

du mercredi 11 au vendredi 13 juin 2014 Palais des Congrès de Bordeaux

Quoi de neuf dans la prise en charge des infections fongiques à levures ? Apport de la mycologie

Isabelle Accoceberry Laboratoire de Parasitologie-Mycologie Hôpital Pellegrin CHU de Bordeaux

Apport du laboratoire

Augmentation de l'incidence des IFI, des patients à risque et de la consommation des antifongiques

Candidose 80-90% IFI, prévalence candidémies de 6,9/1000 Pts en Réa (EPIC II)

Stratégie de diagnostic chez Patient à risque

Diagnostic Mycologique conventionnel Hémocultures +++

Sites périphériques : cathéters, urines, peau, expectorations, muqueuses ...

→colonisation?

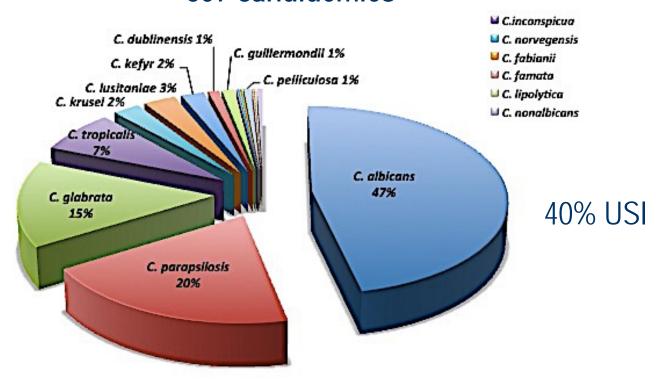
Sites profonds (points d'appel) : LCR, biopsies organes, LBA, sinus

→invasion?

Documentation IFI ,
 isolement et identification
 rapide et précise de l'espèce

→ traitement adapté et le plus efficace

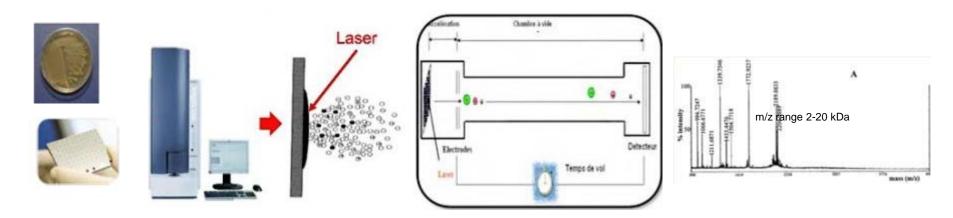
Sensibilité in vitro aux ATF


Méthodes non basées sur la culture

Recherche de marqueurs précoces de l'infection Sérum

- Mannanes/ AC anti-Mannanes
- β-D-glucane
- → traitement pré-emptif ?

Candidémies CHU Bordeaux 2005-2012 607 candidémies


- 7 proportion des Candida non albicans
 - USI FDR : chir gastrointestinale récente, exposition récente ATF systémiques, exposition récente au fluconazole pour espèces résistantes
- Emergence d'espèces rares

Playford EG et al., Crit Care Med 2008 Arendrup MC et al., CMI 2013

• Autres levures : Trichosporon spp, Geotrichum spp, Blastoschizomyces capitatus, Saccharomyces spp, Cryptococcus neoformans, Malassezia spp ...

Spectrométrie de masse

La Désorption Ionisation Laser Assistée par Matrice : le MALDI-TOF

- Validé pour l'identification des levures : ID simple précise au niveau de l'espèce en 5 minutes !
- Identification directe à partir du flacon d'hémoculture

- Performance > ID conventionnelle
 - Discrimination complexe espèces
 - C. parapsilosis /C. orthopsilosis/C. metapsilosis
 - C. glabrata /C. bracarensis/C. nivariensis
 - C. norvegensis /C. inconspicua
 - ID espèces rares émergentes
 C. palmioleophila CMI FCZ 8 à 16 g/mL

1ère ligne traitement : Candines ou Fluconazole

Spectre des antifongiques in vitro

Espèces	AMB	CAS ¹	Fluco	Vori ²
C. albicans	+	+	+	+
C. tropicalis		2 11	0 16 11	
C. parapsilosis	AMB +/- : (<i>5. lusitaniae</i>	e C. citerrii	
C. glabrata	Fluco +/- ·	C. quillerma	ondii, C. inco	กทรท่านล
C. krusei		•	gnolae, C. II	•
C. kefyr	C. palmioleophila, C. rugosa			
Trichosporon/G eotrichum	CAS +/- : C	C. orthopsilo	sis, C. met	apsilosis,
biofilms	C. guillermondii			

- 1 Spectre de sensibilité similaire pour toutes les échinocandines
- 2 Spectre de sensibilité posocanazole = voriconazole mais pas de formulation IV
- 3 Espèces avec CMI en échinocandines intrisèquemment plus élevées

Résistance acquises rares mais ...

Résistance aux azolés

Cible = CYP51 codée par gène *ERG11*

Surexpression cible, mutation ponctuelle gène ERG11, Transport d'efflux (MDR, CDR)

256 882 *Candida spp*, 41 pays, 10 ans

CMI Fluco ≥ 16 mg/L

2% C. albicans, 3,9% C. dublinensis 6,8% C. parasilosis, 9% C. tropicalis

2 centres anti-cancéreux, 243 *Candida spp* candidémies, USA

19% (45/243) CMI Fluco ≥ 16 mg/L 36% cas résistance acquise

C. albicans, C. tropicalis, C. parapsilosis

Résistance aux candines

Cible = paroi, ß-(1-3) glucane synthase

mutations HS FKS1 (*C. albicans, C. tropicalis, C. krusei*) FKS1/FKS2 (*C. glabrata*)

1,8% Pts (12/649) CI sous traitement

Espèces

5 C. glabrata

2 C. tropicalis

mutations FKS

5 C. parapsilosis

Durée TT MICA 5-165 j – moy. 33 j

669 C. glabrata, candidémies 2006-2010

162 R Fluco (CMI \geq 64 mg/L) dont 18 mutants *FKS* R candines (0 entre 2001-04)

ID espèce pas suffisante pour choix traitement

Pourquoi tester in vitro la sensibilité aux ATF?

- Détecter les résistances : ATF actif / ATF non actif
 - Résistance intrinsèque (naturelle)
 - Certaines espèces sont moins sensible à un ATF donné
 - Caractère d'espèce
 - isolats non identifiés ou difficiles à identifier
 - Résistance acquise (secondaire)
 - Une souche appartenant à une espèce sensible devient résistante, avant ou pendant le traitement ATF
 - Caractère de souche
 - → non prédite par l'identification de l'espèce

Comment? détermination CMI mg/L

Méthodes de référence

Méthode de sicro dilution en milieu liquide

- CLSI (Clinica) Institute)
- EUCAS **Antimicr**

Méthodes «validées»,

Définition des valeurs seuils critiques d'interprétation clinique ou Breakpoints (BPs)

Catégorisation : S, S-DD ou I, R

S-DD = succès thérapeutique imprévisible

Concentration élevée de l'ATF au site infection ou utilisation dose plus élevée d'ATF

- Etest® biol Yeastone® Trek systems, Vitek®2 bioMérieux



Procédures pour établir les BPs

	CLSI	EUCAST
Distribution des CMI	% cumulé 13338 Candida spp (CI), 91% CMI FCZ ≤ 8 mg/L 5346 Candida spp, 99,9% CMI CAS ≤ 2 mg/L,	Plusieurs séries de données valeur seuil épidémiologique (ECV) par espèce
PK/PD	modèles animaux, chez l'homme FLUCO : AUC/CMI = 25 (dose/CMI) Candines : Cmax/CMI et AUC/CMI	simulation de Montecarlo Cmax/CMI, AUC/CMI
Relation CMI et évolution clinique	Règle des « 90- 60 » 90% PTS infectés avec isolats S répondent 60% PTS infectés avec isolats R répondent Peu de souches avec CMI élevées	 W Data mining » (arbre décisionnel, régression linéaire, algorithmes Naïves Bayes Par espèce (bonne cible pour l'ATF) Pour souches « phénotype sauvage et non sauvage »
Rex JH <i>et al.</i> , CID 1997 Rex JH et Pfaller MA CID 20 Pfalller MA <i>et al.</i> , JCM 2006		BP jamais plus élevé que ECV sauf si données cliniques (Candida et Fluco)

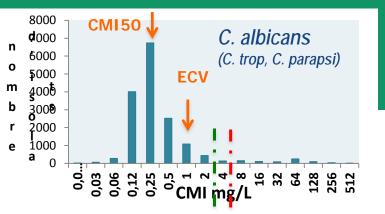
Distribution CMIs Fluconazole / C. albicans

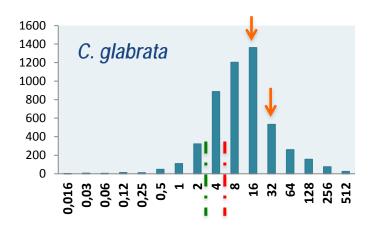
Arendrup MC *et al.*, AAC 2009 et 2010 Turnidge *et al.*, CMI 2006 Turnidge et Pterson Clin Microbiol Rev 2007

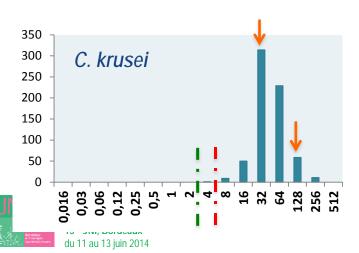
variation du test)

Résistance microbiologique (pas due à

Mécanismes de résistance


15es JNI, Bordeaux du 11 au 13 juin 2014


Nouveaux BPs adaptés à l'espèce


ATF	CLSI M27-S3 Anciens BPs	CLSI M27-S4	EUCAST (EDEF 7.2)	S ≤ ; R >
AMB	≤1;>1	ECV = 2	≤1;>1	
FLUCO	≤8;≥64 Candida spp	≤ 2 ; > 4 $\leq 0,002$; > 32 mauvaise cible	\leq 2; > 4 \leq 0,002; > 32 mauvaise cible	C.albicans, C. tropicalis, C. parapsilosis C. glabrata C. krusei
VORI	≤ 1;≥4 Candida spp	≤ 0.125 ; > 0.5 ECV = 0.5 ≤ 0.5 ; > 1	≤ 0,125 ; > 0,125	C.albicans, C. tropicalis, C. parapsilosis C. glabrata C. krusei
ITRA	$\leq 0,125$; ≥ 1 Candida spp	≤ 0,125 ; > 0,5	≤ 0,06 ; > 0,006 ≤ 0,125 ; > 0,125 IE	C. albicans, C. dublinensis C. tropicalis, C. parapsilosis, C. lusitaniae C. glabrata, C. krusei
POSA			≤ 0,06 ; > 0,006 IE	C.albicans, C. tropicalis, C. parapsilosis C. glabrata, C. krusei

Application possible des ECVs pour les espèces sans BPs établis pour détecter les isolats de sensibilité diminuée à l'ATF testé (phénotype non sauvage) (Ex Fluco : C. lusitaniae et C. $kefyr \le 1$ et ≥ 2 g/ml; C. guilliermondii ≤ 8 et ≥ 16 g/ml)

Pourquoi BPs adaptés à l'espèce EX FLUCO

128 candidémies 58% C.alb, 133 Candidoses muqueuses

	MIC (mg/liter)	All doses		A III
	(mg/mer)	Candidemia	OPC	All cases % réponse
	≤0.5	91 (98/107)	100 (26/26)	93 (124/133)
	1	100 (6/6)	100 (4/4)	100 (10/10)
	2	100 (1/1)	100 (1/1)	100 (2/2)
ŕ	4	100 (3/3)	69 (5/9)	66 (8/12)
$\qquad \qquad \Longrightarrow$	8	40 (2/5)	26 (7/32)	24 (9/37)
	≥16	75 (3/4)	2 (0/60)	4 (3/64)

EUCAST EDEF 7.1 : BPs C.alb, C. trop, C. parapsilosis $S \le 2 \text{ mg/L}$; I/S-DD = 4 mg/L; R > 4 mg/L

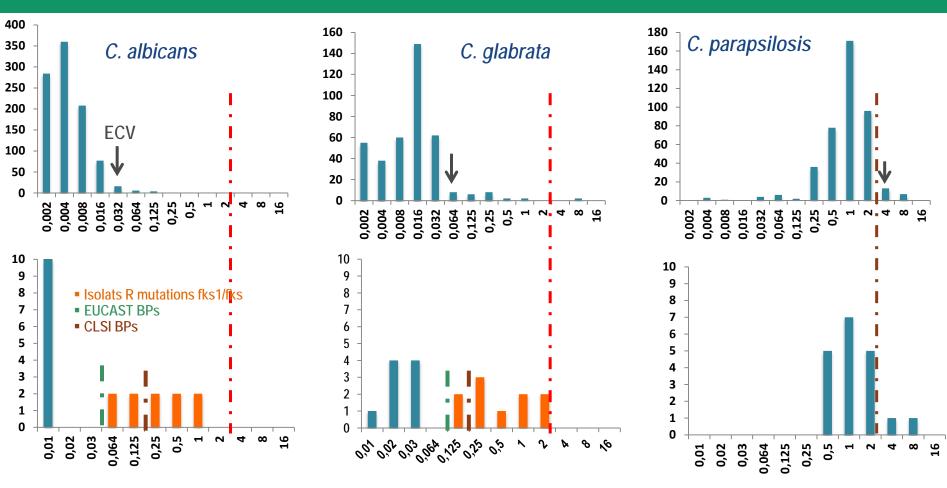
FLUCO: ECV VS BPs

- C. krusei mauvaise cible
- C. glabrata BPs divisent la population WT
 - S ≤ 32 mg/L ?? pas de données cliniques
 - → S-DD 0,002-32 mg/L

www.eucast.org; Rodriguez-Tudela JL et al., AAC 2007, JCM 2007, CMI 2008

Nouveaux BPs adaptés à l'espèce

ATF	CLSI M27-S3 Anciens BPs	CLSI M27-S4	EUCAST (EDEF 7.2)	S ≤ ; R >
ANI	≤ 2 ; > 2 (NS) Candida spp	≤ 0,25; > 0,5 ≤ 0,125; > 0,25 ≤ 0,25; > 0,5 ≤ 2; > 4	≤ 0,03; > 0,03 ≤ 0,06; > 0,06 ≤ 0,06; > 0,06 ≤ 0,002; > 4	C. albicans, C. glabrata C. tropicalis, C. krusei C. parapsilosis
MICA	≤ 2 ; > 2 (NS) Candida spp	≤ 0,25; > 0,5 ≤ 0,06; > 0,125 ≤ 0,25; > 0,5 ≤ 2; > 4	≤ 0,016; > 0,016 ≤ 0,03; > 0,03 ≤ 0,03; > 0,03	C. albicans, C. glabrata C. tropicalis, C. krusei C. parapsilosis, C. guillermondii
CAS	≤ 2 ; > 2 (NS) Candida son	≤ 0,25 ; > 0,5 ≤ 0.12 · > 0.25	Pas de BPs	C. albicans C. glabrata


Interlaboratory Variability of Caspofungin MICs for Candida spp.
Using CLSI and EUCAST Methods: Should the Clinical Laboratory Be
Testing This Agent?

Catégorisation de souches S en I voire R (C. glabrata et C. krusei)

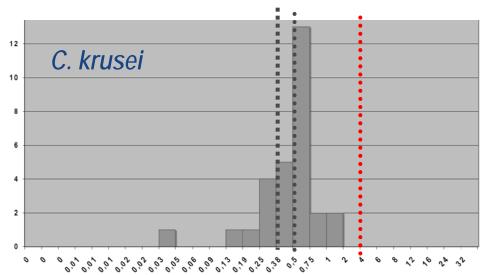
Pourquoi BPs adaptés à l'espèce Candines, Ex Anidulafungine

Arendrup MC *et al.*, AAC 2010 Reboli AC *et al.*, NEJM 2007 www.eucast.org

EUCAST → **BPs** = **ECV** *C. albicans C. glabrata*

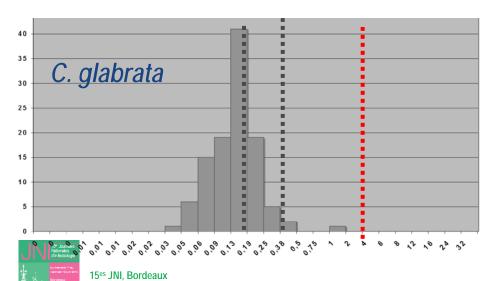
→ C. parapsilosis S-DD 0,002-2 mg/L

Méthodes commerciales «validées»



Les plus largement utilisées en routine

- Corrélation avec méthodes de référence (distribution des CMIs en miroir)
 - Choix approprié des BPs
- Détection des isolats R et pas de mauvaise catégorisation des isolats S en R → impact patient
- Reproductibilité intra et inter laboratoires (CQ, CMI50)


Pfaller MA et al., JCM 2014 et 2008 ; Pfaller MA et al., Diagn Microbiol Infect Dis 2012 et 2013 ; Ranque S et al., JCM 2012 ; Peterson JF et al., JCM 2011 ; Cuenca-estrella M et al., JCM 2010 ; Dannaoui E et al., JCM 2010 ; Posteraro B et al., JCM 2009

Etude observationnelle multicentrique EPICANDI, 8 CHU 1329 *Candida spp*

Etest CMI CAS, 831 *Candida spp*Application des nvx BPS CLSI

C. krusei (n=29)
 24% CMI ≤ 0,25 mg/L
 17 isolats CMI > 0,5 mg/L
 0 isolat CMI > 2 mg/L

du 11 au 13 juin 2014

C. glabrata (n=112)
 75% CMI ≤ 0,125 mg/L
 2 isolats CMI > 0,25 mg/L
 0 isolat CMI > 2 mg/L

Etest : nouveaux BPs de S divisent la courbe de distribution des CMIs!

CMIs candines et méthodes commerciales

EUCAST ANI «gold standard»: 496 S et 1 R (séquençage gènes FKS)

Etest CAS Catégorisation 13,1% isolats S comme I (73,1% *C. krusei*, 31,6% *C. glabrata*) ou R (1,5% *C. glabrata*, 0,4% *C. albicans*)

Etest CAS avec seuil sensibilité ≤ 0,5 mg/L ou Etest ANI avec BPs EUCAST pour sensibilité aux candines

• Sensititre Eschenauer et al., AAC 2014 → 2005-13, 2897 isolats candidémies

20% C. glabrata et 40% C. krusei ANI S ou MICA S / CAS NS

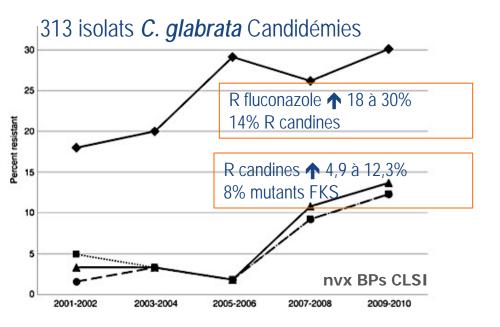
→ signification clinique ?

certaines mutations fks conférent des niveaux de résistance différents aux 3 candines corrélés avec réponse au traitement dans modèle souris

Vitek2 Astad KM et al., AAC 2013 → 98 Candida spp / 31 mutants fks HS

Uniquement CAS et gamme de dilution tronquée ≤ 0,25 - > 4 mg/L!

Pour *C. glabrata* au dessus du BP de S (≤ 0,12) CLSI!


Pas de ≠ des isolats S des isolats I - 19,4% mutants FKS → S

When is antifungal susceptibility testing recommended for patient management and when for epidemiological reasons?

Isolated from	FOR patient management	FOR epidemiology
Blood and other deep sites	All isolates and particularly: 1.Strains from patients exposed to antifungal agents 2.Clinical failures 3.Rare and emerging species 4.Species that are known to be resistant or less susceptible to antifungal drug(s) in clinical use	All isolates should be tested using a reference method
Superficial sites	Failed to respond or relapsing infection Surveillance cultures from patients exposed to antifungal agents	Periodical epidemiological studies should be done

Prior echinocandin exposure

120 C. glabrata

No

10 mutants FKS

Etest MIC > 0.25 μg/mL

Yes

No

Rate of clinical failure

9 mutants FKS

91%
(10/11)

30%
(3/10)

Rate of clinical failure

120 C. glabrata

No

Rate of clinical failure

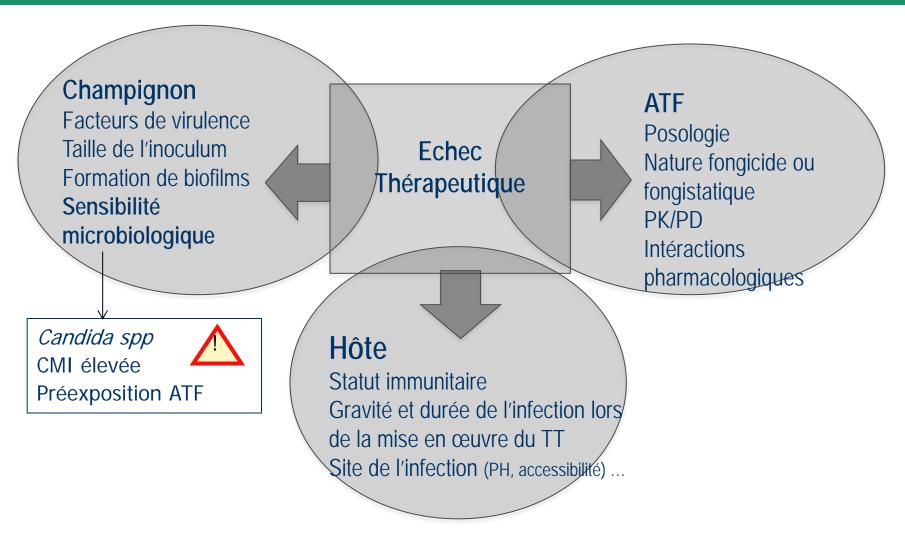
Rate of clinical failure

9 mutants FKS

91%
(1/3)
(8/42)

80% patients infectés avec mutant *FKS*→ CMI I ou R et échec thérapeutique ou récurrence infection

Alexander BD et al., CID 2013


Facteurs prédictifs échec thérapeutique

- Infection mutant FKS (pas de caractérisation moléculaire en routine)
- Pré-exposition aux candines
- ⇒ID rapide au niveau de espèce ⇒Faire CMI
 - Exposition préalable ATF Durée pré-exposition ?? (7-184 j)
 - Pas pré-exposition, R rare et **règle « 90-60 »** (60% isolats R *in vitro* répondent au TT)

Conclusion

- Documentation infection, sensibilité in vitro aux ATF
 - Intérêt +++ connaître épidémiologie locale et épidémiologie de la résistance aux ATF
 - Effort de standardisation des tests et établissement des ECVs et de nouveaux BPs
 - ⇒ meilleure utilité clinique
 - ⇒ outil plus sensible pour détection de émergence de résistance Même si optimisation nécessaire ...
 - Réflexion locale sur bon usage des ATF

Conclusion

