# La décontamination digestive sélective : doit-on vaincre nos réticences ?

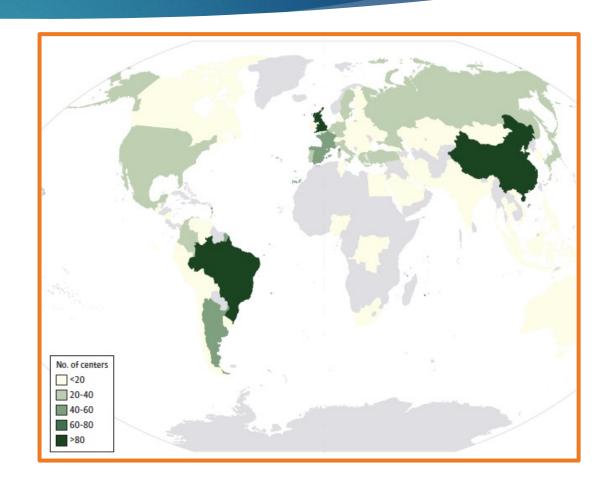
SAAD NSEIR

MÉDECINE INTENSIVE-RÉANIMATION, CHU DE LILLE
INSERM U1285, UNIVERSITÉ DE LILLE

### Liens d'intérêt

Lecture: Gilead, Pfizer, MSD, Biomérieux,
 Bio Rad, Ficher and Paykel

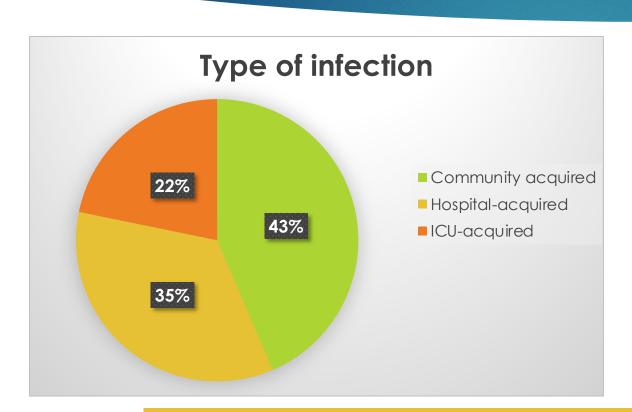
### Plan

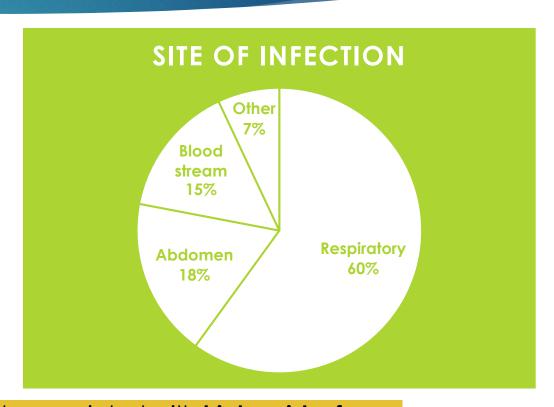

- Introduction
- Définitions et rationnel
- Efficacité de la DDS (selon incidence BMR)
- Antibiorésistance
- DDS et COVID-19
- Conclusions

#### JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

## Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017

Jean-Louis Vincent, MD, PhD; Yasser Sakr, MD, PhD; Mervyn Singer, MB, BS; Ignacio Martin-Loeches, MD; Flavia R. Machado, MD, PhD;


- Observational 24-hour point prevalence study
- Longitudinal follow-up,1150 centers, 88 countries
- ▶ 15 165 patients hospitalized in the ICU >24h
- 8135 (54%) patients with suspected or confirmed infection

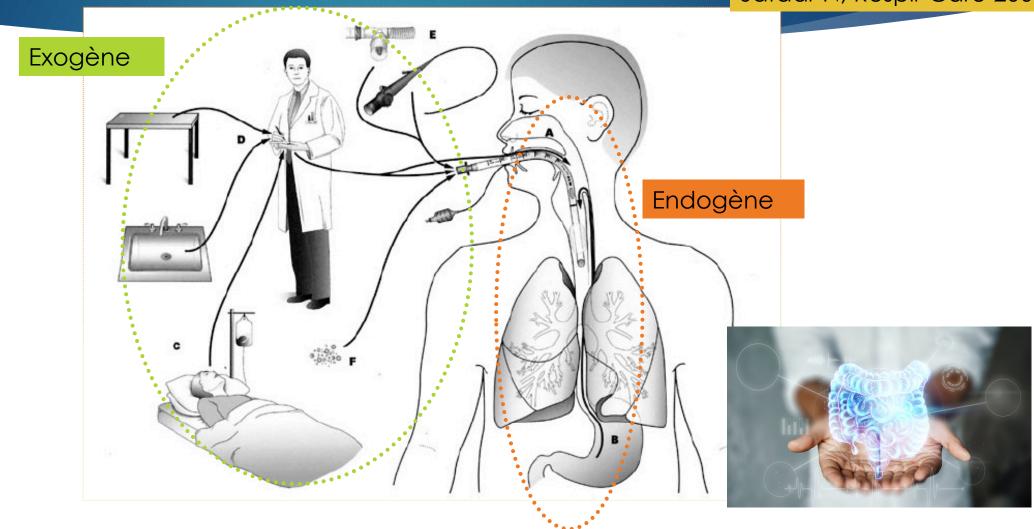



#### JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

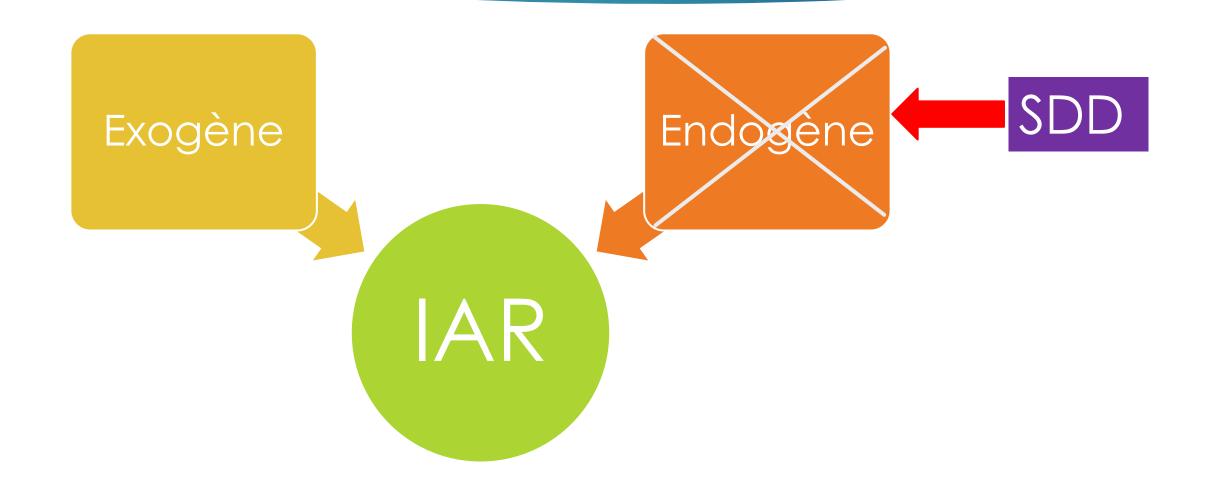
## Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017

Jean-Louis Vincent, MD, PhD; Yasser Sakr, MD, PhD; Mervyn Singer, MB, BS; Ignacio Martin-Loeches, MD; Flavia R. Machado, MD, PhD;






ICU-acquired infection independently associated with **higher risk of mortality** compared with community-acquired infection


OR **1.32** [95%Cl, 1.10-1.60]; P = 0.003

### Rationnel

Safdar N, Respir Care 2005



### Rationnel



### Définition

Wittekamp B, ICM 2020

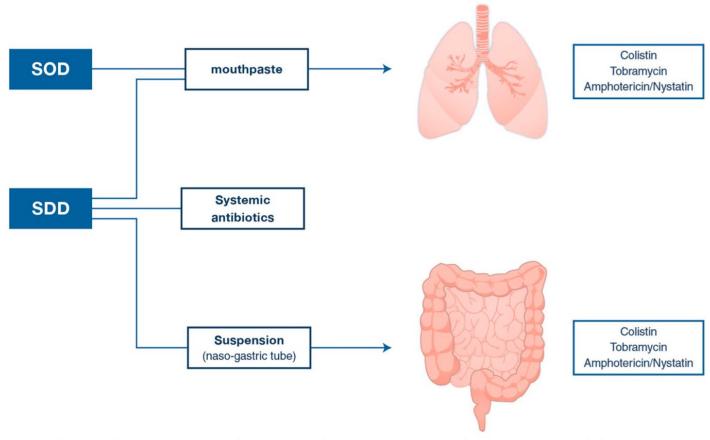



Fig. 1 Components of SDD and SOD. SDD selective digestive tract decontamination, SOD selective oropharyngeal decontamination



[Intervention Review]

## Topical antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving mechanical ventilation



- ▶ 41 études, 11,004 patients
- durée VM 2-6 j
- durée de séjour en Réa 11-33 j
- immunodépression 0-22%
- >40% possible risque de biais de sélection
- 5 études à risque élevé de biais de détection des infections respiratoires basses (IRB)



[Intervention Review]

## Topical antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving mechanical ventilation

## Minozzi S, 2021

#### ATB systémique et locale

- Réduit la mortalité vs placebo ou pas de traitement RR 0.84, 95% CI 0.73 0.96 (18 études, 5290 patients, certitude de l'évidence: haute)
- Réduit probablement les infections respiratoires basses (IRB) RR 0.43, 95% CI 0.35 to 0.53 (17 études, 2951 patients, certitude de l'évidence: modérée)

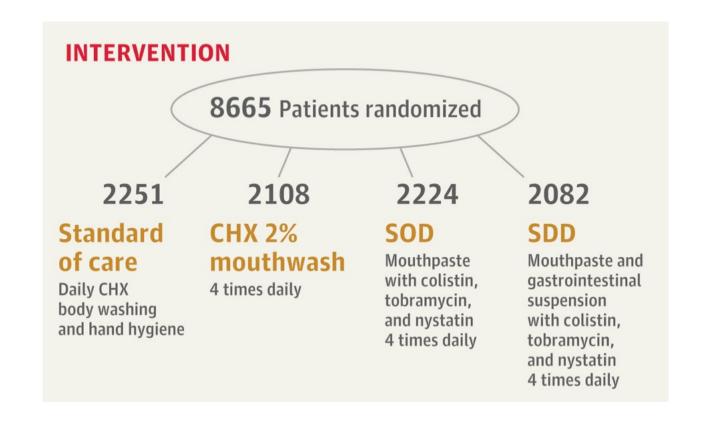


[Intervention Review]

## Topical antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving mechanical ventilation

Minozzi S, 2021

Majorité des études aux Pays-Bas ou des réanimations à faible incidence de BMR


- Réduit probablement la mortalité vs placebo ou pas de traitement (RR 0,96, 95% CI 0,87-1.05, 22 études, 4213 patients; certitude de l'évidence: modérée)
- Pourrait réduire les IRB (RR 0.57, 95% CI 0.44-0.74; 19 études; 2698 patients; certitude de l'évidence: faible)

## Decontamination Strategies and Bloodstream Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients

L'utilisation de soins de bouche CHX, SOD, ou SDD associée à une réduction des bactériémie à BGN MR?

Wittekamp B, JAMA 2018

#### **POPULATION 3104** Women **5561** Men Adult patients who were not pregnant, with expected duration of invasive mechanical ventilation of ≥24 hours Median age: **64.1** years (range, 18-98) LOCATIONS 13 **ICUs in Europe**



## Decontamination Strategies and Bloodstream Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients

#### **FINDINGS**

#### **Standard of care**

**2.1%** bloodstream infection

**31.9%** 28-day mortality

#### **CHX** mouthwash

1.8% bloodstream infection

**32.9%** 28-day mortality

#### Limites

Pas d'ATB systémique

SOD, SDD arrêtées après extubation

Adjusted hazard ratios (95% CIs) vs standard of care for bloodstream infection with multidrug-resistant gram-negative bacteria

1.13 (0.68-1.88) for CHX

**0.89** (0.55-1.45) for SOD

**0.70** (0.43-1.14) for SDD

© AMA

Wittekamp B, JAMA 2018

The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gramnegative bacteria in ICU patients; a *post hoc* analysis from a multicentre cluster-randomized trial

Plantinga NL, CMI 2020

| Inclusions in R-GNOSIS ICU I study [12] | <b>→</b> | At least two cultures<br>(from 2 different<br>dates), of which the<br>first taken on day 0-4<br>in ICU | <b>→</b> | Nested cohorts for the different analyses | 1) <u>eradication</u> :<br>number of<br>unique species<br>of AR-GNB<br>included<br>(patients) | 2) <u>acquisition</u> :<br>number of<br>patients without<br>ARB in first<br>culture* |
|-----------------------------------------|----------|--------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                         |          |                                                                                                        |          | 3GCR-E                                    | 702 (643)                                                                                     | 4243                                                                                 |
|                                         |          | rectum (N=4850)                                                                                        |          |                                           |                                                                                               |                                                                                      |
|                                         |          |                                                                                                        |          | CR-GNB                                    | 164 (154)                                                                                     | 4641                                                                                 |
| TOTAL<br>(N=8665)                       | <u> </u> |                                                                                                        | _        |                                           |                                                                                               |                                                                                      |
|                                         |          |                                                                                                        |          | 3GCR-E                                    | 303 (291)                                                                                     | 5368                                                                                 |
|                                         |          | respiratorytract<br>(N=5749)                                                                           |          |                                           |                                                                                               |                                                                                      |
|                                         |          | (14-3743)                                                                                              |          | CR-GNB                                    | 145 (143)                                                                                     | 5550                                                                                 |

The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gramnegative bacteria in ICU patients; a *post hoc* analysis from a multicentre cluster-randomized trial

Plantinga NL, CMI 2020

- SDD associée avec plus d'éradication et moins d'acquisition de C3GR-E et CR- GNB dans le rectum que SC
- -csHR 1.76 (95% CI 1.31-2.36) éradication C3GR-E
- -csHR 3.17 (95% CI 1.60-6.29) éradication CR-GNB
- -csHR 0.51 (0.40-0.64) acquisition C3GR-E
- -csHR 0.56 (0.40-0.78) acquisition CR-GNB

The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gramnegative bacteria in ICU patients; a *post hoc* analysis from a multicentre cluster-randomized trial

Plantinga NL, CMI 2020

 SDD et SOD associée avec moins d'acquisition de C3GR-E et CR- GNB (respiratoire)

-SDD: csHR 0.38 (0.28-0.50) acquisition C3GR-E

-SOD: csHR 0.55 (0.42-0.71) acquisition C3GR-E

-SDD: csHR 0.46 (0.33-0.64) acquisition CR-GNB

-SOD: csHR 0.60 (0.44-0.81) acquisition CR-GNB

Lancet ID 2013

- ▶ 64 études, 47 RC, 35 data sur l'ATB résistance
- Impact sur la prévalence de colonisation ou d'infection à des bactéries résistantes

Nick Daneman, Syed Sarwar, Robert A Fowler, Brian H Cuthbertson, on behalf of the SuDDICU Canadian Study Group

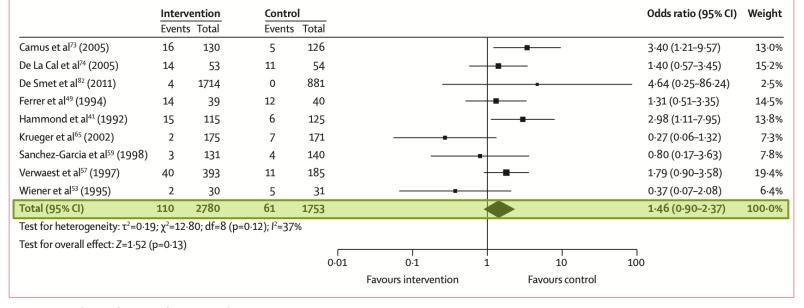
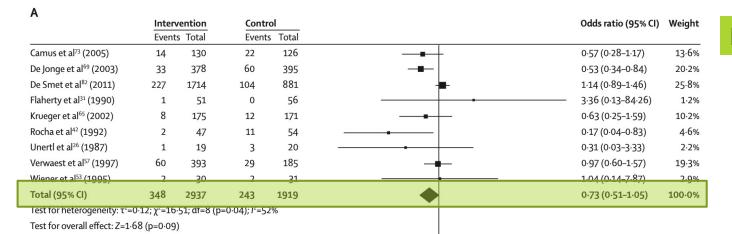



Figure 2: Prevalence of MRSA infection or colonisation in patients in intensive care



Lancet ID 2013

Nick Daneman, Syed Sarwar, Robert A Fowler, Brian H Cuthbertson, on behalf of the SuDDICU Canadian Study Group


#### Entérocoque Vanco R

|                                          | Interv                                                                                 | ention | Contro | I     |                      |          |                 | Odo  | ds ratio (95% CI) | Weight |
|------------------------------------------|----------------------------------------------------------------------------------------|--------|--------|-------|----------------------|----------|-----------------|------|-------------------|--------|
|                                          | Events                                                                                 | Total  | Events | Total |                      |          |                 |      |                   |        |
| Dahms et al <sup>60</sup> (2000)         | 8                                                                                      | 54     | 102    | 542   |                      | ■┼       |                 | 0.75 | 5 (0.34–1.64)     | 38.2%  |
| De Jonge et al <sup>44</sup> (2003)      | 4                                                                                      | 378    | 5      | 395   |                      | -        |                 | 0.8  | 3 (0·22–3·13)     | 13.3%  |
| De La Cal et al <sup>74</sup> (2005)     | 16                                                                                     | 53     | 26     | 54    | -                    | $\dashv$ |                 | 0.4  | 7 (0-21–1-03)     | 37.1%  |
| De Smet et al <sup>12</sup> (2009)       | 2                                                                                      | 1000   | 6      | 1333  |                      | +        |                 | 0.4  | 4 (0.09–2.20)     | 9.1%   |
| Van Der Voort et al <sup>72</sup> (2004) | 1                                                                                      | 529    | 0      | 513   |                      | +        | -               | 2.9: | 1 (0.12–71.72)    | 2.3%   |
| Total (95% CI)                           | 31                                                                                     | 2014   | 139    | 2837  |                      |          |                 | 0.6  | 3 (0·39–1·02)     | 100.0% |
| Test for heterogeneity: $\tau^2 = 0.0$   | Test for heterogeneity: $\tau^2 = 0.00$ ; $\chi^2 = 1.99$ ; df=4 (p=0.74); $I^2 = 0\%$ |        |        |       |                      |          |                 |      |                   |        |
| Test for overall effect: Z=1.90          | (p=0·06)                                                                               |        |        |       |                      | $\perp$  |                 |      |                   |        |
|                                          |                                                                                        |        |        | 0.01  | 0.1                  | 1        | 10              | 100  |                   |        |
|                                          |                                                                                        |        |        |       | Favours intervention |          | Favours control |      |                   |        |

Figure 3: Prevalence of VRE infection or colonisation in patients in intensive care

Nick Daneman, Syed Sarwar, Robert A Fowler, Brian H Cuthbertson, on behalf of the SuDDICU Canadian Study Group

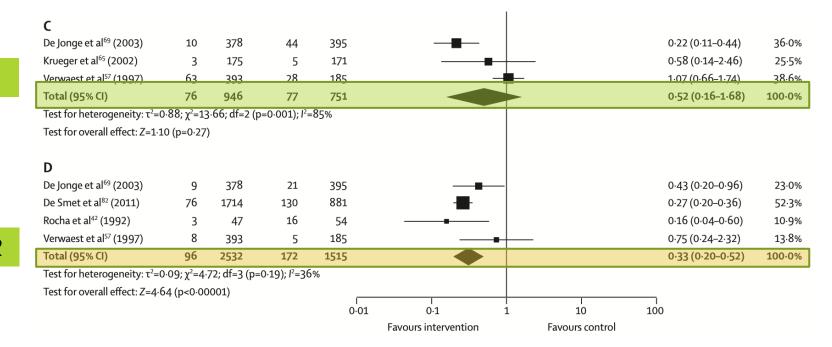
Lancet ID 2013



**BGN** Aminsoides R

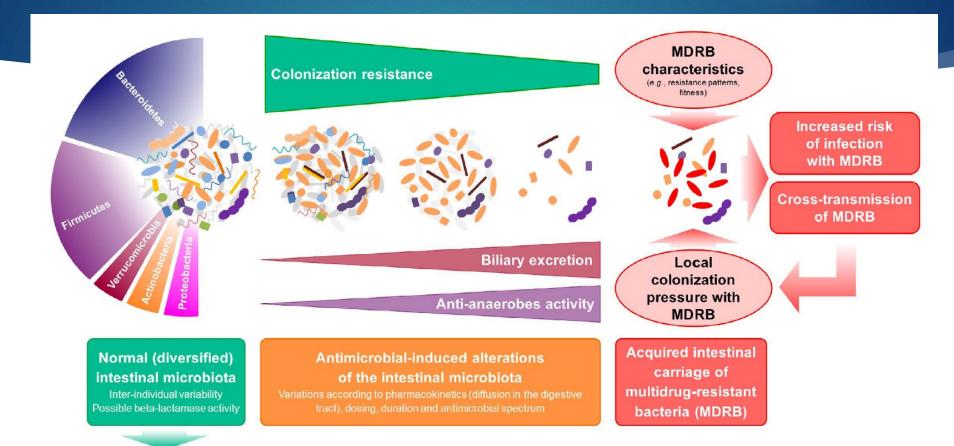


Test for heterogeneity: ι³=0·00; χ³=4·00; df=5 (p=0·55); ι³=0%


Test for overall effect: Z=4.92 (p<0.00001)

Nick Daneman, Syed Sarwar, Robert A Fowler, Brian H Cuthbertson, on behalf of the SuDDICU Canadian Study Group

Lancet ID 2013


BGN FQ R

BGN C3G R

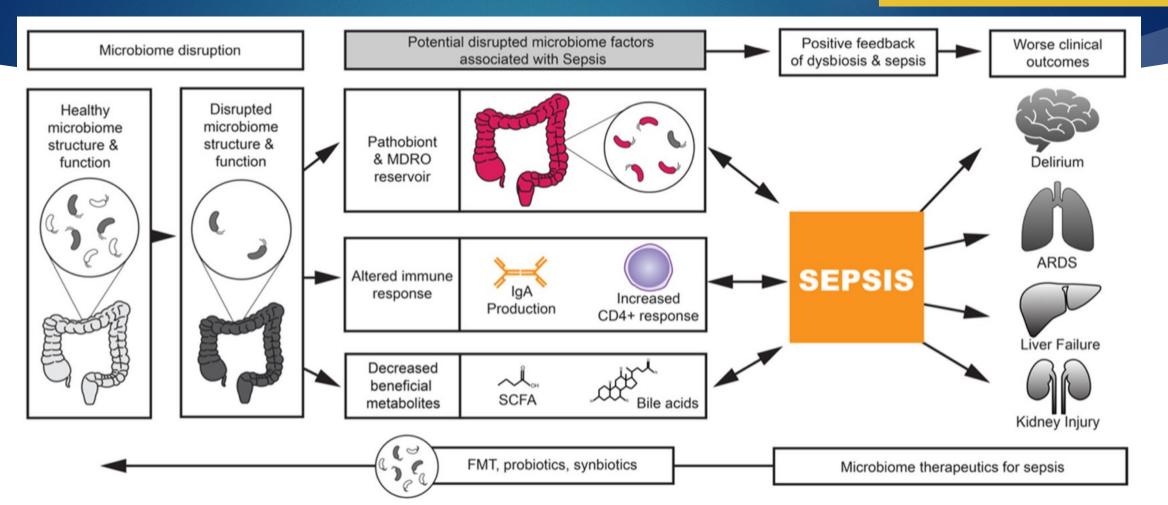


### Impact des ATB sur microbiome

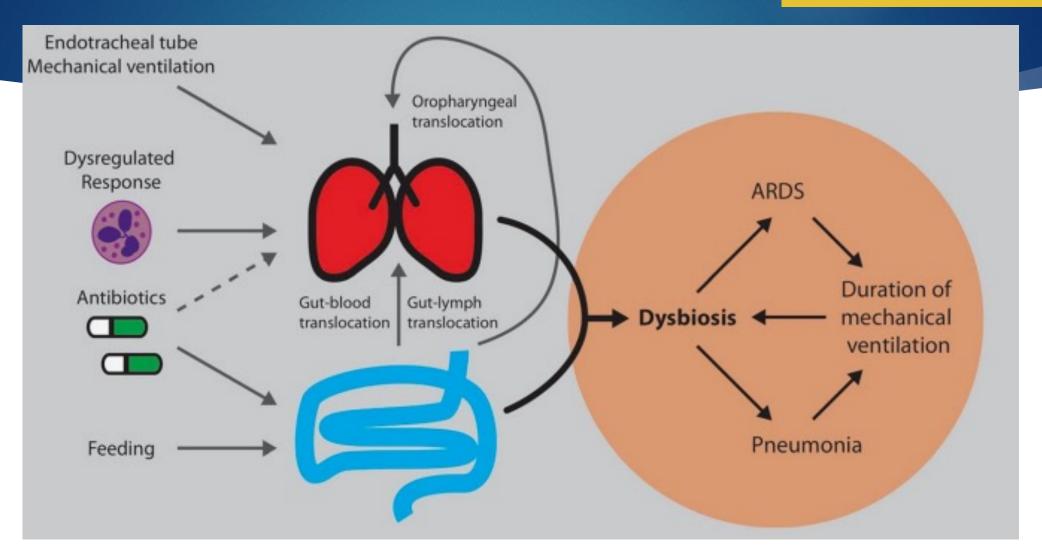
Woerther PL, IJAA 2018



#### Notable bacterial genera of the intestinal microbiota


Bacteroidetes: Bacteroides, Parabacteroides, Prevotella

Firmicutes: Clostridium, Dorea, Ruminococcus, Blautia, Eubacterium, Faecalibacterium, Enterococcus


Verrucomicrobia: Akkermansia Actinobacteria: Bifidobacterium

Proteobacteria: Enterobacteriaceae (non-commensal: Pseudomonas, Acinetobacter, Stenotrophomonas)

#### Adelman M, Crit Care 2020



#### Martin-Loeches I, Crit Care 2020



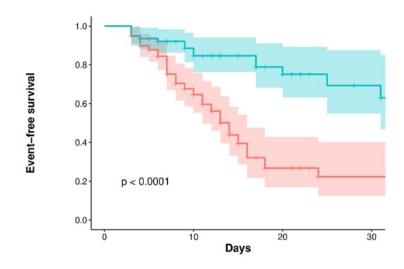
Ventilator-associated pneumonia in critically-ill patients with COVID-19 in a setting of selective decontamination of the digestive tract

Van der Meer SB, Crit Care 2021

22/212 (10%) patients avec une PAVM (vs 40-58% dans la littérature)

|                           | No VAP <i>n</i> = 190 (90%)         | VAP <sup>a</sup> n=22 (10%) | <i>p</i> value |  |  |  |
|---------------------------|-------------------------------------|-----------------------------|----------------|--|--|--|
| Age                       | 63 (56–70)                          | 65 (54–23)                  | .75            |  |  |  |
| Gender (female)           | 57 (30%)                            | 4 (18%)                     | .32            |  |  |  |
| BMI > 30                  | 78 (41%)                            | 7 (32%)                     | .49            |  |  |  |
| Diabetes mellitus         | 54 (28%)                            | 4 (18%)                     | .45            |  |  |  |
| Hypertensio               | Days de arrayus                     |                             |                |  |  |  |
| Chronic kidr              | Pas de groupe contrôle              |                             |                |  |  |  |
| Chronic lung              | Pas de confirmation microbiologique |                             |                |  |  |  |
| Immune cor                | e i                                 |                             |                |  |  |  |
| SOFA-score                | Monocentrique rétrospective         |                             |                |  |  |  |
| Time to VAP (aays)        | na                                  | 12 (/-17)                   |                |  |  |  |
| Use of SDD                | 189 (99.5%)                         | 22 (100%)                   | 1.00           |  |  |  |
| Corticosteroids           | 118 (62%)                           | 15 (68%)                    | .65            |  |  |  |
| ECMO                      | 12 (6%)                             | 3 (14%)                     | .19            |  |  |  |
| CRRT                      | 24 (13%)                            | 2 (9%)                      | 1.00           |  |  |  |
| Proning during MV         | 107 (56%)                           | 19 (86%)                    | .006           |  |  |  |
| Length of MV (days)       | 13 (8–21)                           | 26 (15–33)                  | < 0.0001       |  |  |  |
| Length of ICU stay (days) | 15 (9–22)                           | 25 (21–35)                  | < 0.0001       |  |  |  |
| ICU mortality             | 57 (30%)                            | 9 (41%)                     | .33            |  |  |  |

## Selective digestive decontamination to reduce the high rate of ventilator-associated pneumonia in critical COVID-19


Luque-Paz D, ACCPM 2022

VAP 9.4 vs. 23.5 per 1000 ventilator days, P < 0.001

- ▶ 178 patients COVID-19 (77 SDD)
- Bicentrique rétrospective

Multivariate analysis of predictive factors of ventilator-acquired pneumonia.

| Ventilator-acquired pneumonia              | Patients with VAP (n = 66) | Patients w/o<br>VAP (n = 112) | P-value | Adjusted HR (95% CI) | <i>P</i> -value |
|--------------------------------------------|----------------------------|-------------------------------|---------|----------------------|-----------------|
| Age, <sup>a</sup> median [IQR]             | 67 [59–72]                 | 67 [58–75]                    | 0.71    | 1.01 (0.99-1.04)     | 0.41            |
| Male gender, <sup>a</sup> n (%)            | 58 (88)                    | 76 (68)                       | 0.01    | 2.70 (1.27-5.74)     | 0.01            |
| SAPS-2 score at admission, median [IQR]    | 40 [33-49]                 | 38 [30-48]                    | 0.82    |                      |                 |
| ECMO support, <sup>a</sup> n (%)           | 18 (27)                    | 9 (8)                         | < 0.001 | 2.3 (1.24-4.10)      | 0.008           |
| Inter-hospital transferred patients, n (%) | 12 (18)                    | 24 (21)                       | 0.52    |                      |                 |
| SDD use, a n (%)                           | 16 (24)                    | 61 (54)                       | < 0.001 | 0.36 (0.20-0.63)     | < 0.001         |



#### LETTER



## Absence of candidemia in critically ill patients with COVID-19 receiving selective digestive decontamination

Jochem B. Buil<sup>1,2,3\*</sup>, Jeroen A. Schouten<sup>2,3,4</sup>, Joost Wauters<sup>5</sup>, Hans van de Hoeven<sup>4</sup>
and Paul E. Verweij<sup>1,2,3</sup> on behalf of CAC-SDD study group

Aucune candidémie (30 mois)

Comparaison cohort COVID sans SDD : 8/569 (1,4%) (95% CI 0.19-2.7%; p = 0.0207)

#### Table 1 Characteristics of the COVID-19 cohort

| Number of patients                                                                 | 378         |
|------------------------------------------------------------------------------------|-------------|
| Age, mean (range)                                                                  | 61 (16–93)  |
| Apache II score, mean (range)                                                      | 17.0 (1–38) |
| Mean duration of ICU stay per patient (days)                                       | 18.8 (1–89) |
| Number of patients with ICU stay of < 5 days                                       | 62 (16%)    |
| Number of patients receiving SDD                                                   | 352 (93%)   |
| Number of patients with diabetes                                                   | 79 (21%)    |
| Number of patients with central vascular catheter                                  | 310 (82%)   |
| Number of patients on mechanical ventilation                                       | 309 (82%)   |
| Number of patients with renal replacement therapy                                  | 45 (12%)    |
| Number of patients receiving IL6- inhibitors                                       | 188 (50%)   |
| Number of patients receiving dexamethasone                                         | 274 (72%)   |
| Number of blood culture sets (aerobic/anaerobic), mean per patient during ICU stay | 6.5 (0–31)  |
| Number of patients with Candida colonization                                       | 199 (53%)   |
| Median time to Candida decolonization (days)                                       | 7 (1–53)    |

#### Selective Decontamination of the Digestive Tract in Intensive Care Unit Patients (SuDDICU)

ClinicalTrials.gov Identifier: NCT02389036

Recruitment Status **1**: Recruiting First Posted **1**: March 17, 2015

Tilist Tosted 6 . March 17, 2010

Last Update Posted 1 : April 19, 2022

See Contacts and Locations

- Cluster, cross-over, RCT in mechanically ventilated critically ill patients
- ▶ 12,000–15,000 patients in Canada, the UK, and Australia
- Patients not already receiving an intravenous therapeutic antibiotic: 4day course of intravenous cephalosporins
- Evaluation of SDD effects on antibiotic resistance patterns
- Cost- effectiveness analyses, microbiome/meta genetic analysis

#### Conclusions

- SDD associée à une réduction de la mortalité et de l'incidence des IRB dans des réanimation avec une incidence faible d'antibio-résistance
- La réduction de la mortalité et des IAR plus importante avec la SDD vs SOD
- L'impact de la SDD sur la mortalité et de l'incidence des IRB dans des réanimation avec une incidence élevée d'antibio-résistance reste à déterminer
- SDD et SOD : pas d'impact significatif sur la résistance
- L'impact de la SDD sur le microbiome digestif et pulmonaire est à évaluer