses et Tropicales

Hôpital Raymond-Poincaré, APHP

Université Paris Saclay

Cefiderocol

JAC Antimicrob Resist doi:10.1093/jacamr/dlab081

JAC-Antimicrobial Resistance

In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in France

Thierry Naas 💿 ^{1,2,3}*, Gerard Lina^{4,5}, Anne Santerre Henriksen 💿 ⁶, Christopher Longshaw⁷ and Francois Jehl⁸

		All isolate	s		NP			cUTI			BSI		cIAI			
Pathogen	n	N	%S	n	N	%S	n	N	%S	n	N	%S	n	N	%S	
> Enterobacterales	1330	1344	99.0	344	344	100	383	388	98.7	166	172	96.5	300	302	99.3	
E. coli	322	324	99.4	48	48	100	104	105	99.0	38	38	100	114	115	99.1	
K. pneumoniae	260	266	97.7	65	65	100	101	103	98.1	35	37	94.6	43	44	97.7	
Klebsiella oxytoca	96	96	100	24	24	100	17	17	100	13	13	100	31	31	100	
K. aerogenes	90	91	98.9	40	40	100	17	18	94.4	14	14	100	11	11	100	
Klebsiella variicola	18	18	100	5	5	100	5	5	100	1	1	100	5	5	100	
E. cloacae	89	90	98.9	13	13	100	24	24	100	13	14	92.9	21	21	100	
Enterobacter asburiae	9	11	81.8	2	2	100	1	2	50.0	2	3	66.7	1	1	100	
Serratia spp.	167	167	100	90	90	100	20	20	100	30	30	100	10	10	100	
Citrobacter spp.	137	139	98.6	28	28	100	55	55	100	15	17	88.2	32	32	100	
Proteus spp.	89	89	100	17	17	100	27	27	100	3	3	100	19	19	100	
M. morganii	37	37	100	11	11	100	3	3	100	1	1	100	12	12	100	
Providencia rettgeri	16	16	100	1	1	100	9	9	100	1	1	100	1	1	100	
> Non-fermenters	681	683	99.7	337	338	99.7	105	105	100	92	93	98.9	62	62	100	
P. aeruginosa	341	341	100	166	166	100	42	42	100	30	30	100	54	54	100	
Pseudomonas otitidis	1	1	100	-	-		-	_		-	-		1	1	100	
A. baumannii	159	161	98.8	66	67	98.5	34	34	100	32	33	97.0	1	1	100	
other Acinetobacter spp.	71	71	100	23	23	100	23	23	100	17	17	100	2	2	100	
S. maltophilia	103	103	100	78	78	100	6	6	100	11	11	100	4	4	100	
Burkholderia spp.	6	6	100	4	4	100	<u> </u>	-		2	2	100	-	-		
Total	2011	2027	99.2	681	682	99.9	488	493	99.0	258	265	97.4	362	364	99.5	

- Programme de surveillance SIDERO WT
- Collection des souches de 2014-2018
- 10 laboratoires en France
- Sensibilité en microdilution
- Selon Guidelines/break
 point EUCAST

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

	Cefiderocol (n=101)	Best available therapy (n=49)
Sex		
Male	66 (65%)	35 (71%)
Female	35 (35%)	14 (29%)
Age (years)		
Mean (SD)	63.1 (19.0)	63.0 (16.7)
Clinical diagnosis		
Nosocomial pneumonia	45 (45%)	22 (45%)
НАР	20 (20%)	7 (14%)
VAP	24 (24%)	13 (27%)
НСАР	1(1%)	2 (4%)
Bloodstream infections or sepsis†	30 (30%)	17 (35%)
Bloodstream infection	22 (22%)	9 (18%)
Complicated intra- abdominal infection	3 (3%)	2 (4%)
Skin and skin structure infection	1 (1%)	0
Intravenous line infection	4 (4%)	2 (4%)
Other‡	5 (5%)	1(2%)
Unknown	9 (9%)	4 (8%)
Sepsis	8 (8%)	8 (16%)
Complicated intra- abdominal infection	2 (2%)	1 (2%)
Skin and skin structure infection	4 (4%)	3 (6%)
Intravenous line infection	0	3 (6%)
Other‡	2 (2%)	1 (2%)
Complicated urinary tract infection	26 (26%)	10 (20%)

- Essai clinique ouvert, randomisé avec un contrôle actif (2:1) et une analyse descriptive
- Patients en état critique et souffrant d'infections diverses (IU, PN, BSI) résistantes aux carbapénèmes
- 29 régimes de contrôle différents utilisés dans 95 centres

	Cefiderocol (n=101)	Best available therapy (n=49)
(Continued from previous colu	umn)	
Creatinine clearance (mL/min))	
Mean (SD),	85.8 (79.3)	88.9 (64.2)
Median (range; IQR)	59·2 (9·4–539·26; 33·9–107·9)	69·4 (4·6–270·8; 47·6–119·8)
Empirical treatment failure	58 (57%)	27 (55%)
Previous therapy§		
Antibiotics¶	93 (92%)	49 (100%)
Carbapenems	60 (59%)	26 (53%)
Systemic corticosteroids	44 (44%)	17 (35%)
ICU at randomisation	57 (56%)	21 (43%)
Shock	19 (19%)	6 (12%)
Immunocompromised	27 (27%)	10 (20%)
Positive blood culture	25 (25%)	13 (27%)
APACHE II score		
Mean (SD)	15·3 (6·5)	15.4 (6.2)
Median (range; IQR)	15 (2–29; 11–20)	14 (2–28; 11–20)
≤15	55 (54%)	27 (55%)
16–19	17 (17%)	9 (18%)
≥20	29 (29%)	13 (27%)

	Cefiderocol (n=80)	Best available therapy (n=38)
Number of carbapenem-resi appropriate specimens*	stant Gram-nega	tive pathogens from
One	62 (78%)	30 (79%)
Two	13 (16%)	8 (21%)
Three	4 (5%)	0
Four	1 (1%)	0
Type of carbapenem-resista	nt Gram-negative	pathogen
All patients	N=87†	N=40‡
Acinetobacter baumannii	37 (46%)	17 (45%)
Klebsiella pneumoniae	27 (34%)	12 (32%)
Pseudomonas aeruginosa	12 (15%)	10 (26%)
Stenotrophomonas maltophilia	5 (6%)	0
Acinetobacter nosocomialis	2 (3%)	0
Enterobacter cloacae	2 (3%)	0
Escherichia coli	2 (3%)	1 (3%)

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

- PN : Guérison clinique dans le groupe céfidérocol 50.0% (20/40) vs 52.6% (10/19)
- BSI/Sepsis : Guérison clinique dans le groupe céfidérocol 43.5% (10/23) vs 42.9% (6/14)
- IU : Eradication microbiologique dans le groupe céfidérocol 52.9% (9/17) vs 20.0% (1/5)
- Mortalité J28 (toute cause) : 33% (13/40) dans le groupe cefiderocol vs 16% (3/19)

	Nosocomial p	oneumonia	Bloodstream sepsis	infections or	Complicated infections	urinary tract	Overall				
	Cefiderocol (n=40)	Best available therapy (n=19)	Cefiderocol (n=23)	Best available therapy (n=14)	Cefiderocol (n=17)	Best available therapy (n=5)	Cefiderocol (n=80)	Best available therapy (n=38)			
Clinical outcome	5										
End of treatment											
Clinical cure	24 (60%; 43·3–75·1)	12 (63%; 38·4–83·7)	16 (70%; 47·1–86·8)	7 (50%; 23·0–77·0)	13 (77%; 50·1–93·2)	3 (60%; 14·7–94·7)	53 (66%; 54·8–76·4)	22 (58%; 40·8–73·7)			
Clinical failure	13 (33%)	7 (37%)	6 (26%)	7 (50%)	1(6%)	1 (20%)	20 (25%)	15 (40%)			
Indeterminate	3 (8%)	0	1(4%)	0	3 (18%)	1 (20%)	7 (9%)	1(3%)			
Test of cure											
Clinical cure*	20 (50%; 33·8–66·2)	10 (53%; 28·9–75·6)	10 (43%; 23·2–65·5)	6 (43%; 17·7–71·1)	12 (71%; 44·0–89·7)	3 (60%; 14·7–94·7)	42 (53%; 41·0–63·8)	19 (50%; 33·4–66·6)			
Clinical failure	16 (40%)	6 (32%)	9 (39%)	7 (50%)	2 (12%)	1 (20%)	27 (34%)	14 (37%)			
Indeterminate	4 (10%)	3 (16%)	4 (17%)	1 (7%)	3 (18%)	1 (20%)	11 (14%)	5 (13%)			
Follow-up											
Sustained clinical cure	20 (50%; 33·8–66·2)	6 (32%; 12·6–56·6)	9 (39%; 19·7–61·5)	4 (29%; 8·4–58·1)	9 (53%; 27·8–77·0)	3 (60%; 14·7–94·7)	38 (48%; 36·2–59·0)	13 (34%; 19·6–51·4)			
Relapse	0	3 (16%)	1(4%)	1 (7%)	1(6%)	0	2 (3%)	4 (11%)			
Clinical failure	16 (40%)	6 (32%)	9 (39%)	7 (50%)	2 (12%)	1 (20%)	27 (34%)	14 (37%)			
Indeterminate	4 (10%)	4 (21%)	4 (17%)	2 (14%)	5 (29%)	1 (20%)	13† (16%)	7† (18%)			

Caractéristiques des infections à métallo-**β**-lactamases

	Céfidérocol	MTD
Total	16	7
Bactériémie	4	1
PN	6	3
IU	6	3
Entérobactéries	10	4
P. aeruginosa	4	3
A. baumannii	2	0

Céfiderocol MTD

*Incluant NDM, VIM, IMP; PN: pneumonie nosocomiale, IU: infection urinaire, MTD: meilleur traitement disponible Bassetti 2020 Lancet ID et rapport de l'étude CREDIBLE-CR

	Cefiderocol n/N (%) (95%IC (%))	MTD n/N (%) (95%IC (%))
Tous les patients	34/101 (33,7) (24,6- 43,8)	10/49 (20,4) (10,2-34,3)
Patients avec une infection à Acinetobacter spp.	21/42 (50) (34,2- 65,8)	3/17 (17,6) (3,8-43,4)
Patients avec une infection sans Acinetobacter (comprenant entérobactéries ou P. aeruginosa)	13/59 (22) (12,3-34,7)	6/32 (18,8) (7,2- 36,4)
Entérobactéries P. aeruginosa	6/28 (21,4) 2/11 (18,2)	4/15 (26,7) 2/11 (18,2)

*Parmi ces patients, 30% (16) avaient des souches ayant une CMI au méropénème supérieure à 64 mg/L. Bassetti 2020 Lancet ID et rapport de l'étude CREDIBLE-CR; 2: Wunderick 2020 Lancet ID

Paramètre à l'inclusion	Patients avec u <i>Acineto</i>	ine infection à bbacter	Patients avec une infection sans Acinetobacter (comprenant entérobactérie ou P. aeruginosa)						
	Cefiderocol	MTD	Cefiderocol	MTD					
Age ≥ 65 ans, n (%)	26 (62)	7 (41)	38 (64)	15 (47)					
Total APACHE II ≥ 16, n (%)	24 (57)	8 (47)	22 (37)	14 (44)					
Choc dans le mois précédent l'inclusion, n (%)	11 (26)	1 (6)	8 (14)	5 (16)					
Hospitalisation en USI à la randomisation	34 (81)	8 (47)	23 (39)	13 (41)					

Cefiderocol as Rescue Therapy for *Acinetobacter baumannii* and Other Carbapenem-resistant Gramnegative Infections in Intensive Care Unit Patients

Marco Falcone,¹ Giusy Tiseo,¹ Manuela Nicastro,² Alessandro Leonildi,³ Alessandra Vecchione,³ Costanza Casella,² Francesco Forfori,^{2,4} Paolo Malacarne,² Fabio Guarracino,² Simona Barnini,³ and Francesco Menichetti¹

- 10 patients en soins critiques : bactériémies ou PAVM due à ABRI, *S. maltophilia*, ou NDM-*K. pneumoniae*
- Guérison à J30 : 70%
- Survie à J30 : 90%
- 2 échecs microbiologiques

Age/ Sex	Underlying Diseases	APACHE II Score	Isolated Pathogen	CFDC MIC µg/mL	C, Type of Infection	Initial Treatment Regimen	CFDC Dosage	CFDC Mono- therapy	CRRT	Clinical Outcome at 30 d	30-d Mortality
76/F	Hypertension Bipolar disorder	44	A. baumannii	0.25	BSI	COL + TGC	2 g q8h	Yes	Yes	Failure	No
82/M	Cerebrovascular disease Bladder cancer	43	A. baumannii	0.5	BSI	COL + TGC + FOS	2 g q8h	Yes	No	Success	No
65/F	Hypertension Obesity	46	A. baumannii	0.5	BSI	COL	2 g q8h	Yes	No	Failure	No
33/F	IV drug user	34	A. baumannii	0.5	BSI	COL + TGC	2 g q6h	Yes	No	Success	No
82/F	Hypertension Previous stroke	25	A. baumannii	0.25	BSI	COL + TGC + MEM	1.5 g q8h	Yes	No	Success	No
75/F	Hypertension Ischemic cardiomyopathy	29	A. baumannii	0.5	BSI	TGC + SAM	2 g q6h	Yes	No	Success	No
79/F	Hypertension	39	NDM-producing Kp Stenotrophomonas maltophilia	1/0.5	VAP	CAZ- AVI + ATM + FOS	2g q6h	Yes	No	Success	No
44/M	Hypertension Obesity	40	NDM-producing Kp	1	VAP	COL + FOS	2g q6h	Yes	No	Success	No
77/M	Hypertension	36	A. baumannii + NDM- producing Kp	0.12/2	2 VAP	COL + CAZ- AVI + ATM	1.5 g q8h	No ^a	Yes	Failure	Yes
72/M	Hypertension	30	A. baumannii	0.5	VAP	COL + TGC	2g q6h	Yes	No	Success	No

Article

Cefiderocol-Based Combination Therapy for "Difficult-to-Treat" Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives

Davide Fiore Bavaro ^{1,*,†}, Alessandra Belati ^{1,†}, Lucia Diella ^{1,†}, Monica Stufano ², Federica Romanelli ³, Luca Scalone ⁴, Stefania Stolfa ³, Luigi Ronga ³, Leonarda Maurmo ⁴, Maria Dell'Aera ⁵, Adriana Mosca ³, Lidia Dalfino ², Salvatore Grasso ² and Annalisa Saracino ¹

- 13 patients traités du 1er Septembre 2020 au 31
 Mars 2021
- 5/13 (38%) USI
- 4/13 (31%) infections post-chirurgicales
- 4/13 (31%) patients ID (2/4: transplantés d'organe; 2/4: hémopathie)

Pt	Age, y	Sex	Cause of Hospedalization	Underlying Diseases	
1	68	M	COVID19	Huntington Corea, Imobilization syndrome	
2	62	F	COVID19	Fibromyalgia	
3	69	M	COVID19	Hypertension, Diabetes	
4	78	M	COVID19	Hypertension, COPD, Diabetes	
5	75	F	COVID19	Diabetes	
6	38	м	Dyspnoea post orotracheal intubation for cerebral hemorragy	Hypertension, Pulmonary Embolism	
7	70	м	PTCA due to myocardial Infarction in course of COVID-19	Mild COVID19, Diabetes, Ischemic heart disease	
8	64	M	Neurosurgical wound Infection	Previous drainage of post-traumatic subarachnoid hematoma	
9	25	м	Subocclusion and volvulus treated with gut surgical resection	Colostomy, Hip and Arm fracture	
10	60	м	Sepsis	Hepatic transplantation for HBV-related cirrosis and HCC	
11	43	м	Myocardial Infarction and cardiogenic shock, Arrhythmic storm, Acute	Heart transplantation	u
12	57	M	COVID19	Myelodysplastic syndrome	
13	68	М	Pneumonia	Acute Myeloid Leukemia, Chronic Kidney Disease	

MDPI

Bavaro DF, et al. Antibiotics 2021

Article

Cefiderocol-Based Combination Therapy for "Difficult-to-Treat" Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives

Davide Fiore Bavaro ^{1,*,†}, Alessandra Belati ^{1,†}, Lucia Diella ^{1,†}, Monica Stufano ², Federica Romanelli ³, Luca Scalone ⁴, Stefania Stolfa ³, Luigi Ronga ³, Leonarda Maurmo ⁴, Maria Dell'Aera ⁵, Adriana Mosca ³, Lidia Dalfino ², Salvatore Grasso ² and Annalisa Saracino ¹

- Eradication microbiologique : 100%
- Survie J30 : 10/13; 2 décès dus au SARS-CoV-2
- 1 décès due à une infection intercurrente
- Pas de récidive à J30

MDPI

Pt	Type of Infection	Cefiderocol Based Therapy (Duration, day)	Outcome	Outcome at 30 days
1	CVC-related BSI with Septic Shock	FDC, FOF, TGC (5)	Microbiological Eradication	Death†
2	CVC-related BSI with Septic Shock	FDC, CST, MEM (13)	Recovery	Success
3	CVC-related BSI with Septic Shock	FDC, CST (10)	Recovery	Success
4	CVC-related BSI with Sepsis	FDC, TGC (8)	Recovery	Success
5	CVC-related BSI with Sepsis	FDC, FOF (5)	Recovery	Success
6	VAP	FDC, FOF, TGC (9)	Recovery	Success
7	Bloodstream infection	FDC, CST, FOF (8)	Recovery	Success
8	Neurosurgical Wound Infection	FDC, FOF (10)	Recovery	Success
9	Perihepatic Abscess, Septic Shock	FDC, TGC, DAP, FOF (21)	Recovery	Success
10	Hepatic Abscess, Bloodstream infection	FDC, FOF (11) *	Recovery	Success
11	VAP, Bloodstream infection	FDC, TGC, CST, FOF (16)	Microbiological Eradication	Death†
12	Bloodstream infection	FDC, CST (12)	Microbiological Eradication	Death†
13	Pneumonia	FDC, FOF (10)	Recovery	Success

Bavaro DF, et al. Antibiotics 2021

Open Forum Infectious Diseases

MAJOR ARTICLE

Cefiderocol Activity Against Clinical *Pseudomonas aeruginosa* Isolates Exhibiting Ceftolozane-Tazobactam Resistance

Patricia J. Simner,¹ Stephan Beisken,² Yehudit Bergman,¹ Andreas E. Posch,² Sara E. Cosgrove,^{3,0} and Pranita D. Tamma^{4,0}

- Mutations dans région AmpC-AmpR associées à résistance à ceftolozanetazobactam (TOL-TAZ) et ceftazidimeavibactam (CAZ-AVI)
- 32 paires d'isolats de 16 patients
 - isolats index de P. aeruginosa sensibles à TOL-TAZ
 - isolats après traitement par TOL-TAZ
- 4/16 paires : **7** ≥4x CMI au cefiderocol
- Mutations AmpC E247K : ₹ ≥4x CMI à TOL-TAZ et CAZ-AVI + ≥4x CMI à IMI-REL
- Altérations sites de liaison d'AmpC βlactamases dérivées de *P. aeruginosa* :
 - Peuvent réduire l'activité de 3 sur 4 nouveaux β-lactamines (ie, ceftolozanetazobactam, ceftazidime-avibactam, et cefiderocol)
 - Peuvent augmenter susceptibilité à imipenem-relebactam

OFID 2021

Comparaison entre molécules

Meta-analysis of Clinical Outcomes Using Ceftazidime/ Avibactam, Ceftolozane/Tazobactam, and Meropenem/ Vaborbactam for the Treatment of Multidrug-Resistant Gram-Negative Infections

Geneva M. Wilson,^{1,0} Margaret Fitzpatrick,¹² Kyle Walding,² Beverly Gonzalez,¹ Marin L. Schweizer,^{3,4} Katie J. Suda,⁵⁶ and Charlesnika T. Evans^{1,7}

- 29 études >> 1620 patients
- Pneumonie : 49.8%
- Pseudomonas aeruginosa MDR : 65.3%

%CF	84.6	AN	M	MM	100	M	AN	M	M	.001	M	MM	88	M	83.0	MM	NA	AN	87.8	25.(M	MM	AN	.001	70.0	100	80.	MM	A.
% MDRPA	AN.	69.0	100	100	N/A	61	100	100	(0)	NA	100	100	31	67	NA	100	100	027	13.0	50.0	OĽL	69	02	NA	R	N/A	NA	63	()
Pneumonia	32.5	31.7	31.6	50.0	21.7	60.3	46.7	36.8	59.0	10.3	76.2	55.7	37,4	62.9	26.7	76.9	64.7	42.9	46.9	28.6	100	69.4	0.00	32.4	35.0	26.3	R	48.8	34.8
Cancer	æ	29.7	20.8	16.7	21.7	32.7	26.7	28.9	16.1	NN	9.5	NR	13.3	9.3	NR	ĹĬ	NR	25.7	W	39.3	18.9	14.3	10.0	0:0	NR	24.56	NR	17.39	26.8
Kidney Disease , %	375	30.7	20.8	25.0	43.5	25.9	20.0	21.1	26.3	48.3	23.8	NR	32.0	NR	31.7	NR	NR	114	12.5	NR	14.4	NR	NR	NR	NR	2105	18,42	26.09	21.9
SOT, %	æ	10.9	8.3	æ	21.7	[]	33.3	28.9	Į <u>I</u> I	24.1	38.1	179	æ	R	25.0	R	44.1	æ	100.0	0.0	33	34.7	20.0	29.7	R	M	13.2	R	19.5
Age, y	58 (34-69) ⁸	67 (49-74) ⁹	57 (36-71) ^a	67 (54-75) ^b	58.8 (16.03)°	60.8 (14.5) ^c	48.3 (3-73) ⁴	59.5 (19-85) ^b	60 (48-70) ⁸	50.5 ^e	58 (23-91) ^b	57 (14) ^c	62 (49-72) ⁸	62 (52-72) ^a	60 (51-69) ⁸	3 mo- 19 y ^f	57 (42-66) ⁸	52.9 (16-89) ^d	C/A = 61 (11)° C/T = 48 (19)°	57 (18-64) ^d	64 (16.2) ^c	65 (51–71) ⁸	53 (32-75) ^d	64 (26-78) ^b	56 (31-83) ^a	64 (26-86) ^d	61 (47-67) ^a	61.6 (13.0) ^c	62 (41 -70) ⁸
Sample Size	40	101	24	12	23	28	15	38	305	29	21	0Ľ	203	259	09	13	34	35	32	28	60	49	01	37	20	25	38	41	23
Duration of Treatment	≥72.h MV	≥96 h C/T	≥96 h C/T	N	272 h C/A	C/T for ≥48 h	≥1 dose of C/T	272 h of C/T	24 h of C/T	≥48 h of QA	M	224 h QT	≥72 h of C/A	≥72 h of C/T	≥24 h of C/A	Not reported	224 h C/T	Not reported	Not reported	N	≥72 h of QT,	≥1 dose of C/T	≥1 dose of C/A	≥72 h of C/T	WV for ≥48 h	≥48 h of C/A	≥1 dose of C/A	≥72 h of C/A	≥72 h of C/T
Duration of Study, mo	Ø	21	24	6	<u>7</u> 9	87	6	Ŋ	88	21	6	41	87	87	13	Not reported	Not reported	Not reported	77	14	24	10	12	10	16	20	%	24	12
Location	NSU	ltaly	Saudi Arabia	Spain	Spain	Spain	France	Spain	NSN	Brazil	NSN	USA	NSN	USA	NSN	USA	NSU	NSN	USA	NSN	USA, UK, France, Spain	USA	NSA	USA	USA	Spain	Europe and Australia	Italy	Spain
Study Design	Obs. study	Obs. study	Obs. study	Obs. study	Obs. study	Obs. study	Obs. study	Obs. study	Obs. study	Case series	Obs. study	Case series	Obs. study	Obs. study	Chart review	Case series	Obs. study	Obs. study	Case series	Case series	0 Obs. study	Case series	Case series	Case series	Obs. study	Obs. study	Case series	Obs. study	Case series
Author, Year	Alosaimy, 2020	Bassetti, 2019	Bosaeed, 2020	Caston, 2017	De la Calle, 2019	Diaz-Canestro, 2018	Dinh, 2017	Escola-Verge, 2018	Gallagher, 2018	Guimaraes, 2019	Haider, 2017	Hart, 2019	Jorgensen, 2019	Jorgensen, 2020	King, 2017	Molloy, 2020	Molnar, 2017	Munita, 2017	Nambiar, 2019	Nathan, 2016	Podriguez-Nunez, 2021	Sacha, 2017	Santeveochi, 2018	Shields, 2016	Shields, 2020	Sousa, 2018	Temkin, 2017	Vena, 2020	Xipell, 2018

. -

Meta-analysis of Clinical Outcomes Using Ceftazidime/ Avibactam, Ceftolozane/Tazobactam, and Meropenem/ Vaborbactam for the Treatment of Multidrug-Resistant Gram-Negative Infections

Geneva M. Wilson,^{1,0} Margaret Fitzpatrick,¹² Kyle Walding,² Beverly Gonzalez,¹ Marin L. Schweizer,^{3,4} Katie J. Suda,⁵⁶ and Charlesnika T. Evans^{1,7}

	Included Studies	Pooled Rate (CI), %	<i>l</i> ² Value, %
Outcomes			
Clinical success	29	73.3 (68.9–77.5)	72.6
Microbiological success	19	67.9 (58.8–77.4)	87.9
Recurrence rate	14	33.9 (28.2–39.7)	47.3
Clinical success among subset analyses			
C/T-only studies	18	73.8 (67.8–79.7)	78.5
C/A-only studies	12	73.0 (67.7–78.4)	51.9
Salvage therapy patients	12	80.7 (78.0–83.4)	0.0

Ceftolozane tazobactam

RESEARCH

Open Access

Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial

Jean-François Timsit¹, Jennifer A. Huntington², Richard G. Wunderink³, Nobuaki Shime⁴, Marin H. Kollef⁵, Ülo Kivistik⁶, Martin Nováček⁷, Álvaro Réa-Neto⁸, Ignacio Martin-Loeches^{9,10}, Brian Yu², Erin H. Jensen², Joan R. Butterton², Dominik J. Wolf², Elizabeth G. Rhee² and Christopher J. Bruno^{2*}

- Sous groupe d'ASPECT-NP : PAVM
- 99 patients sous ceftolozane/tazobactam vs 108 sous méropénem
- Analyse ajustée sur facteurs confondants : mortalité 2 X plus élevée avec méropénem vs ceftolozane tazobactam
- Facteurs de mauvais pronostic en analyse
 Buildriée : vasopresseur et bactériémie

Critical Care 2021

Open Forum Infectious Diseases

MAJOR ARTICLE

A Multicenter Evaluation of Ceftolozane/Tazobactam Treatment Outcomes in Immunocompromised Patients With Multidrug-Resistant *Pseudomonas aeruginosa* Infections Delaney E. Hart,¹ Jason C. Gallagher,² Laura A. Puzniak,³ and Elizabeth B. Hirsch¹: for the C/T Alliance to deliver Real-world Evidence (CARE)

- Etude rétrospective multicentrique (n=14)
- Patients immunodéprimés traités ≥24 avec C/T
- *P. aeruginosa* MDR
- 66 patients
- USI : 46%
- Infection respiratoire : 56%
- Mortalité J30 : 19%

Outcome

Clinical cure, all infection sources (n = 69), No. (%)	47 (68)
Pneumonia, receiving pneumonia dosing (n = 28)	21 (75)
Pneumonia, receiving nonpneumonia dosing (n = 10)	3 (30)
30-d all-cause mortality, all infection sources (n = 69), No. (%)	13 (19)
Pneumonia, receiving pneumonia dosing (n = 28)	5 (18)
Pneumonia, receiving nonpneumonia dosing (n = 10)	3 (30)
Length of C/T therapy, mean \pm SD, d	13 ± 11
Length of hospital stay, median (IQR), d	38 (54)

Ceftazidime avibactam

Clinical Infectious Diseases

MAJOR ARTICLE

Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase–Producing Enterobacterales

Marco Falcone, ¹George L. Daikos,² Giusy Tiseo, ¹ Dimitrios Bassoulis,² Cesira Giordano,³ Valentina Galfo,¹ Alessandro Leonildi,³ Enrico Tagliaferri,¹ Simona Barnini,³ Spartaco Sani,⁴ Alessio Farcomeni,⁵ Lorenzo Ghiadoni,⁶ and Francesco Menichetti¹

- Etude prospective observationelle
- Multicentrique : 3 hôpitaux (Italie et Grêce)
- 82 infections à NDM
- 20 infections à VIM
- Mortalité J30 : 19,2% avec CAZ-AVI + ATM vs 44% autre traitement actif

Table 4.Cox Regression Analysis of Factors Independently AssociatedWith 30-Day Mortality

Factor	HR (95% CI)	PValue
Cardiovascular disease	6.62 (2.77-15.78)	<.001
Solid organ transplantation	3.52 (1.42-8.69)	.006
SOFA score (1-point increment)	1.21 (1.1-1.32)	<.001
CAZ-AVI + ATM (vs OAAs)	0.17 (.0741)	<.001

Méropénem-vaborbactam

Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant *Enterobacterales* and *Pseudomonas aeruginosa*

Sara Alosaimy,¹ Abdalhamid M. Lagnf,¹ Taylor Morrisette,¹ Marco R. Scipione,² Jing J. Zhao,² Sarah C. J. Jorgensen,¹³ Ryan Mynatt,¹⁴ Travis J. Carlson,^{5,6,0} Jinhee Jo,⁵ Kevin W. Garey,⁵ David Allen,⁷ Kailynn DeRonde,⁸ Ana D. Vega,⁸ Lilian M. Abbo,⁸ Veena Venugopalan,⁹ Vasilios Athans,¹⁰ Stephen Saw,¹⁰ Kimberly C. Claeys,^{11,0} Mathew Miller,¹² Kyle C. Molina,¹² Michael Veve,^{1,13,14} Wesley D. Kufel,^{15,16} Lee Amaya,^{17,18} Christine Yost,¹⁷ Jessica Ortwine,¹⁸ Susan L. Davis,¹²⁰ and Michael J. Rybak^{1,221,0}

- Etude rétrospective observationnelle multicentrique (n=13 centres) aux USA (octobre 2017-juin 2020).
- Exclusion infection concomitante
- Critère principal : mortalité J30;
- 126 patients (20,5% ID)
- Infection respiratoire (38,1%), IIA (19,0%)
- CRE 78,6%

	Total Study			CRE Spp.
Outcome ^a	(n = 126)	PsA Spp. $(n = 8)$	Non-PsA (n = 118)	(n = 99)
Efficacy				
30-d mortality	23 (18.3)	0 (0)	23 (19.5)	19 (19.2)
90-d mortality	39 (33.1)	1 (12.5)	40 (31.7)	34 (34.3)
In-hospital mortality	30 (23.8)	1 (12.5)	29 (24.6)	25 (25.3)

Tebipénème

- Essai randomisé (1:1) double aveugle ADAPT-PO
- TBP (600mgX3/j) vs Erta (1g/j) pour IU compliquées et PNA (durée 7à 10j)

ADAPT-PO primary endpoint:

Clinical cure + microbiological eradication at test-of-cure in micro-ITT population

Demonstrated non-inferiority at margin of -12.5%*

Results were similar between treatment arms across all subgroups of patients

Anticorps anti-staphylocoque

Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial

		Placebo group (n=100)	Suvratoxumab 5000 mg grou (n=96)
	Age, years		
	≤65	69 (69%)	59 (62%)
	>65	31 (31%)	37 (39%)
	Sex		
	Female	45 (45%)	37 (39%)
	Male	55 (55%)	59 (62%)
	Body-mass index		
	≤30 kg/m²	73 (74%)	72 (75%)
	>30 kg/m²	26 (26%)	24 (25%)
	Primary reason for admission to the	ICU	
	Brain trauma	10 (10%)	8 (8%)
	Cardiovascular disorder	5 (5%)	10 (10%)
	Infection	3 (3%)	2 (2%)
	Neurological disorders	53 (53%)	53 (55%)
	Respiratory disease	12 (12%)	9 (9%)
	Trauma	14 (14%)	12 (13%)
	Other	3 (3%)	2 (2%)
	Mean duration of health-care resource	ce use before rand	lomisation, days
	Hospitalisation	6-3 (8-3)	6-9 (8-7)
	ICU stay	5.3 (7.4)	5-4 (6-6)
	Mechanical ventilation	5.4 (7.2)	5.3 (6.7)
	Use of pre-dose antibiotics for S aure	us infection stratu	m
	Yes	13 (13%)	12 (13%)
	No	87 (87%)	84 (88%)
	Mean clinical severity score		
	APACHE-II	15.2 (5.2)*	15.1 (5.2)
	SOFA	4.5 (2.0)†	4-8 (2-0)
	CPIS	3.0 (1.5)†	3.0 (1.3)
	Median PCR cycle threshold value (S aureus colonisation load)	26·1 (21·0–32·2)	26-7 (21-7-32-1)
	Positive tracheal staphylococcal culture	45 (45%)	47 (49%)
B. François et al. Lancet ID 2021	MRSA colonisation	6 (6%)	6 (6%)

Efficacy and safety of suvratoxumab for prevention of *Staphylococcus aureus* ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial

	Placebo group n/N (%)	Suvratoxumab 5000 mg group n/N (%)		Percentage RRR (90% Cl)
Use of pre-dose antibiotics for S aureus Infection				
Yes	4/13 (30-8)	3/12 (25-0)		18-8 (-133-2 to 72-9)
No	22/87 (25-3)	14/84 (16-7)		34-1 (-11-6 to 60-4)
Age (years)				
s65	20/69 (29-0)	9/59 (15-3)		47-4 (3-5 to 71-4)
>65	6/31 (19-4)	8/37 (21.6)		-11-7 (-160-4 to 49-3)
Body-mass Index (kg/m²)				
s30	19/73 (26-0)	14/72 (19-4)		25-3 (-26-0 to 55-6)
>30	7/26 (26.9)	3/24 (12.5)		53-6 (-31-1 to 83-2)
S aureus colonisation load (PCR Ct value)*				
Low (Ct ≥29)	12/36 (33-3)	4/36 (11-1)		66-7 (21-3 to 86-2)
High (Ct <29)	14/63 (22-2)	13/60 (21-7)		2.5 (-70.4 to 45.3)
Ventilator-associated pneumonia prevention†				
5 bundles	19/59 (32-2)	9/52 (17.3)		46-3 (2-2 to 70-5)
<5 bundles	7/41 (17-1)	8/44 (18-2)		-6-5 (-135-1 to 51-1)
Overall population	26/100 (26-0)	17/96 (17.7)	+•	31.9 (-7.5 to 56.8)
		-20	0 -100 0 100 Favours placebo Favours suvratox	200 umab

B. François et al. Lancet ID 2021

- Cefiderocol (In) CREDIBLE
- Ceftolozane tazobactam >> *Pseudomonas aeruginosa*
- Ceftazidime avibactam >> MBL
- Mero vaborbactam : KPC mais pas que
- Tebipenem : « attention aux urologues »
- Anticorps : pas encore

Merci

- Widespread cefiderocol heteroresistance in carbapenemresistant Gram-negative pathogens
- <u>https://www.thelancet.com/journals/laninf/article/PIIS1473-</u> 3099(21)00194-8/fulltext

- Cross-resistance to cefiderocol and ceftazidime–avibactam in KPC β-lactamase mutants and the inoculum effect
- <u>Claire Amaris HobsonAurélie CointeHervé JacquierAlaksh</u> <u>ChoudhuryMélanie MagnanCéline CourrouxOlivier</u> <u>TenaillonStéphane BonacorsiAndré Birgy</u>
- <u>https://www.clinicalmicrobiologyandinfection.com/article/S11</u>
 <u>98-743X(21)00199-3/fulltext</u>

Cross-resistance to cefiderocol and ceftazidime—avibactam in KPC β -lactamase mutants and the inoculum effect

Claire Amaris Hobson¹, Aurélie Cointe^{1, 2}, Hervé Jacquier^{1, 3}, Alaksh Choudhury¹, Mélanie Magnan¹, Céline Courroux², Olivier Tenaillon¹, Stéphane Bonacorsi^{1, 2}, André Birgy^{1, 2, *}

ed in	Clinical alleles	Mutations	Ancestral allele ^a	Cefiderocol			Ceftazidime	avibactam
pressed in				MIC (mg/L)	Times increase of MIC compared to ancestral allele	MIC (mg/L) at high inoculum (10 ⁷ CFU/mL)	MIC (mg/L) 1	imes increase of MIC compared o ancestral allele
l allele ancestral			1 1	0.25 0.12		32 16	0.5 1	
22		1 1	1 1	0.25 0.06	1 1	8 4	0.125 0.19	
	- KPC-25 -	ins165_EL ins165_EL ins168_LK	KPC-3 KPC-2 KPC-2	0.5 0.25 1	4 1 4	>32 >32 >32	16 32 32	6 . .
	- KPC-44 KPC-29	ins168_LK + A185T ins175_SAIPG ins261_AVYTRAPNKDDKHSE ins269_KDD ins274_SEAVI + G147R	KPC-3 KPC-3 KPC-2 KPC-3 KPC-3	0.06 0.5 0.5 0.5 0.5	- 4 0 4 4	>32 >32 >32 >32 >32	2 24 64 32 32	228 238
		del165-175_WELELNSAIPG del166-171_ELELNS + A172D del168-171_ELNS del168-169_EL del167-170_LELN + S171P del176-178_DA del176-178_DAR	KPC-3 KPC-3 KPC-2 KPC-2 KPC-2 KPC-3 KPC-3	0.25 0.5 0.5 0.5 0.12 0.12	04404-4	33 32 >32 >32 >32 33 32 >32	24 32 >>25 11.5 8 8 332	4 22 8 8
ous mutatio	2	delz39-241_GV del240-241_VY + G239D P67L R164G R164P S171P A172D	күс-3 КРС-2 КРС-2 КРС-3 КРС-3 КРС-3	1 0.25 0.5 0.5 1	84 -0448	> > 32 > 32 > 32 > 32 > 32 > 32 > 32 >	24 48 24 24 24 24 24 24 24 24 24 24 24 24 24	4 9 0 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	KPC-39	A172P A172T A172T A172V D176N D176N + Q2955 + ins295_	KPC-3 KPC-3 KPC-2 KPC-3 KPC-3 KPC-3	0.5 1 0.5 0.5 0.5	4 8 4 4 4 4	~32 >32 >32 >32 >32 +	16 16 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	KPC-33 KPC-31	NCQIKTIHIYFKU D176Y D176G D179A D179Y D179F D179G T243P	KPC-3 KPC-3 KPC-3 KPC-2 KPC-3 KPC-3 KPC-3 KPC-3 KPC-3 KPC-3	0.5 2 2 0.5 0.25	4 % % % ⁶ 4 % % ¹	× 332 × 332 × 332 332 332 332 332 332 332 332 332 332	16 16 16 16 16	ი ი 4 ფფიიი ი
		AUC2V + 7C421 + MIRITV	Kr-z	_	4	10	×	Ð

Résistance cefta avi

- Evolutionary Trajectories toward Ceftazidime-Avibactam Resistance in *Klebsiella pneumoniae* Clinical Isolates
- https://journals.asm.org/doi/10.1128/AAC.00574-21

- Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase–Producing *Enterobacter* spp, *Citrobacter freundii*, *Morganella morganii*, *Providencia* spp, or *Serratia marcescens*: A Pilot Multicenter Randomized Controlled Trial (MERINO-2)
- Adam G Stewart, David L Paterson, Barnaby Young, David C Lye, Joshua S Davis, Kellie Schneider, Mesut Yilmaz, Rumeysa Dinleyici, Naomi Runnegar, Andrew Henderson <u>... Show more</u>

- A New Twist: The Combination of Sulbactam/Avibactam Enhances Sulbactam Activity against Carbapenem-Resistant Acinetobacter baumannii (CRAB) Isolates
- <u>https://www.mdpi.com/2079-6382/10/5/577</u>

- Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review
- <u>https://www.mdpi.com/2079-6382/10/6/656</u>

- Assessment of Data Supporting the Efficacy of New Antibiotics for Treating Infections Caused by Multidrugresistant Bacteria
- Dafna Yahav, Noam Tau, Daniel Shepshelovich