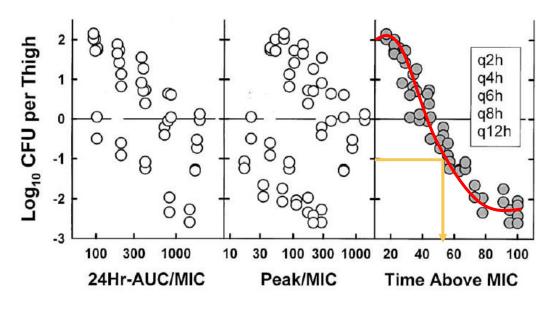


Intérêt des dosages des antibiotiques, chez qui et pourquoi

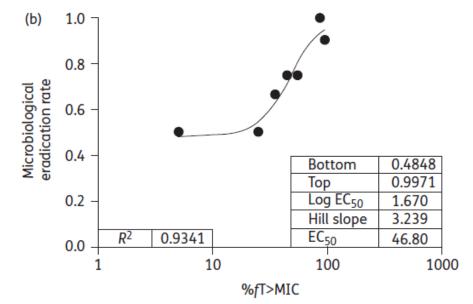
Sylvain Goutelle

Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon Université Lyon 1, Faculté de Pharmacie et UMR CNRS 5558 sylvain.goutelle@chu-lyon.fr



Lien d'intérêt : Sylvain Goutelle

- Symposium et colloques : MSD, Pfizer, Correvio, Advanz
- Board : Menarini, Shionogi, Advanz
- Pas de rémunération personnelle
- Membre du CA-SFM


RELATIONS CONCENTRATION-EFFICACITÉ

Effet chez l'animal

Ceftazidime / P. aeruginosa

Craig. Infect Dis Clin N Am 2003

Effet in vivo

Ceftazidime dans les pneumonies nosocomiales

RELATIONS CONCENTRATION-EFFICACITÉ

Aminoglycosides **ATB** C_{max}/MIC Fluoroquinolones concentration Daptomycin dépendants $\mathsf{C}_{\mathsf{max}}$ Serum concentrations Glycopeptides Fluoroquinolones **ATB** Colistin Linezolid « AUC-Daptomycin dépendants » Triazoles AUC/MIC Oseltamivir **AUC B-lactams ATB** Linezolid temps Flucytosine dépendants T>MIC Target (MIC) Injection Time

4

RELATIONS CONCENTRATION-EFFICACITÉ

Fluoroquinolones

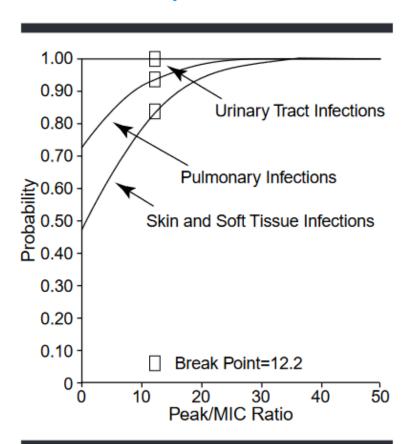
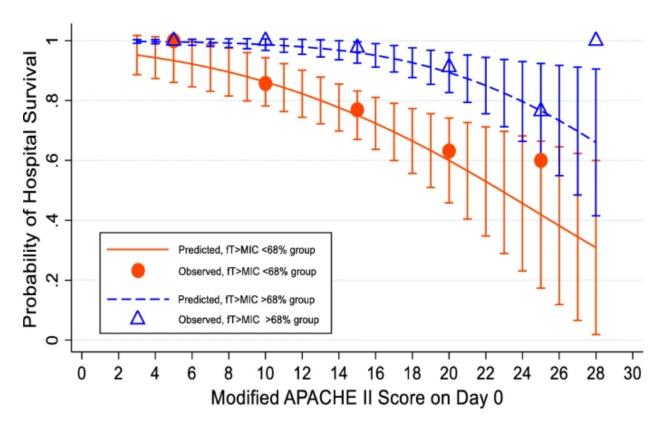
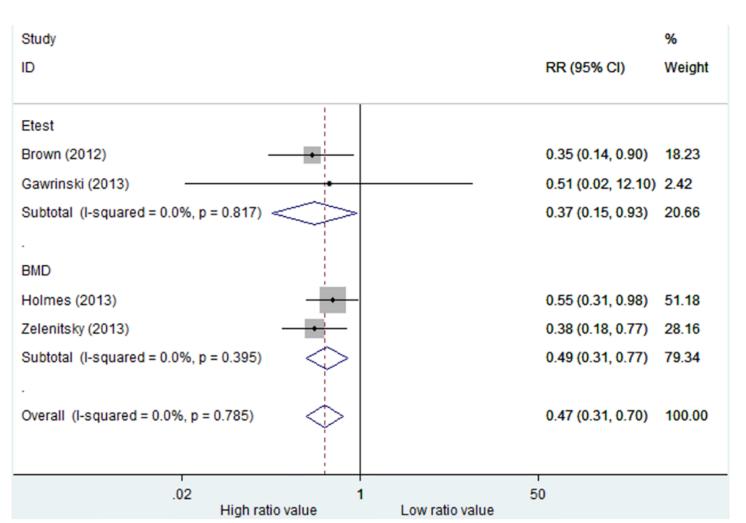



Figure 1.—Levofloxacin clinical outcome probabilities of successful outcome (n=134 patients; 7 clinical failures). The probability curve for successful

Céfépime


Bactériémie (N = 180 patients, USA)

CORRÉLATION ENTRE PK/PD ET EFFICACITÉ CLINIQUE

- Corrélation démontrée pour de nombreux antibiotiques: aminosides, fluoroquinolones, vancomycine, daptomycine, ceftaroline, beta-lactamines en réanimation...
- Rationnel fort pour confirmer / fixer les cibles de concentration
- Contextes cliniques variés, infections souvent hétérogènes
- Limites à garder en tête
 - Corrélation non-établie pour chaque site infectieux
 - L'exposition est seulement une des variables associées à la réponse
 - Atteindre la cible de concentration = condition nécessaire mais non-suffisante à l'efficacité

RELATIONS CONCENTRATION-EFFICACITÉ

Vancomycine Infections à staphylocoques

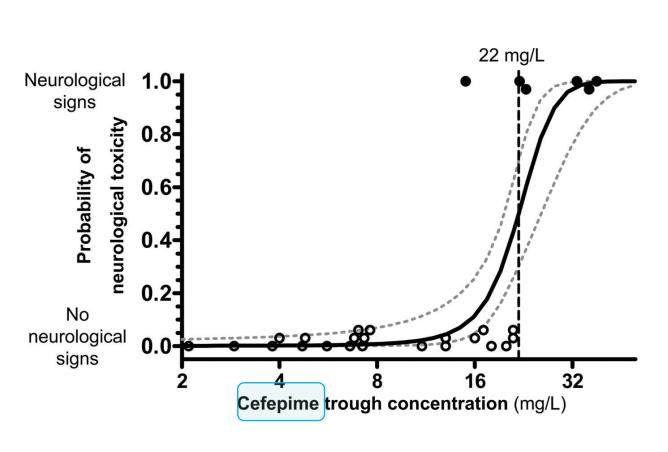
Cible AUC/CMI > 400

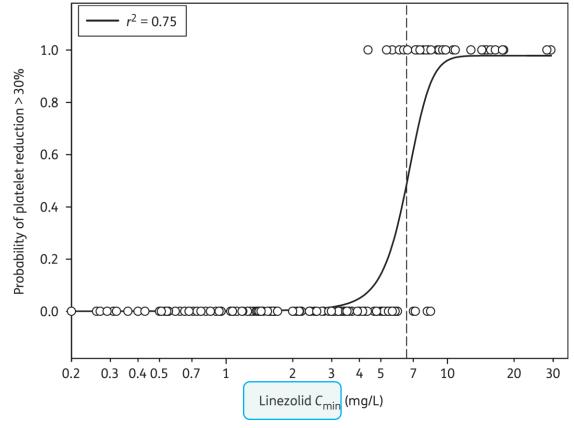
Risk ratios of all-cause mortality rates: high versus low AUC₀₋₂₄/MIC ratio

7

RELATIONS CONCENTRATION-EFFICACITÉ

Reference (year)	Study design; country	Number of patients	Pathogens	Type of infections	Male, %	Mean age(SD)
Ampe et al. (2013) [9]	Prospective; Belgium	20	CoNS, MRSA, MSSA	Foreign body, osteomyelitis, septicaemia	70	65.6 (12.6)
Brown et al. (2012)[10]	Retrospective; the United States	44	MRSA	Complicated bacteremia, infective endocarditis	50	54.8(16)
Gawronski et al. (2013)[11]	Retrospective; the United States	59	MRSA	Complicated bacteria, osteomyelitis	59	54(16)
Ghosh et al. (2014)[12]	Retrospective; Australia	127	MRSA	Abdominal sources, endocarditis, non-endocarditis vascular sources, pneumonia	68.5	64.6(NR)
Holmes et al. (2013)[13]	Prospective ^a ; Australia	182	MRSA, MSSA	Endocarditis, osteoarticular, pneumonia, sepsis syndrome, skin and soft tissue	70	NR
Jung et al.(2014) [14]	Retrospective; the Republic of Korea	76	MRSA	Bone and joint, catheter-related, deep incisional/ organ space, endocarditis, pneumonia, skin and soft tissue, surgical site	76.3	NR
Kullar et al. (2011)[15]	Retrospective; the United States	320	MRSA	Bone and joint, catheter-related, deep abscess, endocarditis, multiple sites, pneumonia, skin/wound	NR	54(NR)
Moise et al. (2000)[16]	Retrospective; the United States	53	MRSA, MSSA	Lower respiratory tract	61	69.1(15)
Zelenitsky et al. (2013)[17]	Retrospective; Canada	35	MRSA	Bloodstream, central nervous system, endocarditis, intra-abdominal, lower respiratory tract, skin/skin structure	62.9	61.9 (15.2)


CoNS, coagulase-negative Staphylococci; MSSA, methicillin sensitive Staphylococcus aureus; NR, not reported; SD, standard difference.

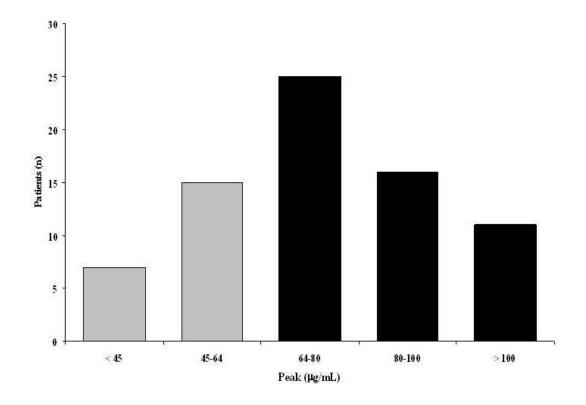

^a Additional clinical data required for analysis were collected retrospectively using a detailed chart review.

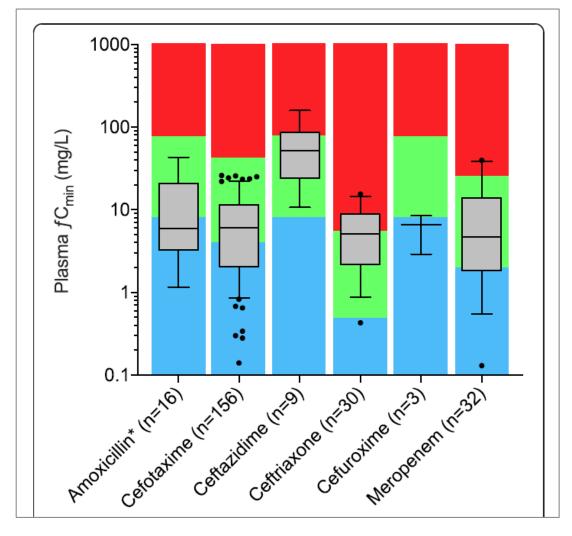
RELATIONS CONCENTRATION-TOXICITÉ

Antibiotique	Toxicité	Grandeur PK corrélé à la toxicité	
Aminosides	Néphrotoxicité	Cmin, AUC	
Vancomycine	Néphrotoxicité	Cmin, AUC	
Bêta-lactamines	Neurotoxicité (céfépime, pipé)	Cmin Css (perf. continue)	
Daptomycine	Toxicité musculaire (↑ CPK)	Cmin, AUC	
Linézolide	Thrombopénie	Cmin, AUC	

RELATIONS CONCENTRATION-TOXICITÉ

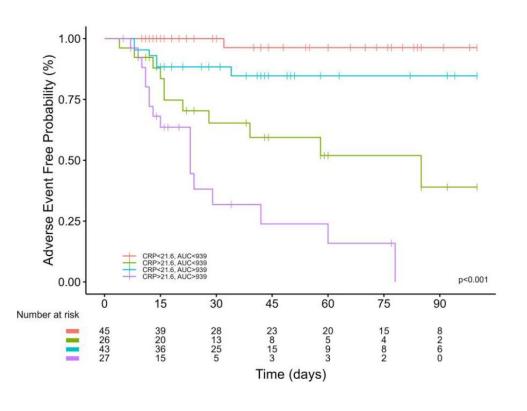
Lamoth et al. AAC 2010 Pea et al. JAC 2012


MARGE THÉRAPEUTIQUE ÉTROITE!


Characteristic N = 308	Vancomycin failure n (%)	P (vs reference category)	Nephrotoxicity n (%)	P (vs reference category)
Trough <10 mg/L (<i>n</i> =70)	<mark>46 (65.7%)</mark>	0.001	10/65 (15.4%)	.682
Trough 10–14.9 mg/L(<i>n</i> =90)	<mark>52 (57.8%)</mark>	0.016	13/76 (17.1%)	.476
Trough 15–20 mg/L(n=86)	<mark>34 (39.5%)</mark>	REF	<mark>10/77 (13.0%)</mark>	REF
Trough >20 mg/L(n=62)	31 (50.0%)	0.206	<mark>17/62 (27.4%)</mark>	.032

VARIABILITÉ PK/PD

Amikacine


Dose ≥ 25 mg/kg 1^{er} pic < cible chez 30% en réanimation

- < cible (fCmin < 1 x CMI)
- > cible (fCmin > 10 x CMI)

ONE SIZE CANNOT FIT ALL!

Daptomycine

Etude CRIOAc HCL

Risque accru d'El (myotoxicité ou pneumopathie à éosinophiles) pour une AUC > 939

Aucune posologie standard, faible ou forte, n'est optimale pour atteindre la cible PK/PD

	4 mg/kg/24h	6 mg/kg/24h	8 mg/kg/24h
Sous-dosage AUC < 666	72%	33%	10%
Dans la cible	21%	36%	31%
Surdosage AUC > 939	7%	31%	59%

Garreau et al. CID 2023

DOSAGES DES ANTIBIOTIQUES

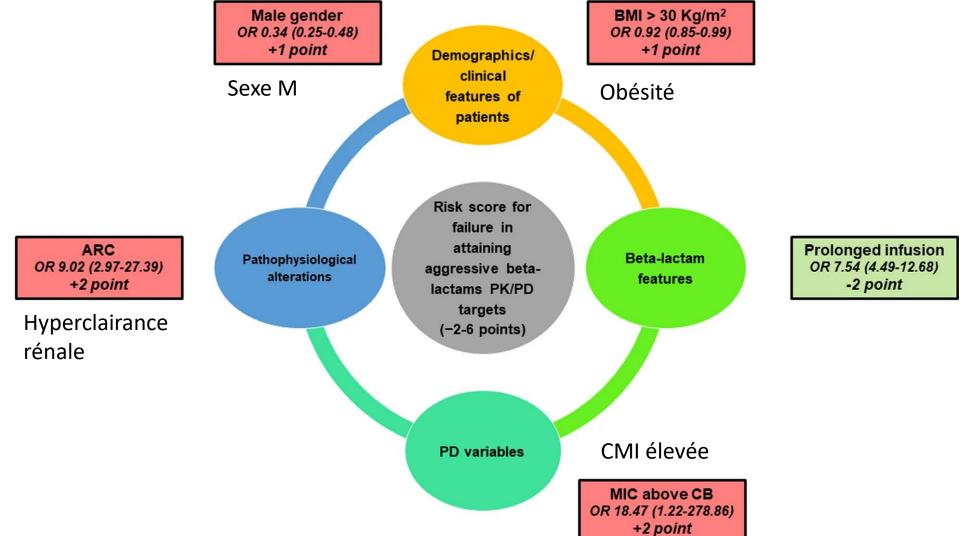
POUR QUELS PATIENTS?

Selon le terrain

- Risque de sous-dosage : hyperclairance rénale, obésité
- Risque de surdosage : insuffisance rénale, dialyse, patient âgé fragile

Selon la complexité de l'infection

- Site profond (diffusion incertaine): IOA, endocardite
- Facteurs microbiologiques : BMR, CMI élevée
- Echec ou rechute antérieurs


Selon la stratégie thérapeutique

- Fortes posologies d'emblée : méningite, endocardite
- Utilisation non-conventionnelle: voie SC, doses espacées (dalbavancine)

Selon la molécule antibiotique

- Toujours: glycopeptides, aminosides
- En fonction des FDR ci-dessus: bêta-lactamines, daptomycine, rifampicine, linézolide, FQ, dalbavancine...

DOSAGES DES ANTIBIOTIQUESPOUR QUELS PATIENTS ?

DOSAGES DES ANTIBIOTIQUES: GUIDELINES

Intensive Care Med https://doi.org/10.1007/s00134-020-06050-1

CONFERENCE REPORT AND EXPERT PANEL

Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Pape

Mohd H. Abdul-Aziz¹, Jan-Willem C. Alffenaar^{2,3,4}, Matteo Bassetti⁵, Hendrik Bracht⁶, George Dimop Deborah Marriott⁸, Michael N. Neely^{9,10}, Jose-Artur Paiva^{11,12}, Federico Pea¹³, Fredrik Sjovall¹⁴, Jean Andrew A. Udy^{17,18}, Sebastian G. Wicha¹⁹, Markus Zeitlinger²⁰, Jan J. De Waele²¹, Jason A. Roberts¹

Take-home message:

The Panel Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole in critically ill patients.

JOURNAL ARTICLE GUIDELINES

Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society,

https://doi.org/10.1186/s13054-019-2378-9

Critical Care

REVIEW

Open Access

Optimization of the treatment with betalactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French

Society of Anaesthesia and Intensive Care

Journal of **Antimicrobial** Chemotherapy

J Antimicrob Chemother 2022; **77**: 869–879 https://doi.org/10.1093/jac/dkab499 Advance Access publication 12 January 2022

Clinical practice guidelines for therapeutic drug monitoring of teicoplanin: a consensus review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring

Yuki Hanai 60 1*, Yoshiko Takahashi², Takashi Niwa³, Toshihiko Mayumi⁴, Yukihiro Hamada⁵, Toshimi Kimura 60 5, Kazuaki Matsumoto⁶, Satoshi Fujii⁷ and Yoshio Takesue⁸

DOSAGES DES ANTIBIOTIQUES COMMENT ?

Classe	Cible efficacité	Cible de sécurité	Prélèvement	Délai avant dosage
Aminosides	Cmax/CMI > 8-10 AUC/CMI > 70	Cmin < 2.5 mg/L (amik) Cmin < 1mg/L (genta, tobra)	Pic 30-60 min Résiduel	Dès 1 ^{ère} dose
Vancomycine	AUC/CMI > 400 Cmin > 10 mg/L (II) Css > 20 mg/L (CI)	Cmin < 15-20 mg/L (II) Css < 28 mg/L (CI) AUC < 700	Résiduel ou Css	24-48h après dose de charge
Teicoplanine	Cmin > 10 mg/L	Cmin < 60 mg/L	Résiduel	Après dose de charge (48h)
Fluoro- quinolones	AUC/CMI = 125-250 Cmax/CMI > 10-12	ND	Pic 30-60 min	24h
Linézolide	AUC/CMI = 80-120 T>CMI > 85%	Cmin = 2-6 mg/L	Résiduel	72h
Daptomycine	AUC/CMI > 666 Cmax/CMI > 100	Cmin < 24 (↑CPK) AUC < 939	Pic 30-60 min Résiduel	48-72h

CI = continuous infusion (perfusion continue) II = intermittent infusion (IV discontinue)

Cibles avec preuves cliniques

DOSAGES DES ANTIBIOTIQUES

COMMENT?

Classe	Cible efficacité	Cible de sécurité	Prélèvement	Délai avant dosage
Pénicillines	100% fT> 1-4 xCMI	Pipéracilline Cmin > 361 mg/L Css > 157 mg/L	Résiduel	24-48h
Céphalosporines	100% fT> 1-4 xCMI	Céfépime Cmin ≥ 20 mg/L Css ≥ 63 mg/L	Résiduel	24-48h
Carbapénèmes	T>CMI > 75% Cmin/CMI > 5 100% fT> 1-4 xCMI	Meropénème Cmin ≥ 45 mg/L	Résiduel	24-48h

CI = continuous infusion (perfusion continue) II = intermittent infusion (IV discontinue) Cibles avec preuves cliniques (en réanimation)

DOSAGES DES ANTIBIOTIQUES COMMENT ?

Bien prescrire et réaliser les dosages

- Respect du délai après début/modification (dosage à l'équilibre)
- Respect des conditions analytiques (transport, tube)
- Respect des horaires (pic, résiduel)
- Bien remplir les bons (IDE) : horaire de perfusion et prélèvement +++

Savoir interpréter les résultats

- Vérifier le respect des horaires
- Selon cible PK/PD : efficacité et toxicité (guidelines, allo labo/pharmacie)
- Selon la CMI individuelle si possible

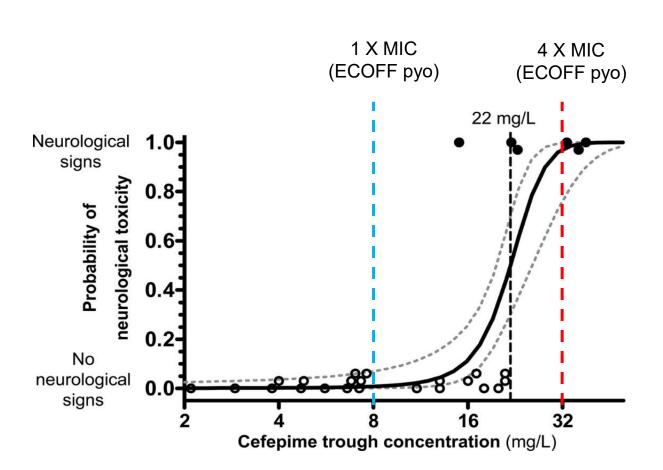
- La modélisation PK peut aider à interpréter les résultats
 - Estimation de l'AUC (vanco, dapto, FQ)
 - Calcul de posologie
 - Gestion des surdosages

COMMENT INTERPRÉTER LE RÉSULTAT DU DOSAGE?

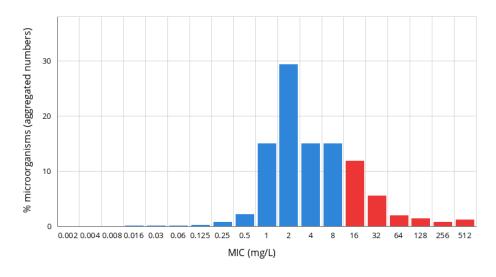
IMPORTANCE DE LA CMI

Cible PK/PD

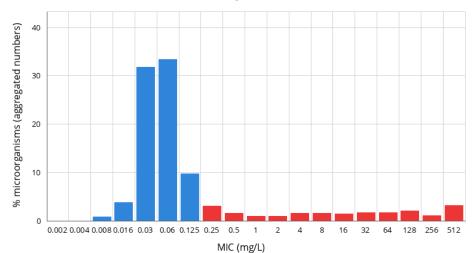
(f)AUC / MIC


(f)Cmax / MIC

(f)T > MIC

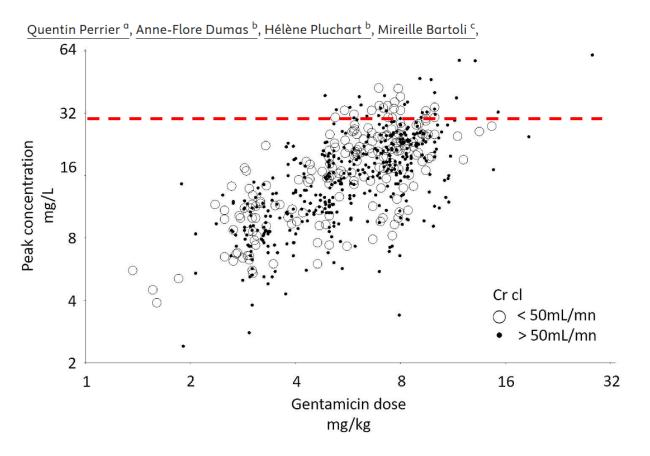

- Dosage à confronter à la CMI : quelle valeur de CMI utiliser ?
 - Infection non-documentée : scénario du pire (ex: ECOFF *Pseudomonas*)
 - Bactérie identifiée, pas d'antibiogramme : ECOFF de l'espèce (EUCAST)
 - Bactérie identifiée S : CMI mesurée (allo labo bactério)
- Considérer un intervalle de confiance autour de la CMI (1-2 dilution(s))
- Les labos de pharmacologie rendent souvent une fourchette de concentration sans connaître la CMI
- La connaissance de la CMI permet d'individualiser la cible de concentration
- La CMI conditionne la marge thérapeutique

COMMENT INTERPRÉTER LE RÉSULTAT DU DOSAGE?


IMPORTANCE DE LA CMI

Céfépime / P. aeruginosa

Céfépime / E. coli



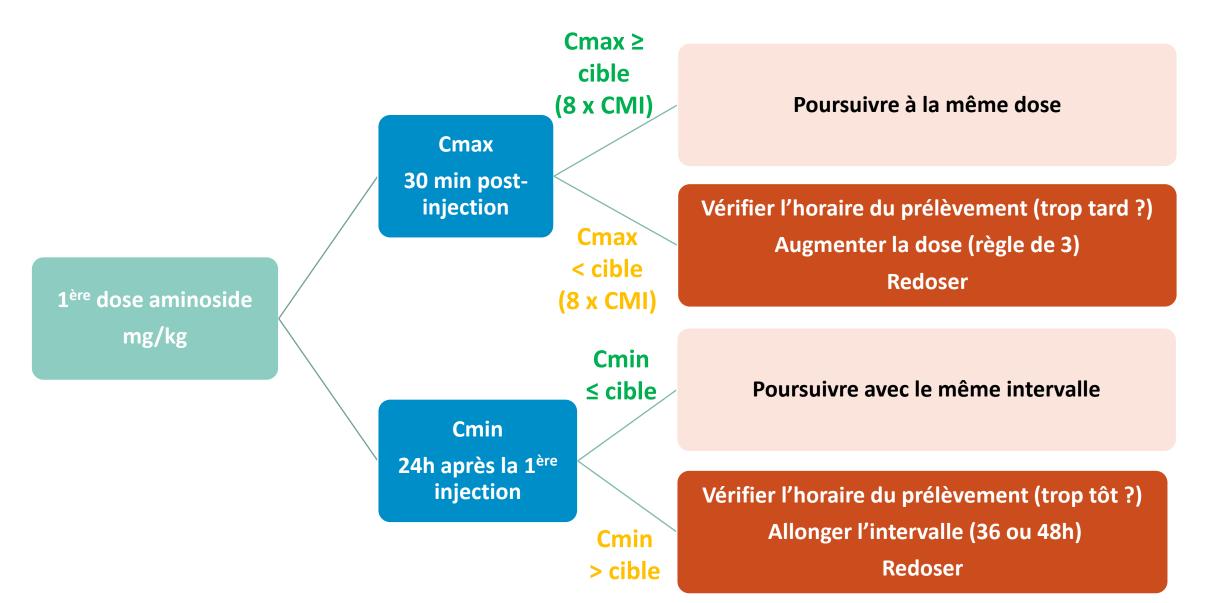
COMMENT INTERPRÉTER LE RÉSULTAT DU DOSAGE?

IMPORTANCE DE LA CMI

Short communication

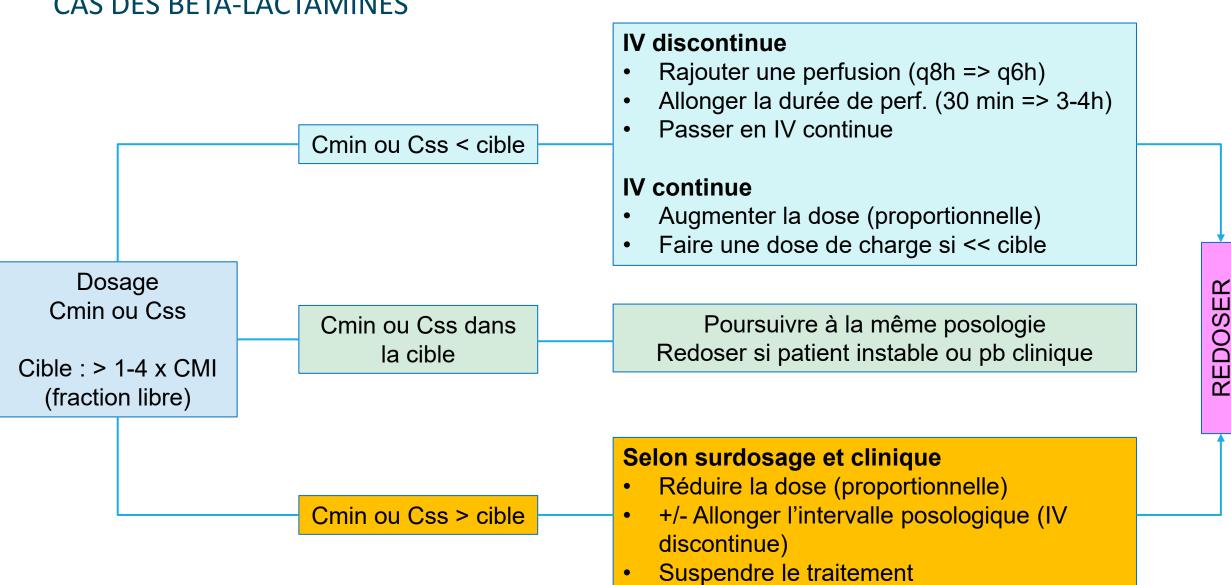
Recommended gentamicin peak plasma levels rarely reached, even with recommended dosages

Cible Afssaps 2011 Pic > 32 mg/L = 8×4 mg/L


ECOFF de quelques espèces (EUCAST)

- S. aureus = 2
- *S. epidermidis* = 0.5
- *E. coli* = 2
- K. pneumoniae = 2
- Proteus mirabilis = 4

La cible de concentration doit être individualisée selon pathogène et CMI!


ADAPTATION POSOLOGIQUE APRÈS DOSAGE

CAS DES AMINOSIDES

ADAPTATION POSOLOGIQUE APRÈS DOSAGE

CAS DES BÊTA-LACTAMINES

MESSAGES-CLÉS: DOSAGES DES ANTIBIOTIQUES

- Utiles pour optimiser la balance bénéfice/risque de l'antibiothérapie et individualiser le traitement ATB
- A considérer selon le contexte
 - Type d'infection
 - Type de patient
 - Marge thérapeutique de l'antibiotique
 - Disponibilité locale du dosage et délai de rendu
- Bien prescrire les dosages
- Savoir interpréter les résultats (timing, CMI, infection)
- Travailler en équipe (labo pharmaco + bactério, pharmacie)

MERCI!