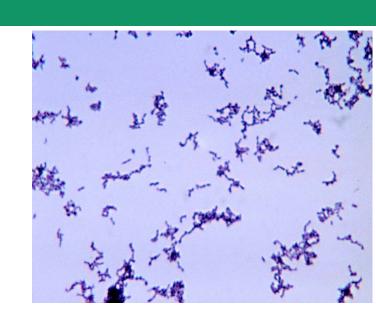


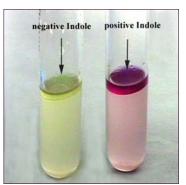
du mercredi 11 au vendredi 13 juin 2014 Palais des Congrès de Bordeaux

Propionibacterium acnes Aspect microbiologique


B. de Barbeyrac
Laboratoire de bactériologie
CHU Bordeaux

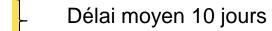
P. acnes : caractéristiques bactériologiques

- Bacille à Gram positif,
- corynéforme, non sporulé
- Habitat : peau, glandes sébacées muqueuses, cheveu
- Commensal, mais
 - responsable de l'acné (possible!)
 - retrouvé dans des pdts pathologiques, notamment d'infections ostéo articulaires sur prothèse, et autres (SNC, endophtalmies, endocardites, infections de la sphère ORL et pulmonaire...)



P. acnes : caractéristiques bactériologiques

- Atmosphère : anaérobiose (aérotolérant!)
- Milieux de culture classiques (gélose au sang, bouillon nutritif)
- Identification facile et rapide
 - Morphologie : coloration de Gram
 - Aspect des colonies
 - Genre : Catalase +(≠ autres BG+ ana sauf Actinomyces)
 - Espèce : Indole +(≠ avidum, granulosum....)



P. acnes : caractéristiques bactériologiques

- Délai de culture: inoculum, origine du prélèvement
 - rapide en 2 à 5 jours ou plus lent jusqu'à 15 jours
 - Lutz, 2005, Saint Etienne
 - Pupin, 2007, Nantes

- Interprétation d'une culture positive : difficile
 - Contaminant fréquent
 - Soit au moment du prélèvement
 - ✓ peau du malade : éviter les orifices de fistule, préférer les pvts peropératoires
 - ✓ peau ou cheveux du préleveur
 - Soit au laboratoire
 - ✓ peau ou cheveux du technicien (travailler sous PSM)

Bactérie émergente: pourquoi?

- Amélioration des techniques de mise en culture
- Meilleure connaissance du génome et des facteurs de virulence

Amélioration des techniques de culture

- Caractéristiques des bactéries responsables d'IOA
 - Adhèrent → biofilm → résistance (AB, S. Immunitaire)
 → casser ce biofilm
 - Métabolisme lent → prolonger les temps d'incubation
 - Inoculum faible : bouillon d'enrichissement (flacons d'hémoculture)
 - Répartition non homogène : X° les échantillons

Le biofilm

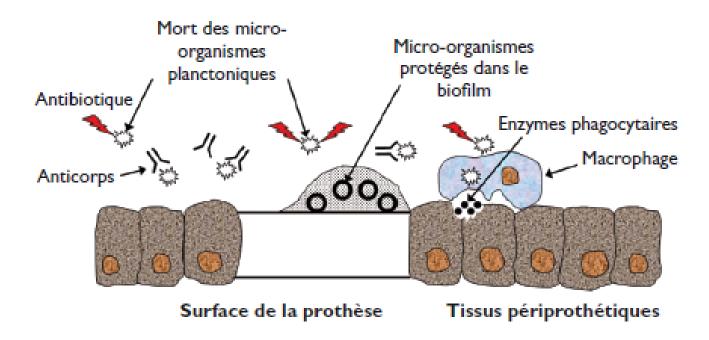
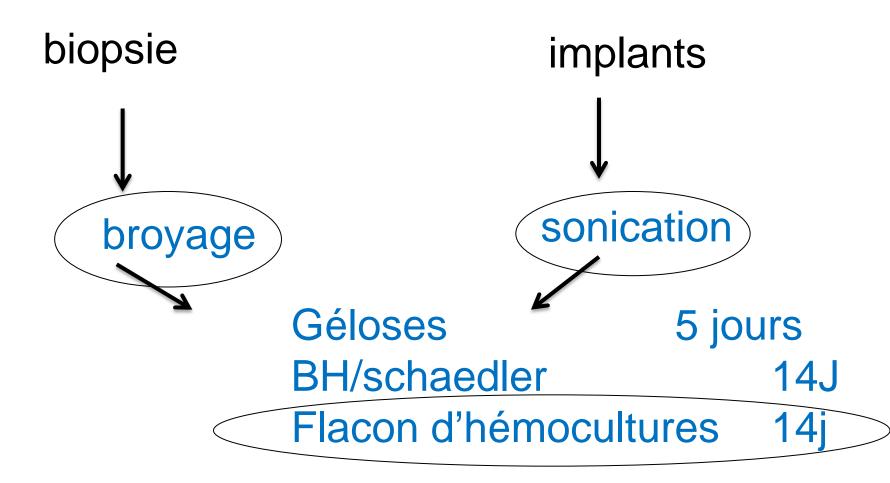



Figure 1. Formation de biofilm à la surface d'une prothèse

Amélioration des techniques bactériologiques

Broyage des échantillons : tissus

Sample processing strategy: beadmill

Nouvelles **méthodes** pour le diagnostic des infections liées aux implants

Rev Med Suisse 2010; 6: 731-4

A. Trampuz J. Steinrücken M. Clauss A. Bizzini U. Furustrand I. Uçkay R. Peter

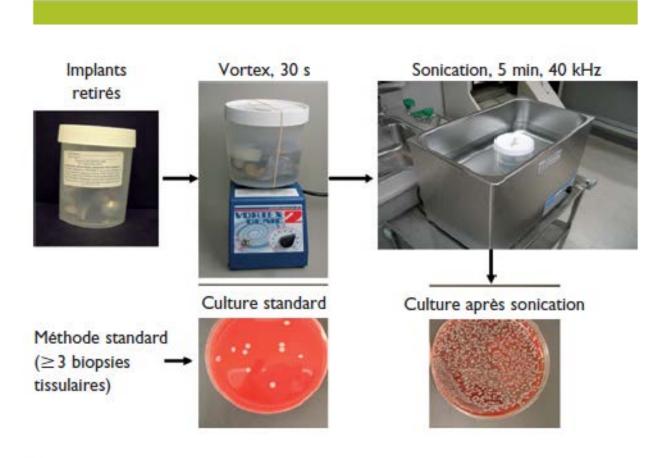
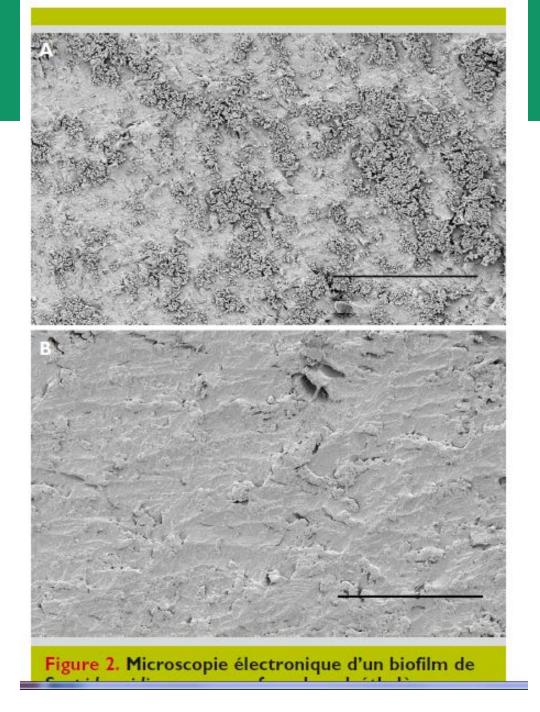



Figure 2. Sonication d'implants

Détection par amplification génique

 Identification of *Propionibacterium acnes* by polymerase chain reaction for amplification of 16S ribosomal RNA and lipase genes.

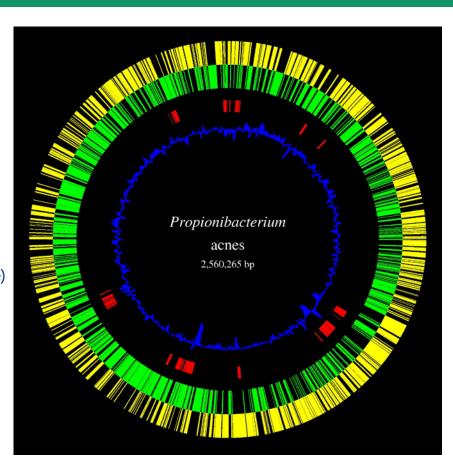
Nakamura et al. / Anaerobe 9 (2003) 5-10

Propionibacterium acnes endophthalmitis diagnosed by microdissection and PCR

R R Buggage et al. Br J Ophthalmol. Sep 2003; 87(9): 1190-11

 An evaluation of PCR primer set used for detection of *Propionibacterium* acnes in prostate tissue samples.

Karen S. et al The Prostate 68:1492-1495(2008)



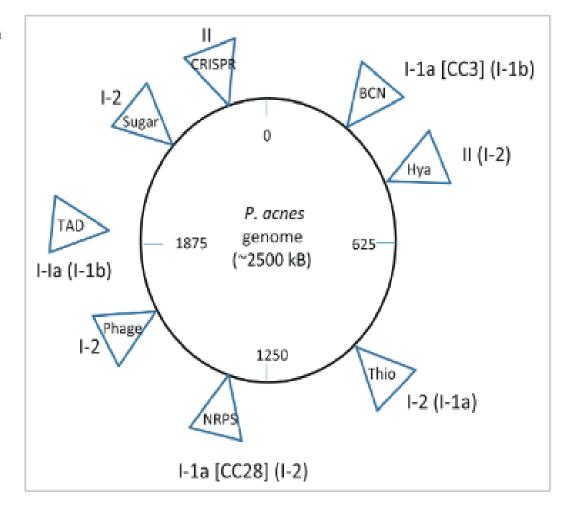
Bactérie émergente: pourquoi?

- Amélioration des techniques de mise en culture
- Meilleure connaissance du génome et des facteurs de virulence

Carte du chromosome de P. acnes

- ✓ Séquence complète 2011
- \checkmark Taille 2 500 kb \pm 30,2 kb
- ✓ GC60%
- ✓ Séquences codantes (vert et jaune)
- ✓ Ilots génomiques (rouge)

Variabilité de l'espèce P. acnes


basée sur l'absence/présence d'îlots génomiques
 Confèrent des facteurs de virulence

Typage MLST: 3 principaux types I, II, III
 sous types I-1a, I-1b, I-2 ou
 IA1, IA2, IB, IC (complexe clonal CC)
 Lien entre phylotype et situation clinique?

Exemple d'îlots insérés dans le core génome: le génome flexible

such

CRISPR/cas region chez P. acnes

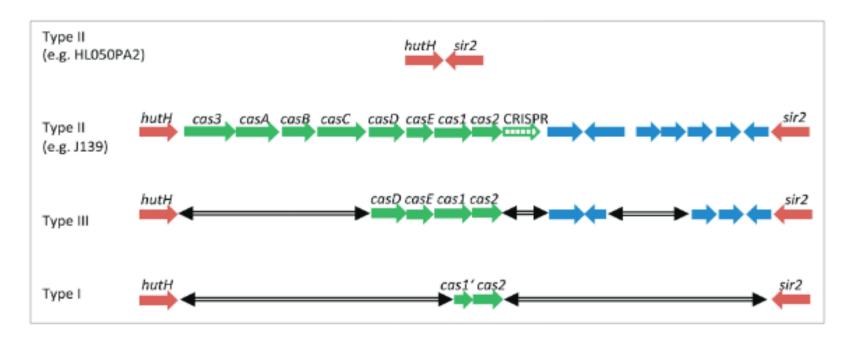
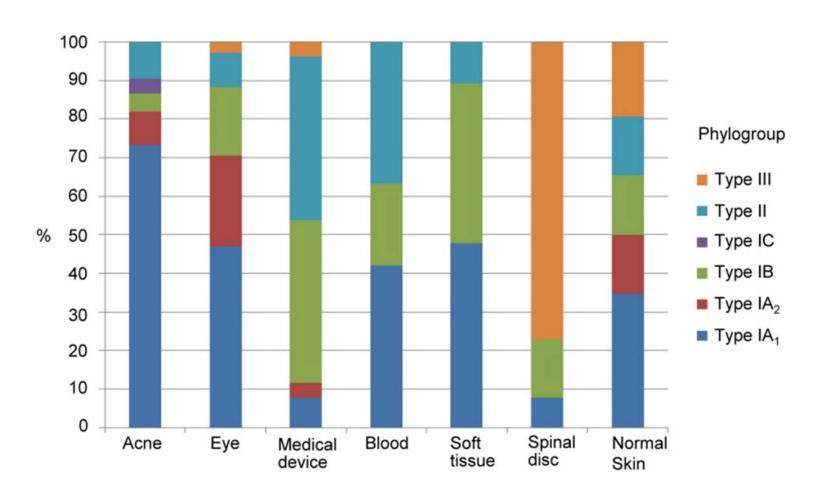



Figure 2. The CRISPR/cas-containing locus in P. acnes. The 16 kb genomic region is present in most type II strains (such as in strain J139), inserted

CRISPR/CAS: Rôle de défense contre les éléments mobiles

Association des phylotypes de *P. acnes* avec différentes situations cliniques (McDowell, Plos One, september 13, 2013)

Existe-t-il une différence de phylotype des souches de *P.acnes* en fonction de l'origine: matériel rachidien, prothétique et environnement?

RICAI 2013: S. Dellière, et al. (Brest, Nantes, Poitiers)

IOA rachis
N = 58 (%)
IAO prothèse
N = 4
Environnement

N = 26 (%)

 $I \cap A$ reads:

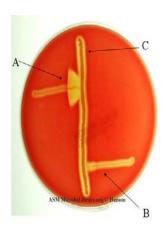
IB	II	Ш
22	2	0
(37)	(3)	
1		
10	9	3
(38)	(34)	(11)
	22 (37) 1	22 2 (37) (3) 1 1 9

Facteurs de virulence

- héberge des éléments mobiles:
 - phages,
 - un plasmide linéaire retrouvé dans des souches d'acné résistantes aux cyclines

- Capable de survivre dans les macrophages
- Capable d'adapter son expression protéique en fonction de l'atmosphère (peau vs infection profonde)

Correlation between phylogroups and intracellular proteomes of *P. acnes* and differences in the proteins expression profiles between anaerobically and aerobically grown cells. I. Dekio, BioMed Research International, 2013.


Facteurs de virulence

Capable de fabriquer du biofilm (résistance aux AB, production de lipase)

Biofilm formation by *P.acnes* is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. T. Coenye, Research in Microbiology, 2007, 158.

 Capable de secréter le « camp factor »
 (5 gènes) agissant en synergie avec une sphingomyélinase → cytotoxicité

P. acnes CAMP factor and host acid sphigomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. T. Nakatsuji, Plos One, 2011, 6,

Conclusion

- P. acnes, commensal, contaminant fréquent, est un pathogène sous-estimé
- De culture facile en adaptant le temps et l'atmosphère
- Pathogène opportuniste!
- Il possède un génome flexible lui permettant de s'adapter à des différentes condition de vie et de varier l'expression de ses gènes de virulence