

du mercredi 15 juin 2022 au vendredi 17 juin 2022

Vaccin anti-paludéen RTS-S: historique et actualité

Benoît GAMAIN

Déclaration d'intérêts de 2014 à 2021

Intérêts financiers : Aucun

Liens durables ou permanents : Aucun

• Interventions ponctuelles : Aucun

Intérêts indirects : Aucun

et la région Aquitaine
Palais des Congrès
du mercredi 15 juin 2022
au vendredi 17 juin 2022

Déclaration de liens d'intérêt avec les industries de santé en rapport avec le thème de la présentation (loi du 04/03/2002) :

Intervenant: Gamain Benoit

Titre: Vaccin anti-paludéen RTS-S: historique et actualité

L'orateur ne souhaite pas répondre

- Consultant ou membre d'un conseil scientifique
- Conférencier ou auteur/rédacteur rémunéré d'articles ou documents
- Prise en charge de frais de voyage, d'hébergement ou d'inscription à des congrès ou autres manifestations
- Investigateur principal d'une recherche ou d'une étude clinique

- OUI 🐼
- OUI

OUI

OUI

Paludisme: 2000 -2020

TABLE 3.1.

Global estimated malaria cases and deaths, 2000–2020 Estimated cases and deaths are shown with 95% upper and lower confidence intervals. *Source: WHO estimates.*

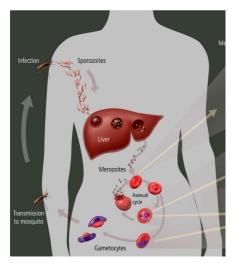
Year	Number of cases (000)				Number of deaths			
	Point	Lower bound	Upper bound	% P. vivax	Point	Lower bound	Upper bound	
2000	241 000	226 000	260 000	7.7%	896 000	854 000	942 000	
2001	246 000	231 000	267 000	7.9%	892 000	851 000	941 000	
2002	241 000	225 000	261 000	7.5%	848 000	808 000	896 000	
2003	244 000	228 000	266 000	7.9%	825 000	783 000	877 000	
2004	247 000	227 000	277 000	7.9%	803 000	756 000	877 000	
2005	246 000	228 000	271 000	8.1%	778 000	733 000	838 000	
2006	241 000	222 000	265 000	7.0%	764 000	722 000	823 000	
2007	238 000	220 000	262 000	6.6%	745 000	703 000	797 000	
2008	238 000	220 000	259 000	6.4%	725 000	683 000	773 000	
2009	242 000	223 000	266 000	6.3%	721 000	673 000	784 000	
2010	244 000	225 000	269 000	6.7%	698 000	650 000	764 000	
2011	237 000	219 000	259 000	6.9%	651 000	611 000	703 000	
2012	233 000	216 000	254 000	6.7%	614 000	578 000	664 000	
2013	227 000	211 000	247 000	5.6%	589 000	553 000	640 000	
2014	224 000	206 000	243 000	5.1%	569 000	532 000	620 000	
2015	224 000	207 000	243 000	4.5%	562 000	524 000	619 000	
2016	226 000	210 000	246 000	4.3%	566 000	527 000	627 000	
2017	231 000	214 000	251 000	3.6%	574 000	537 000	643 000	
2018	227 000	209 000	247 000	3.1%	558 000	521 000	633 000	
2019	227 000	208 000	248 000	2.8%	558 000	521 000	642 000	
2020	241 000	218 000	269 000	1.9%	627 000	583 000	765 000	

P. vivax: Plasmodium vivax; WHO: World Health Organization.

Rapport OMS sur le Paludisme 2021:

- 2000: 241 millions de cas cliniques / 896,000 décès
- 2020: 241 millions de cas cliniques / 627,000 décès
- 14 millions de cas cliniques et 69 000 morts supplémentaires en 2020 par rapport à 2019
 - → 47 000 morts attribués à une rupture des services pendant la pandémie COVID-19 : (Distribution de moustiquaires imprégnées d'insecticide; Mise à disposition de traitements; Soins)
- 1,7 milliard de cas de paludisme et 10,6 millions de décès ont été évités dans le monde entre 2000 et 2020

P. falciparum : Espèce la plus pathogène


2020: 228 millions de cas cliniques en Afrique et 602 000 décès

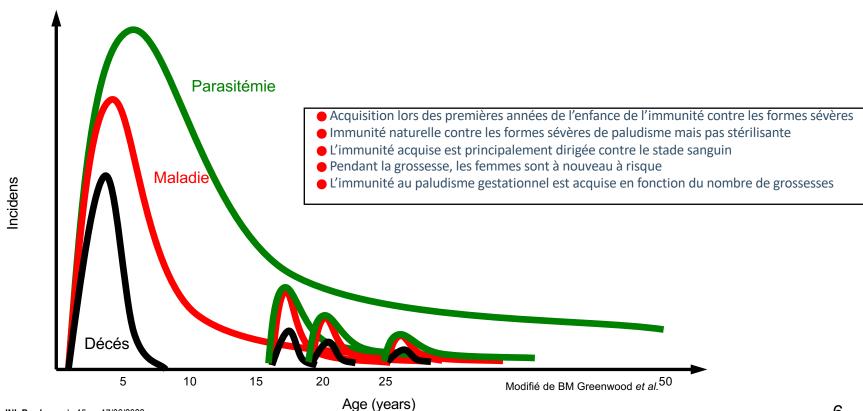
Pas de vaccin Resistance aux antipaludéens

→ 10 000 décès maternels et 200 000 à 363 000 nouveau-nés

→ 483 000 enfants de moins de 5 ans

Adhérence aux cellules hôtes

Séquestration dans différents organes


(Cerveau, poumon, placenta....)

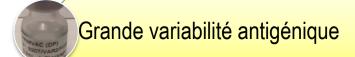
Complications aiguës

23^{es} Bordeaux

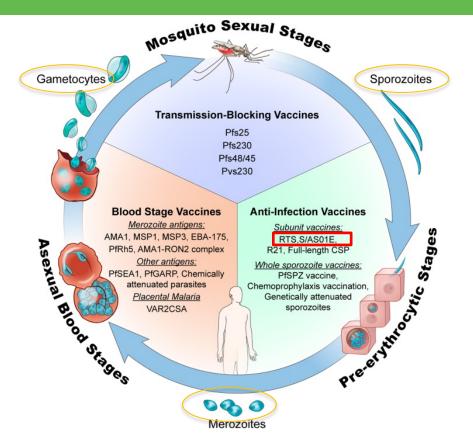
Acquisition de l'immunité en zone de paludisme stable à *P. falciparum*


23^{es} Bordeaux

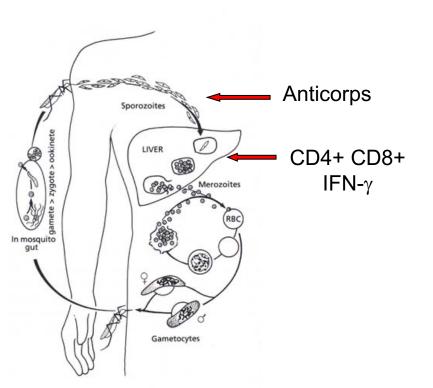
6


Challenges pour le développement d'un vaccin




Immunité Naturelle contre les formes cliniques met du temps à se développer

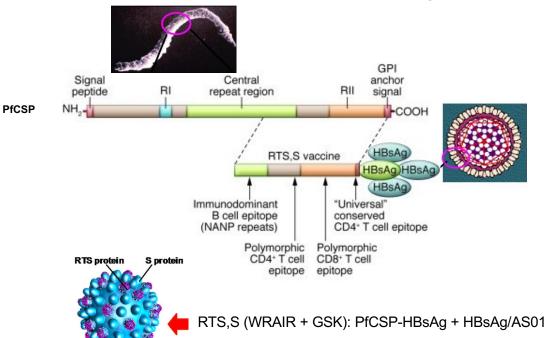
Candidats vaccinaux en développement clinique

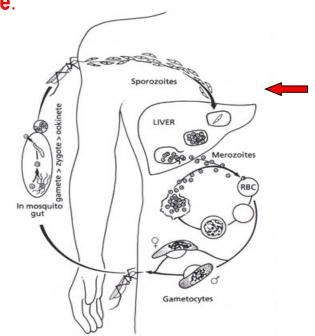


Edmond & Etienne Sergent
Les comptes Rendu de
l'Académie des Sciences 151:
407-409, 1910
Immunité partielle obtenue par
inoculation de sporozoïtes
inactivés de P. relictum

Vaccins contre le stade pré-érythrocytaire

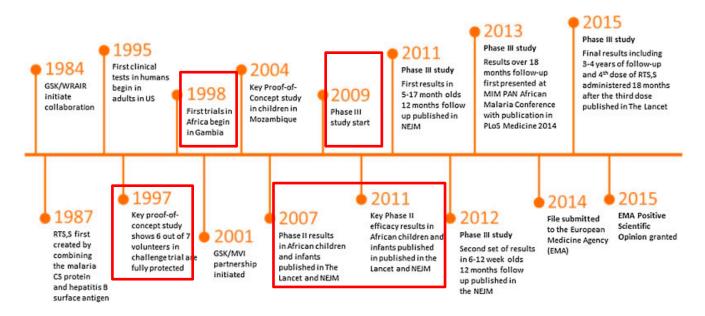
Stade pré-érythrocytaire: Prévenir l'infection à l'homme et protéger contre les formes sévères de paludisme


- Les Anticorps contre les sporozoites peuvent bloquer l'invasion des hépatocytes
- Les Lymphocytes T participent à la clairance des parasites intrahépatique via la secretion d'IFN-γ ou par cytotoxicité directe (CD8+)



RTS,S (Mosquirix)

Protéine recombinante (Saccharomyces cerevisiae) adjuvantée:


Protéine de surface du sporozoïte combinée à l'AgHBs

Historique du RTS,S (Mosquirix)

1997 : le vaccin protège à 85% des volontaires (6/7) ayant été infectés avec des sporozoïtes

1998 : Phase II en Gambie, impliquant 250 hommes: le vaccin prévient 34% des infections

Phases II chez l'enfant et le nourrisson

Pays/Référence	Formulation du vaccin	Âge des sujets	n ^a	Critères	Durée du suivi post-vaccinal (mois)	Efficacité du vaccin (%)	IC 95 %	Valeur p
Mozambique [47,48]	RTS,S/AS02	1—4 ans	2022	Maladie clinique	6,5 18,5	29,9 35,3	11,0-44,8 21,6-46,6	0,004 < 0,001
				Tous les épisodes	6	27,4 29,8	6,2-43,8 13,8-42,8	0,014
				Paludisme grave	6 18	57,7 48,6	16,2-80,6 12,3-71,0	0,019
				Hospitalisation	6	32,3	1,3-53,9	0,053
				due au paludisme	18	30,5	4,1-49,9	0,032
				Infection	6	45,0	31,4-55,9	< 0,001
Tanzanie/ Kenya [56]	RTS,S/AS01	5—17 mois	894	Maladie clinique	8 (en moyenne)	52,9	28,1-69,1	< 0,001
Mozambique [52]	RTS,S/AS02	10-18 semaines	214	Infection	3	65,9	42,6-79,8	< 0,001
Tanzanie [53]	RTS,S/AS02	6-10 semaines	340	Infection	6	65,2	20,7-84,7	0,012

J. Cohen: Annales Pharmaceutiques Françaises (2010) 68, 370 -379

Phases II: efficacité 30-65% contre les accès cliniques/sévères chez l'enfant et le nourrisson

RTS,S (Mosquirix): Phase III Studies

- Phase III (2009): Partenariat GSK MVI-PATH BMGF
 - 11 centres/7 pays africains
 - Différentes intensités de transmission
- Population (15,449 enfants et nourissons)
 - 8922 enfants (5-17 mois) (48 mois de suivi)
 - 6527 nourrissons (6-12 semaines) (38 mois de suivi)

3 groupes:

- 3 doses RTS,S: J0, M1, M2 rappel M20
- 3 doses RTS,S et vaccin comparateur à M20 (Méningocoques de sérogroupe C (Menjugate)
- Bras contrôle (5-17 mois : rage (Verorab); Nourrissons : (Menjugate))

23^{es}
Bordeaux

Phase III: Efficacité vaccinale

Age	5-17 Mois	6-12 Semaines	
3 doses	VE (95% CI)	VE (95% CI)	
Protection contre les cas cliniques	28.2% [23.3 to 32.9]	18.3% [11.7 to 24.4]	
Protection contre le paludisme sévère	1.1% [-23 to 20.5]	10.3% [-17.9 to 31.8]	
3 doses + Rappel			
Protection contre les cas cliniques	36.3% [31.8 to 40.5]	25.9% [19.9 to 31.5]	
Protection contre le paludisme sévère	32.2% [13.7 to 46.9]	17% [-9.4 to 37.5]	

Efficacy and safety of RTS,S/ASO1 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial

RTS,S Clinical Trials Partnership*

Summary

Background The efficacy and safety of the RTS,S/AS01 candidate malaria vaccine during 18 months of follow-up have been published previously. Herein, we report the final results from the same trial, including the efficacy of a booster dose.

Methods From March 27, 2009, until Jan 31, 2011, children (age 5–17 months) and young infants (age 6–12 weeks) were enrolled at 11 centres in seven countries in sub-Saharan Africa. Participants were randomly assigned [1:1:1] at first vaccination by block randomisation with minimisation by centre to receive three doses of RTS_S/AS01 at months 0, 1, and 2 and a booster dose at month 20 (R3R group); three doses of RTS_S/AS01 and a dose of comparator vaccine at month 20 (R3C group); or a comparator vaccine at months 0, 1, 2, and 20 (C3C [control group)]. Participants were followed up until Jan 31, 2014. Cases of clinical and severe malaria were captured through passive edetection. Serious adverse events (SAEs) were recorded. Analyses were by modified intention to treat and per protocol. The coprimary endpoints were the occurrence of malaria over 12 months after dose 3 in each age category. In this final analysis, we present data for the efficacy of the booster on the occurrence of malaria. Vaccine efficacy (VE) against clinical malaria was analysed by negative binomial regression and against severe malaria by relative risk reduction. This trial is registered with ClinicalTrials.gov, number NCT00866619.

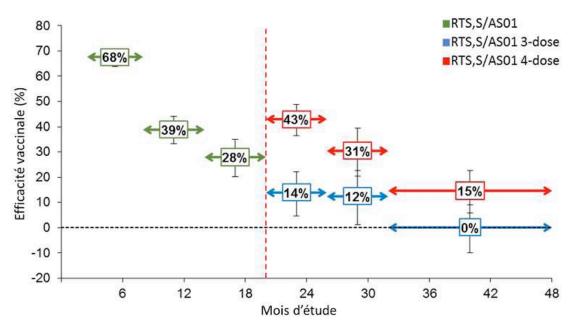
Lancet 2015: 386: 31-45

Published Online
April 24, 2015

http://dx.doi.org/10.1016/
50140-6736(15)60721-8

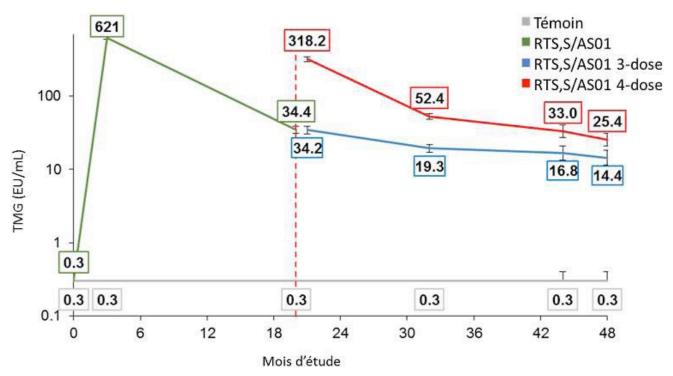
See Comment page 5 See Editorial Lancet 2015; 385-1581

"Members listed at end of paper Correspondence to: Prof Brian M Greenwood, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WCLE 7HT, UK


Impact le plus important chez les enfants âgés de 5 mois et plus ayant reçu 4 doses

Efficacité vaccinale (95% CI) contre tous les épisodes de paludisme clinique et paludisme grave pendant toute la période de suivi (Enfants: 48 Mois; Nourrissons: 38 Mois)

23^{es} JNI, Bordeaux du 15 au 17/06/2022


Phase III : Efficacité vaccinale (5 - 17 Mois)

Efficacité vaccinale contre tous les épisodes de paludisme clinique, exprimée en incidence comparative du paludisme clinique stratifié pour des périodes de suivi de 6 mois dans l'essai de phase III, pour les enfants âgés de 5 à 17 mois (cohorte conforme au protocole)

RTS,S (Mosquirix): Phase III Immunogenicité

TMGs d'anticorps anti-CS pour les enfants âgés de 5 à 17 mois

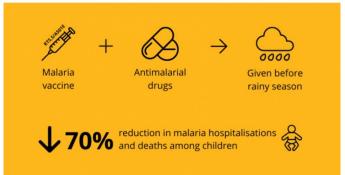
Développement réglementaire de RTS,S/AS01

- Juillet 2015: l'agence de médecine européenne (EMA) émet un avis positif sur RTS,S/AS01
- Octobre 2015: Un examen par l'OMS des données de l'essai de phase III a révélé que le taux de méningite était plus élevé dans le groupe vacciné que dans le groupe témoin et que les décès était plus élevés chez les filles ayant reçu un vaccin, bien qu'il ne soit pas clair qu'il y avait un lien avec le vaccin.
- le SAGE et le MPAC de l'OMS recommandent
 - une implémentation pilote de RTS,S/AS01 dans 3-5 pays Africains avec 3 injections à des enfants de 5-9 mois (D0, D28, D56) et un rappel 15-18 mois après.
 - en complément d'autres mesures de prévention
 - pas d'utilisation chez les nourrissons (6-12 semaines)
 - → Décider d'une éventuelle utilisation à large échelle d'ici 3-5 ans.

Implémentation pilote de RTS,S/AS01

Janvier 2016:


L'OMS adopte les recommandations de ses 2 comités :


- → Ce vaccin est un outil complémentaire, à utiliser en supplément et non en remplacement des mesures essentielles de lutte contre le paludisme
- Le programme pilote de vaccination concernera 360.000 enfants dans 3 pays d'Afrique subsaharienne : le Kenya, le Ghana et le Malawi.
- Première vaccination le 23/04/2019 au Malawi

Implémentation pilote de RTS,S/AS01

Principales conclusions:

- 1. Possibilité d'administrer le vaccin dans le programme d'immunisation existant,
- 2. Innocuité confirmée après plus de 2,7 millions de doses administrées à plus de 920 000 enfants,
- 3. Réduction substantielle des hospitalisations dues au paludisme grave ou à une infection palustre chez les enfants éligibles au vaccin (Réduction de 40% des épisodes cliniques et 30% des formes graves)
- → Une vie sauvée pour 200 enfants vaccinés;
- 4. Augmentation de l'impact dans les zones à forte endémie en vaccinant avant la saison des pluies

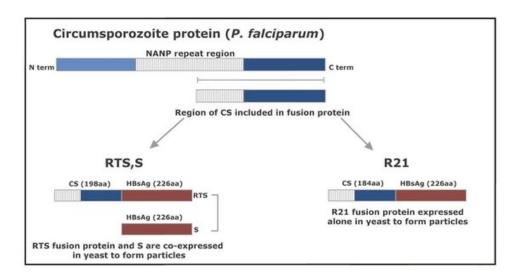
23^{cs} Bordeau

Recommandations de l'OMS

6 Octobre 2021: L'OMS recommande le déploiement du vaccin Mosquirix à grande échelle.

L'OMS recommande l'utilisation d'un vaccin antipaludique novateur destiné aux enfants exposés au risque de contracter la maladie

La recommandation historique d'utilisation du vaccin RTS,S/AS01 permettra de donner un nouvel élan à la lutte contre le paludisme



2 Décembre 2021: le conseil d'administration de GAVI approuve un investissement initial de 155,7 millions de dollars US pour 2022- 2025 pour l'expansion et l'introduction du vaccin dans d'autres régions et pays

R21 meilleur que le RTS,S??

R21 (Université d'Oxford) / Adjuvant Matrix M (Novavax)

Phase II sur 450 enfants âgés de 5 à 17 mois : Efficacité de 77% Phase III sur 4800 enfants en cours

Développement de vaccins de nouvelle génération

- Développer de nouveaux vaccins candidats multi-composants/multi-stades pour augmenter l'efficacité contre les infections, les complications et la transmission
- Développer des vaccins anti-maladie (paludisme gestationnel, cérébral)

22

Développement de vaccins de nouvelle génération

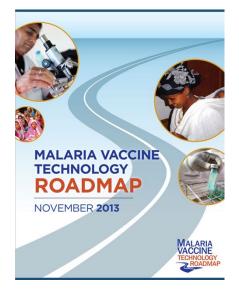
Améliorer l'immunogénicité des candidats vaccins

Vaccinologie structurale - cibler les réponses immunitaires aux épitopes protecteurs.

Nouvelles plateformes d'administration de vaccins (ARNm/VLP/NP.....)

Développer de nouveaux adjuvants (agonistes TLR4 ; agonistes TLR7)

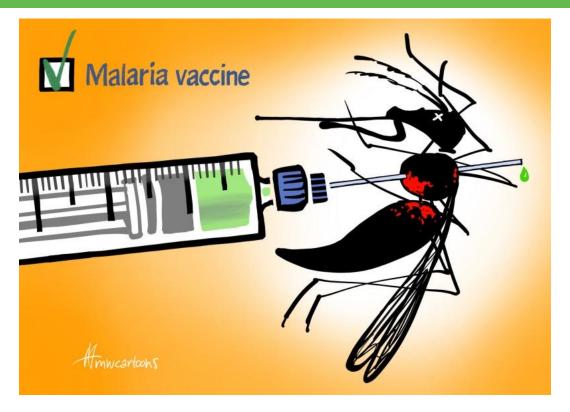
Développer des vaccins vivants atténués


Améliorer la durée et l'efficacité sur les souches hétérologues

Développement de technologies pour la production et la livraison à grande échelle de sporozoïtes irradiés

Parasites génétiquement atténués

Feuille de route sur les vaccins contre le paludisme



Besoin d'avancées majeures dans ces domaines pour atteindre les objectifs stratégiques de la feuille de route sur les vaccins :

→ 2030 : Obtention d'un vaccin conférant 75% de protection des épisodes cliniques

Merci pour votre attention!

benoit.gamain@inserm.fr