

Journée des Référents en Antibiothérapie

mercredi 10 juin 2015

Traitement des Bactériémies

(hors endocardites)

Dr Éric BONNET

Hôpital Joseph Ducuing, Clinique Pasteur, Toulouse

Dr Yves WELKER

CHI Poissy/St Germain

Conflits d'intérêts

Dr Yves Welker 1 ère ligne Supporter du Stade Français

Invitations congrès: VIV, BMS, Gilead Participation à 1 EPU Dr Eric Bonnet 2 ème ligne Supporter du Stade Toulousain

Invitations congrès: VIV, BMS, MSD, Gilead Participations à des EPU

- Public concerné
 - Référents en antibiothérapie, membres de l'équipe mobile d'infectiologie, infectiologues travaillant en transversal, bactériologistes
- Pré-requis
 - Connaissance des principes de l'antibiothérapie
- Objectifs pédagogiques
 - Objectif global: amélioration de la prise en charge des bactériémies hors endocardite dans l'établissement des participants
 - Objectifs détaillés:
 - Connaître les éléments nécessaires à un suivi des bactériémies
 - Savoir utiliser des outils simples d'évaluation de la prise en charge des bactériémies
 - Améliorer la rapidité d'adéquation de l'antibiothérapie
 - Améliorer la fréquence des désescalades antibiotiques
 - Diminuer la durée des antibiothérapies des bactériémies

Discussion à partir de cas cliniques Mise au point bibliographique

- A. Evaluer la gravité de la bactériémie
- B. Etre disponible pour un conseil thérapeutique à la demande des prescripteurs
- C. Vérifier la mise en place d'une antibiothérapie adaptée dès notion d'une hémoculture positive
- D. Vérifier la désescalade éventuelle lors du retour de l'antibiogramme
- E. Evaluer la durée du traitement

Mortalité & bactériémie

Pays	Année	Lieu	N hôpitaux	N Bactériémies	% DC	Туре	Auteur
Canada	2000–2007	Regional	3	7712	18	Hopital – toutes causes	Lenz
Danemark	1992–2006	Nord	8–11	14 303	20.6	30J - toutes causes	Sogaard
Finlande	2004–2007	National	NA	33 473	13	30J - toutes causes	Skogberg
Espagne	2003–2004	Hop univ	3	1157	18.5	30J - toutes causes	Vallés
USA°	2004-2005	états	9	6611	10.2	SARM	Klevens
USA	2004-2005	états	9	556	19.3	SARM endocardite	Klevens

Goto Al-Hasan. CMI 2013

Mortalité
choc septique 55,6%
Pneumopathie 32,6%

Klevens RM.JAMA.2007:298(15)

Mortalité & bactériémie

Pays	Année	Lieu	N hôpitaux	N Bactériémies	% DC	type	auteur
USA	1995-2002	Multiples	49	24 179	27	Hopital – toutes causes	Wisplinghoff
USA	2002-2003	Multiples	59	468	15	Hopital – toutes causes	Shorr
Canada	2000-2007	Regional	3	2132	26	28J - toutes causes	Lenz
Belgique	2003	National	19	1839	31.8	Hopital – toutes causes	Vrijens
Estonie	2004-2005	Multiples	3	549	31	Hopital – toutes causes	Mitt
France	2004	National	286	4548	12	7J - toutes causes	RAISIN
Espagne	2006-2007	Andalousie	15	476	24	30J - toutes causes	Rodriguez-Bano
Danemark	1981-2000	National		18702	21,7°	SARM-SAMS	Benfield T
Canada	2000-2006	Calgary	1	1508	25	SARM-SAMS	Laupland KD

(a)

\$\frac{40}{35} \\
35 \\
30 \\
30 \\
\text{15} \\
\text{10} \\
\te

Goto Al-Hasan. CMI 2013

Benfield T. Clin Microbiol Infect.2007 (13)

Facteurs prédictifs de la mortalité des bactériémies à Staphylococcus aureus

Incidence

20/100000 à 50/100000 selon les pays

↑ avec l'âge

8.4/100000 en pédiatrie

+ fréquente chez l'homme, patients soins(hémodialyse)

+ fréquente dans certaines populations

Mortalité 20% inchangée depuis 1990

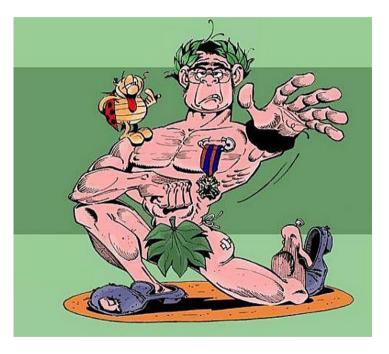
Mortalité/an

2 à 10 / 100000

SIDA 3

tuberculose 0,2

hépatite 2.2


K sein 12.5

K prostate 8.6

Il n'y a pas de mal à se faire du bien

Impact de l'équipe d'infectiologie sur la prise en charge des bactériémies

Staphylocoques

Traitement + précoce	58 vs 34h
↓ mortalité	21 vs 3%
↓ antibiothérapie inutile	1.3 vs 3.9 j
↓ des dosages de vanco	0,9 vs 1,95

Nagel JL.J Clin Microbiol 2014: 52(8)

Echographie cardiaque + fréquente	59 vs 26%
Dosage vancomycine + fréquent	99 vs 77%
Suivi des hémocultures amélioré	71 vs 50%
Infections profondes diagnostiquée	43 vs 16%
Contrôle de l'infection améliorée	83 vs 53%
Durée d'antibiothérapie adaptée plus longue	17 vs 12 j
↓ mortalité à 7, 30 j	20%

Tissot F.J Infect 2014 69(3) Saunderson RB BMJ Open 2014

		Univa	Cox regression analysis 1			
	Survived N = 291 (82)	Died N = 66 (18)	OR (95% CI)	p- value	OR (95% CI)	p- value
Male sex Age >60 years	181 (62) 142 (49)	37 (56) 49 (74)	0.78(0.45–1.33) 3.02(1.66–5.49)	NS <0.001	 2.00(1.13–3.54)	— 0.017
Healthy-nonfatal disease ^A	233 (80)	28 (42)	0.18(0.10-0.32)	<0.001	0.23(0.14–0.39)	<0.01
Jltimately-rapidly atal disease ≜	58 (20)	38 (58)	5.45(3.09-9.61)	<0.001	_	_
Healthcare associated SAB	153 (53)	47 (71)	2.23(1.25-3.99)	0.006	_	_
ntensive care unit B	42 (14)	18 (27)	2.22(1.18-4.19)	0.013	_	_
Severe sepsis ^{<u>B</u> Endocarditis <u>C</u>}	14 (5) 44 (15)	9 (14) 18 (27)	3.12(1.29–7.57) 2.11(1.12–3.95)	0.008 0.019	3.64(1.76–7.53) 2.68(1.53–4.71)	0.01 0.01
Fluoroquinolone therapy ^D	156 (54)	30 (45)	0.72(0.42-1.23)	NS	_	_
Aminoglucoside herapy	45 (15)	16 (24)	1.75(0.92–3.34)	NS	_	_
Lack of rifampicin therapy	71 (24)	25 (38)	1.89(1.07–3.32)	0.026	_	_
Rifampicin therapy of any duration ^{<u>E</u>}	220 (76)	41 (62)	0.53(0.30-0.93)	0.026	_	_
Rifampicin therapy ≥14 days, early onset ^E	167 (57)	18 (27)	0.28(0.15–0.50)	<0.001	0.33(0.19–0.57)	<0.01
Rifampicin therapy ≥14 days, late onset [⊆]	22 (8)	4 (6)	0.79(0.26–2.37)	NS	_	
Bedside IDS consultation ^{<u>H</u>}	271 (93)	56 (84)	0.41(0.18-0.93)	0.029	Forsblom E. Plo	— — — — — — — — — — — — — — — — — — —
Telephone IDS consultation	14 (5)	9 (14)	3.12(1.29–7.57)	0.008	2.11(1.01–4.42)	0.04

Optimisation de l'antibiothérapie	81 vs 23 h
Traitement effectif	89 vs 32 h
Durée d'hospitalisation diminuée	15 vs 23 j
Durée en UCI diminuée	10,7 vs 17 j
↓ mortalité	8,9 vs 21%
↓ du coût	2,4 m USD/an

Perez KK.J Infect 2014; 69(3)

Mais les limites de l'exercice dans la vraie vie sont multiples et variées

Adéquation du traitement & Evolution

		Caractère adéquat (A) ou inadéquat (I) de l'antibiothérapie des bactériémies						
Initiale empirique	Après connaissance HC+	Après ATBgramm	е					
Α	A	Α	65/620	(10.5%)	1.0			
I	A	Α	6/45	(13.3%)	1.27			
I	I	Α	8/31	(25.8%)	2.46			
I	I	I	3/9	(33.3%)	3.18			

Staphylococcus aureus bacteraemia — Nationwide assessment of treatment adequacy and outcome

Hilmir Asgeirsson ^a, Mar Kristjansson ^a, Karl G. Kristinsson ^{b,d}, Olafur Gudlaugsson ^{a,c,*}

Table 5	e 5 S. aureus bacteraemia incidence and mortality rates.										
Year of study ^a	SAB episodes	30-day mortality	Incidence (per 10 ⁵ inhabitants)	Mortality rate (per 10 ⁵ inhabitants)	Blood cultures performed ^b	Blood culture rate (per 100 inhabitants) ^b					
1 (2004)	52	13 (25.0)	24.3	6.08	9639	3.29					
2 (2005)	70	13 (18.6)	32.3	6.00	9976	3.37					
3 (2006)	65	8 (12.3)	28.9	3.56	10,394	3.42					
4 (2007)	66	6 (9.1)	28.5	2.59	11,444	3.68					
5 (2008)	74	5 (6.8)	31.0	2.09	10,895	3.41					

Note, Data are number (%) of episodes unless otherwise indicated, SAB: S. aureus bacteraemia.

La mortalité \par la mise en place de traitement adéquate application de recommandations

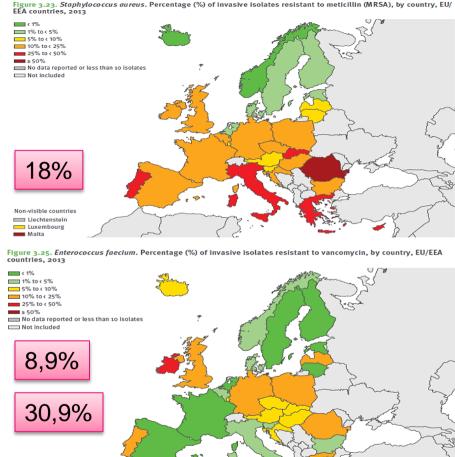
a Each year of study is counted from December 1 to November 30 the following year. Year 1: Dec. 1 2003 to Nov. 30 2004, etc.

b Blood cultures performed at the university hospital (all ages), being approximately 90% of national blood cultures.

Mais attention au retour

Infections invasives
2013
Données françaises & Européennes
Où en est on?

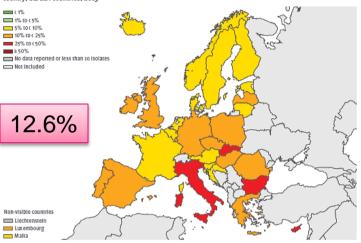
SARM 17%



Non-visible countries

Liechtenstein

Luxembourg


Malta

Escherichia coli

Figure 3.2. Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2013

C3G R 9.5% FQ R 16.7%

Figure 3.1. Escherichia coli. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2013

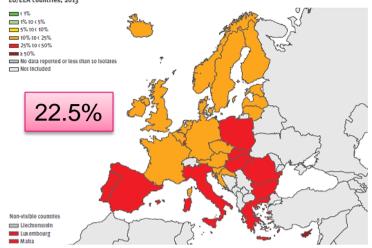
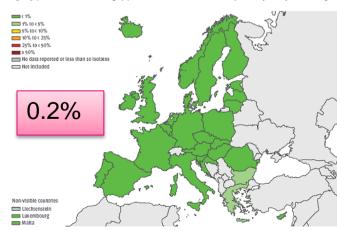
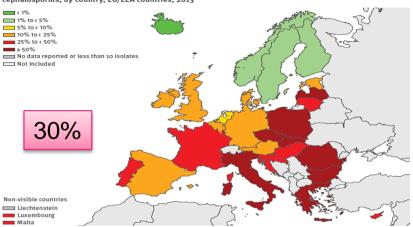
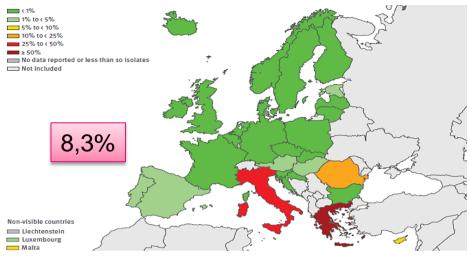
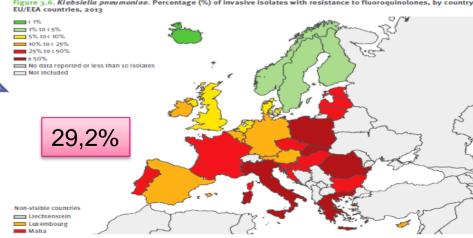
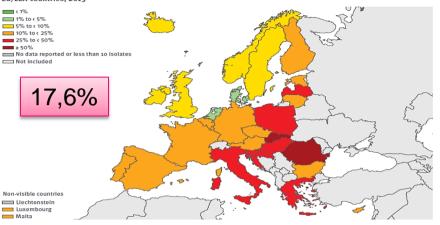




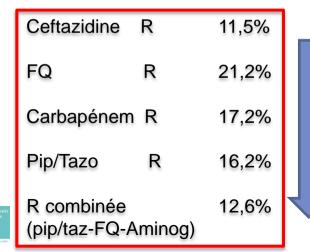
Figure 3.4. Escherichia coli. Percentage (%) of invasive isolates resistant to carbapenems, by country, EU/EEA, 2013

Klebsiella pneumoniae

Figure 3.7. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2013


Figure 3.6. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country EU/EEA countries, 2013



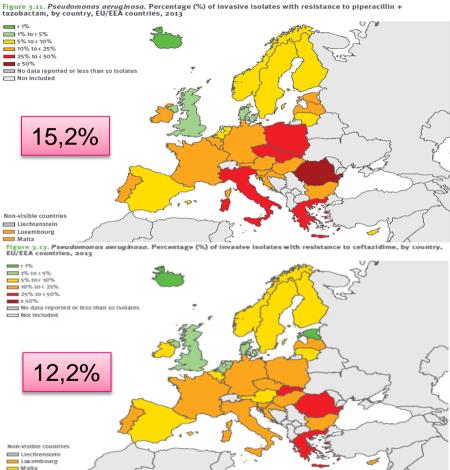
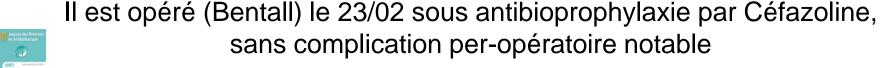

Pseudomonas aeruginosa

Figure 3.15, Pseudomonas geruginosa, Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2013



Cas clinique 1

Monsieur Louis B., 72 ans, 84 kg, IMC = 27,7 kg/m² est hospitalisé le 22/02 pour une chirurgie programmée d'un anévrysme de l'aorte ascendante.

Dans ces antécédents on relève:

- une intervention pour hernie inguinale en 1990, une prostatectomie en 2003
- un AIT en 2012
- une HTA et une hypercholestérolémie
- un anévrysme de l'artère iliaque primitive gauche.

Les jours suivants la cicatrisation de la plaie sternale est satisfaisante et il est apyrétique jusqu'au 27/02 (J5) où une hyperthermie à 38 précédée d'un épisode de frissons est constatée.

Une inflammation est notée au niveau du cathéter artériel de même qu'un écoulement « louche » au niveau du point de ponction de la voie veineuse centrale.

Des hémocultures sont prélevés et les cathéters artériels et veineux sont envoyés en culture.

Dès les prélèvements réalisés une antibiothérapie probabiliste par Pipéracilline/tazobactam IV (4 g X 3) est débutée (27/02).

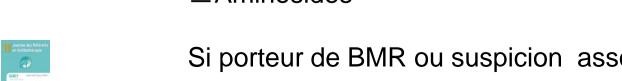
La gentamicine (3 mg/kg/j) est rajoutée dès le lendemain matin (28/02)

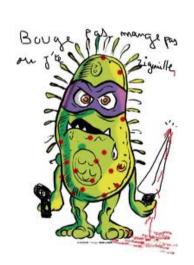
Validez-vous ce choix?

Sinon, quelle antibiothérapie probabiliste proposeriez-vous ?

Suspicion d'infection sur cathéter Traitement empirique

Principaux Germes responsables d'infection sur cathéter


SCN S. aureus **BGN** Candida


Retrait du cathéter si infection manifeste Vancomycine recommandée Linézolide non recommandé

Si signes cliniques sévères, neutropénie, Cathéter fémoral : couvrir BG nég

carbap Pip-taz Cefta ± Aminosides

Cas clinique 1

Les hémocultures poussent (3/3) avec *S. aureus* méti-S, uniquement R à pénicilline G (amoxicilline).

La culture de la VVC (technique de Brun-Buisson) montre le même staphylocoque (10⁴ UFC/ml).

La culture du cathéter artériel est stérile

Le traitement par Pipéracilline/tazobactam-Gentamicine est remplacé le 02/03 par la cloxacilline IV (2 g X 4, puis 3 g X 4).

Il persiste des accès fébriles les jours suivants. L'apyrexie n'est obtenue que le 03/03.

Validez vous le choix de cloxacilline?

Sinon, quelle antibiothérapie auriez-vous proposé à la réception de l'antibiogramme ?

Quel antibiothérapie (molécule (s), dose(s), durée) auriez-vous prescrit

- si le staphylocoque avait été S. aureus méti-R ?
 - En cas de CMI de la vancomycine à 1 mg/l?
 - En cas de CMI de la vancomycine à 2 mg/l?
 - En cas de CMI de la vancomycine à 3 mg/l?
- si le staphylocoque avait été S. epidermidis méti-S ?

Bactériémie à SAMS

La vancomycine est associée à:

une diminution d'élimination du SAMS Plus d'échecs et rechutes

VS cloxacilline

Stryjewsky ME.2007(44)

Bai AD.JAC.2015 (70)

Paul M.Clin Microbiol Infect, 2011(17)

Kim SH.AAC.2008(52)

Etude rétrospective comparant

Cefazoline 105

Cloxacilline 249

Mortalité à J90 idem

OR 0.58 (IC 0.31-1.08, p= 0.085) Rechute à Cefa uniquement quand foyer profond (inoculum et stabilité)

Pas de différence quérison microbiologique

Etude rétrospective comparant

CTX 42

Clox/cefa 51

94%

75.5%

oxacilline 2g / 6h

clinique

cefazoline 1g/8h Vanco 15-20mg/kg/12h

95%

83%

Patel U.Int J Clin Pharm.2014(39)

Bactériémie à *S.aureus* pouvant être traitée 2 semaines

Cathéter retiré si responsable

Hémoculture à 48-96 h négative

Défervescence en 72h

ETO normale

Tous les critères sont inclus

Absence de thrombophlébite

Absence de matériel prothétique articulaire ou vasculaire

Absence de métastases septiques

Durée trt < 14 j vs \geq 14 j : rechute 7,9% vs 0%

Chong YP AAC 2013.

Bactériémie à SARM

Vancomycine

Glycopeptide
lentement bactéricide
concentration dépendant
15 à 30mg/kg/24h
CMI < 1 mg/ml
AUC/CMI > 400 succés

Corrélation CMI ≥ 1.5 mg/l échec et mortalité

Soriano A. Clin Infect Dis 2008:46 Van Hal SJ. Clin Infect Dis 2012: 54 Jacob JT. Int J Infect Dis 2013: 17

Corrélation CMI ≥ 1.5mg/l et mortalité chez patients SAMS

traités par cloxacilline

Cervera C. Clin Infect Dis 2014:58

Vanco vs Téico : évolution identique

Yoon YK AAC 2014

Recommandations CASFM 2015: R Vanco si CMI > 2 mg/l

LE CARACTERE

Méthicilline résistant Vancomycine intermédiaire: hVISA, VISA

Ne semble pas être un facteur de surmortalité

quand on ajuste sur les facteurs confondants

(comorbidités, traitement adapté, clinique initiale etc..)

Association Between Vancomycin Minimum Inhibitory Concentration and Mortality Among Patients With Staphylococcus aureus Bloodstream Infections A Systematic Review and Meta-analysis

Andre C. Kalil, MD, MPH; Trevor C. Van Schooneveld, MD; Paul D. Fey, PhD; Mark E. Rupp, MD

Mortalité Globale

38 études incluant 8291 bactériémies Méthode de CMI par Etest ou microdilution

Pas de différence de mortalité

de la CMI du cutoff à 1.5 ou 2 mg/ de la méthode utilisée du caractère de l'hétérorésistance du caractère Méthi S ou Méthi R

CMI vanco ≥ 1.5 µg/ml vs CMI < 1.5

Figure 2. Risk Difference for Overall Mortality for High-Vancomycin MIC vs Low-Vancomycin MIC

	High	MIC, No.	Low	ИIC, No.	RISK DIfference	Favors	Favors	
Source	Deaths	Total	Deaths	Total	(95% CI)	LOW MIC	High MIC	P Valu
Schwaber et al, 18 2003	16	61	23	87	-0.002 (-0.146 to 0.142)	-	b —	.98
Howden et al, ²⁰ 2004	4	7	6	10	-0.029 (-0.505 to 0.447)			.91
Charles et al, ¹⁹ 2004	1	5	17	48	-0.154 (-0.530 to 0.222)		<u> </u>	.42
Neoh et al, ²² 2007	2	2	8	16	0.500 (0.016 to 0.984)			.04
Maor et al, ²¹ 2007	2	4	10	12	-0.333 (-0.867 to 0.200)		-	.22
Lodise et al, ²⁴ 2008	12	66	3	26	0.066 (-0.088 to 0.221)	_	-	.40
Soriano et al, ²⁵ 2008	26	92	90	322	0.003 (-0.101 to 0.107)	-	b -	.95
Liao et al, ²³ 2008	13	40	46	137	-0.011 (-0.176 to 0.155)	-	—	.90
Musta et al,30 2009	14	43	67	242	0.049 (-0.102 to 0.200)	_	_	.53
Maor et al, ²⁹ 2009	14	27	103	223	0.057 (-0.143 to 0.256)	_	-	.58
Bae et al, ²⁶ 2009	13	37	11	28	-0.042 (-0.279 to 0.196)	_	⊢	.73
Price et al, ³¹ 2009	1	20	11	25	-0.390 (-0.607 to -0.173)			<.001
Fong et al, ²⁷ 2009	5	10	19	30	-0.133 (-0.488 to 0.221)		_	.46
Jang et al, ²⁸ 2009	1	3	13	32	-0.073 (-0.633 to 0.487)			.80
Wang et al, ³⁸ 2010	13	26	27	97	0.222 (0.010 to 0.434)			.04
Lalueza et al, ³² 2010	2	13	14	50	-0.126 (-0.358 to 0.106)		 -	.29
Neuner et al, ³⁶ 2010	21	76	19	120	0.118 (-0.002 to 0.238)			.05
Lin et al, ³⁴ 2010	24	60	78	167	-0.067 (-0.212 to 0.078)		-	.37
Lewis et al, ³³ 2010	0	3	34	139	-0.245 (-0.576 to 0.087)		-	.15
Takesue et al, ³⁷ 2010	33	97	62	662	0.247 (0.150 to 0.343)			<.001
Moore et al,35 2010	4	6	6	10	0.067 (-0.418 to 0.551)			.79
Holmes et al, ⁴² 2011	48	179	42	344	0.146 (0.073 to 0.220)		-	<.001
Walraven et al, 47 2011	21	69	21	70	0.004 (-0.148 to 0.157)	-	-	.96
deSanctis et al,41 2011	0	4	26	93	-0.280 (-0.558 to -0.001)		-	.49
Khatib et al, ⁴⁴ 2011	8	36	60	245	-0.023 (-0.169 to 0.123)	-	⊨	.76
van Hal et al, ⁴⁶ 2011	8	47	66	221	-0.128 (-0.252 to -0.005)	_		.04
Honda et al, ⁴³ 2011	26	112	9	51	0.056 (-0.075 to 0.186)	_	=-	.40
Clemens et al, ⁴⁰ 2011	2	24	10	94	-0.023 (-0.150 to 0.104)	-	—	.72
Aguado et al, ³⁹ 2011	6	23	8	76	0.156 (-0.037 to 0.348)	-		.11
Schweizer et al, ⁴⁵ 2011	82	619	27	195	-0.006 (-0.061 to 0.049)	4	+	.83
Yeh et al, ⁵² 2012	27	62	30	78	0.051 (-0.113 to 0.215)	_	_	.54
Han et al, ⁴⁹ 2012	21	134	39	258	0.006 (-0.070 to 0.081)	-4	b -	.89
Rojas et al, ⁵¹ 2012	102	240	59	121	-0.063 (-0.171 to 0.046)	-	+	.26
Miller et al, ⁵⁰ 2012	36	111	170	583	0.033 (-0.062 to 0.127)	_	-	.50
Chen et al, ⁴⁸ 2012	19	53	63	238	0.094 (-0.047 to 0.235)	-	 	.19
Gasch et al, ⁵³ 2013	69	237	110	315	-0.058 (-0.136 to 0.020)	-	+	.15
Yoon et al, ⁵⁵ 2014	36	87	9	47	0.222 (0.069 to 0.375)			.004
Kan et al, ⁵⁴ 2014	2	5	14	39	0.041 (-0.414 to 0.496)			.86
Overall (z score = 0.797; P = .43; T ² = 0.007)	734	2740	1430	5551	0.016 (-0.023 to 0.056)		Þ	.43

High-vancomycin minimum inhibitory concentration (MIC) was defined as greater than or equal to 1.5 ug/mL. The size of each data marker indicates the relative weight of each study.

Risk Difference (95% CI)

Mortalité hospitalière

Mortalité à 30 jours

Figure 3. Risk Difference for Hospital, 30-Day, and Overall Mortality for High-Vancomycin MIC vs Low-Vancomycin MIC

	High !	ИIC, No.	Low	MIC, No.	Risk Difference	Favors	Favors	
Source	Deaths	Total	Deaths	Total	(95% CI)	Low MIC	High MIC	P Value
Hospital Mortality					-		_	
Schwaber et al, ¹⁸ 2003	16	61	23	87	-0.002 (-0.146 to 0.142)	_	-	.98
Howden et al, 20 2004	4	7	6	10	-0.029 (-0.505 to 0.447)			.91
Maor et al, 21 2007	2	4	10	12	-0.333 (-0.867 to 0.200)			.22
Liao et al, ²³ 2008	13	40	46	137	-0.011 (-0.176 to 0.155)	_	-	.90
Musta et al, ³⁰ 2009	14	43	67	242	0.049 (-0.102 to 0.200)	_	_	.53
Maor et al, ²⁹ 2009	14	27	103	223	0.057 (-0.143 to 0.256)		-	.58
Bae et al, ²⁶ 2009	13	37	11	28	-0.042 (-0.279 to 0.196)			.73
Lalueza et al, ³² 2010	2	13	14	50	-0.126 (-0.358 to 0.106)	-	-	.29
Neuner et al, 36 2010	21	76	19	120	0.118 (-0.002 to 0.238)			.05
Walraven et al,47 2011	21	69	21	70	0.004 (-0.148 to 0.157)	_	-	.96
Khatib et al,44 2011	8	36	60	245	-0.023 (-0.169 to 0.123)	-	—	.76
Yeh et al, ⁵² 2012	27	62	30	78	0.051 (-0.113 to 0.215)	_	-	.54
Rojas et al, 51 2012	102	240	59	121	-0.063 (-0.171 to 0.046)		+	.26
Miller et al,50 2012	36	111	170	583	0.033 (-0.062 to 0.127)	-	-	.50
Yoon et al, 55 2014	36	87	9	47	0.222 (0.069 to 0.375)	_		.004
Overall (2 score - 1.102; P = .27; T ² = 0.001)	329	913	648	2053	0.025 (-0.019 to 0.068)		♦	.27
30-d Mortality							_	
Charles et al, 13 2004	1	5	17	48	-0.154 (-0.530 to 0.222)			.42
Neoh et al, ²² 2007	2	2	8	16	0.500 (0.016 to 0.984)		-	.04
Lodise et al, 24 2008	12	66	3	26	0.066 (-0.088 to 0.221)	_	-	.40
Soriano et al, 25 2008	26	92	90	322	0.003 (-0.101 to 0.107)	_	-	.95
Price et al, 31 2009	1	20	11	25	-0.390 (-0.607 to -0.173)			<.001
Fong et al, ²⁷ 2009	5	10	19	30	-0.133 (-0.488 to 0.221)			.46
Jang et al, ²⁸ 2009	1	3	13	32	-0.073 (-0.633 to 0.487)			.80
Wang et al, 38 2010	13	26	27	97	0.222 (0.010 to 0.434)			.04
Lin et al,34 2010	24	60	78	167	-0.067 (-0.212 to 0.078)		⊢	.37
Lewis et al, ³³ 2010	0	3	34	139	-0.245 (-0.576 to 0.087)		 	.15
Takesue et al,37 2010	33	97	62	662	0.247 (0.150 to 0.343)			<.001
Moore et al, 35 2010	4	6	6	10	0.067 (-0.418 to 0.551)			.79
Holmes et al, 42 2011	48	179	42	344	0.146 (0.073 to 0.220)			<.001
deSanctis et al,41 2011	0	4	26	93	-0.280 (-0.558 to -0.001)		-	.049
van Hal et al, ⁴⁶ 2011	8	47	66	221	-0.128 (-0.252 to -0.005)		-	.04
Honda et al,43 2011	26	112	9	51	0.056 (-0.075 to 0.186)	-	-	.40
Clemens et al, 40 2011	2	24	10	94	-0.023 (-0.150 to 0.104)	-	-	.72
Aguado et al, ³⁹ 2011	6	23	8	76	0.156 (-0.037 to 0.348)			.11
Schweizer et al,45 2011	82	619	27	195	-0.006 (-0.061 to 0.049)	-	-	.83
Han et al, ⁴⁹ 2012	21	134	39	258	0.006 (-0.070 to 0.081)	_	-	.89
Chen et al,48 2012	19	53	63	238	0.094 (-0.047 to 0.235)	-	-	.19
Gasch et al, ⁵³ 2013	69	237	110	315	-0.058 (-0.136 to 0.020)		+	.15
Kan et al, ⁵⁴ 2014	2	5	14	39	0.041 (-0.414 to 0.496)			.86
Overall (z score = 0.349; P = .73; T ² = 0.011)	405	1827	782	3498	0.010 (-0.047 to 0.068)		>	.73
					-1.00		0 0.50 nce (95% CI)	1.00

High-vancomycin minimum inhibitory concentration (MIC) was defined as greater than or equal to 1.5 ug/mL. The size of each data marker indicates the relative weight of each study.

Explications

Grande hétérogénéité des patients dans les 3 autres méta analyses vs bactériémie

Souche moins virulente quand CMI élevée

Elévation de la CMI associée avec des modifications des fonctions cellulaires

Les tests de CMI peuvent mettre mis en défaut (conditionnement de la souche)

Traitement de la source de l'infection (drainage, KT)

Limites

Études rétrospectives Evolution clinique difficile à évaluer Sévérité de la maladie initiale

IDSA GUIDELINES Bactériémie à SARM

Bactériémie non compliquée

Vancomycine Daptomycine

15-20mg/kg 6 mg/kg 2 fois 1 fois

2S

Bactériémie compliquée

Vancomycine Daptomycine

15-20 mg/kg 8-10 mg / kg 2 fois 1 fois

4 à 6 S

Addition de Gentamicine ou de rifampicine non recommandée

Echographie cardiaque systématique ETO > ETT

Liu C. CID 2011:52

Bactériémies à SCN

1/3 des bactériémies isolées en réanimation Première cause de bactériémie nosocomiale

12 à 25% sont des bactériémies significatives

La majorité des infections sont en rapport avec la présence de matériel étranger

Résistance à la methicilline dans 80% des cas

Agent de choix

si methicilline S oxacilline

si methicilline R Vancomycine

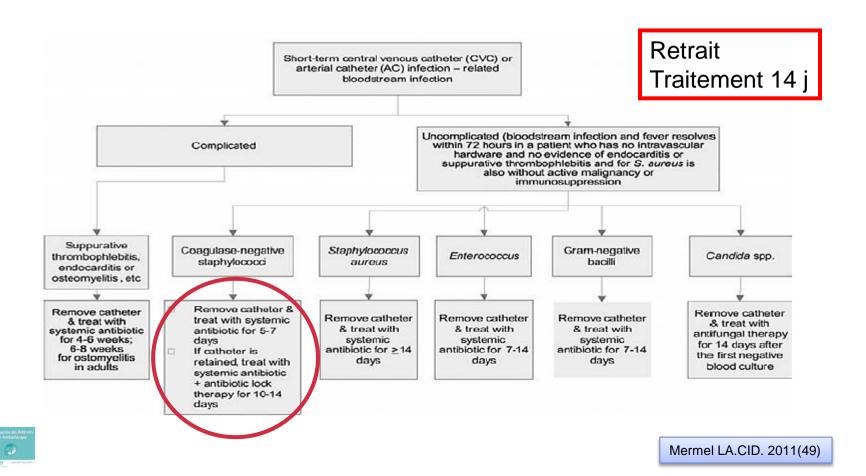
S haemolyticus sensibilité diminué aux glycopeptides

Population hétéro-résistante à la teicoplanine quand inoculum important

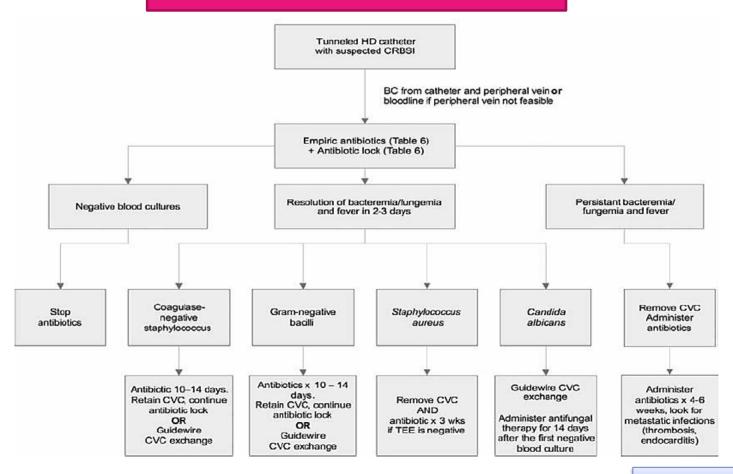
Daptomycine à une bonne activité sur le biofilm Plus efficace que vancomycine sur infection expérimentale sur matériel et systémique à *S epidermidis* methicilline résistant producteur de biofilm

Efficace sur SCN résistant au linezolide

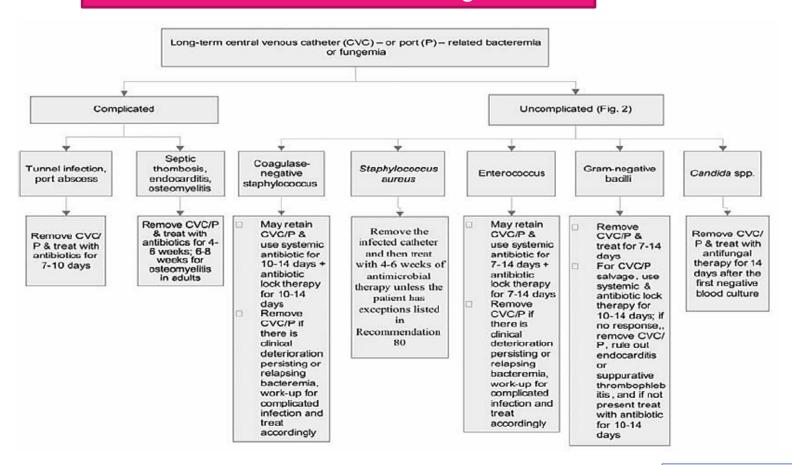
Laplante KL AAC:2009;53 Dominguez-Herera J. AAC:2012;56


Vena A Diagn Microbiol Infect Dis: 2013;76

SCN Linezolide R évolution défavorable FDR: prise de linezolide


Russo A JAA: 2015;45

Bactériémie sur cathéter de courte durée



Bactériémie sur cathéter Tunélisé

Bactériémie sur cathéter de longue durée

Bactériémie sur cathéter

SAMS	oxacilline 2g / 4h	cefazoline Vanco 15-20r	1g/8h ng/kg/12h
SAMR	Vanco	daptomycine Linezolide	6-8 mg/kg 600mg/12h
CMI > 2	Daptomycine	TMP-SMZ	
SCN	Methi S	oxacilline Vanco ou TMP-	Cfaz SMZ
	Méthi R	Vanco LNZ	Dapto
		Quin/dalf	7,5mg/8h

Bactériémie sur cathéter

- Durée de l'antibiotique à partir du premier j de négativation hémoculture
- La Vancomycine empirique sur SA
- LNZ non recommandé en empirique (résistance)
- Si pas de verrou: ATB passe par le cathéter
- En fonction de la clinique ou du terrain Couvrir les BGN en fonction de l'écologie et ATCD (portage, FDR de MDR) Ajout éventuel de traitement du *candida* (neutropénie, cathé fémoral...)

Durée ttt 14 jours

- Bactériémie persistante après retrait > 72 h ou complication

Durée ttt 6 semaines

- Si sauvetage du cathéter Traitement systémique + verrou

Une échographie trans-thoracique est réalisée le 09/03

Elle montre un fonctionnement « parfait » de la bio prothèse et

aucun signe en faveur d'une endocardite.

Que pensez-vous de ce résultat?

Êtes vous heureux?

Facteurs prédictifs de métastases septiques lors de bactériémie à SAMS

Etude rétrospective

73 patients avec bactériémies à SAMS

Source principale: cathéter (34%)

```
14 (19,2%) patients avec métastases
```

endocardite 3

Abcès pulmonaire 3

Spondylodiscite 4

abcès psoas

épidurite 3

arthrite septique

Analyse multivariée: délai traitement approprié > 48 h

fièvre persistante > 72 h

CRP > 3mg/dl après 2 semaines de traitement

Intérêt de l'échographie cardiaque

Méta analyse bactériémies à SA

9 Études observationnelles 4050 patients

ETO 12 à 82%

Détection Endocardite ETO (14-28%) > ETT (2-15%)

Holland TL.JAMA.2014;312(13)

ETT négative avec ETO positive 19% (15/77)

Fowler VVG. J Am Coll Cardiol.1997;30(4)

ETO permet de diagnostiquer une endocardite sans signes cliniques évocateurs 15 % (22/144)

Incani A. Eur Clin Microbiol Infect Dis.2013:32(8)

Savoir répéter l'Echo à J7

Facteurs associés à un faible risque d'endocardite au décours d'une bactériémie à SA

Absence de matériel intracardiaque

Hémoculture négative à J4

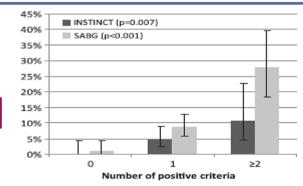
absence d' hémodialyse

Acquisition nosocomiale du SA

Absence d'infection secondaire

Absence de signes d'endocardite

VPN 93 à 100%



Facteurs associés à un risque d'endocardite au décours d'une bactériémie nosocomiale à SA

2 cohortes	BSA	Nosocomiale	endocardite	
INSTINCT Europe	572	309	13 (4,3%)	
SABG USA	1403	459	40 (9,3%)	

ETO

Présence de matériel intracardiaque Hémoculture + à J4 Hémodialyse Infection spinale (spondylodiscite, épidurite) Ostéomyélite Délai de l'antibiothérapie adaptée

Toute endocardite à au moins 1 critère, L'absence de critère élimine l'endocardite

	Percentage (95% CI)			
Variable	INSTINCT	SABG		
Sensitivity	100 (77.2-100)	97.5 (87.1–99.9)		
Specificity	28.5 (23.6-34)	31.6 (27.2-36.4)		
Positive predictive value	5.9 (3.5-9.8)	12.7 (9.4-16.9)		
Negative predictive value	100 (95.6-100)	99.2 (95.6-100)		

Le patient part en rééducation le 09/03 avec une sonde vésicale

(après plusieurs tentatives de désondage infructueuses),

sans antibiotique

(antibiothérapie arrêtée le jour de la sortie à **j8**).

Validez-vous ce choix thérapeutique ?

Sinon quelle durée de traitement auriez-vous proposé ?

Quel antibiotique?

Le patient est réadmis le 18/03 pour ablation de la sonde vésicale, aucun épisode fébrile n'est signalé

A l'admission, le patient est apyrétique.

La sonde vésicale est retirée le 18/03 et une cystoscopie souple est réalisée

Le lendemain (19/03), le patient présente un épisode de frissons et une hyperthermie à 38,2°

Une antibiothérapie probabiliste par

Ceftriaxone IV (2 g/j puis 1 g/j) et amikacine (15 mg/kg/j) est débutée après avoir prélevé les urines et 2 hémocultures.

Validez-vous le choix de l'antibiothérapie ?

Sinon, qu'auriez vous proposé?

L'ECBU (du 19/03) montre

une leucocyturie à 1 million/ml et la présence de :

K. pneumoniae (10⁷/ml), BLSE,

résistant à toutes les béta-lactamines sauf les carbapénèmes, S aussi à l'amikacine, la fosfomycine et la colistine

Les 2 hémocultures (du 19/03) positives à

S. aureus méti-S, uniquement R à la pénicilline G.

la ceftriaxone et l'amikacine sont remplacées

le 21/03

Par l'association

Imipénème IV (500 mg X 4)

+ Cloxacilline IV (3g X 4).

Validez-vous le choix de l'antibiothérapie ?

Sinon, qu'auriez vous proposé?

L' ETT du 21/03 montre

un épaississement de la cusp aortique.

L'ETO du 23/03 montre

une végétation de 5 mm, sans dysfonctionnement de la prothèse

On a dit qu'on ne parlait pas des endocardites !!!

Alors, on arrête là pour les questions, mais on vous raconte quand même la suite...

on ne va pas vous laisser comme çà sur votre faim.

Le 23/03

Cloxacilline est arrêtée

Dose d'imipénème majorée à 1 g X 4,

Ajout de la rifampicine (IV) à la dose de 600 mg X 2

+ la gentamicine 3 mg/kg/j

La créatininémie est de 90 micromol/l.

Le DGF (MDRD) est de 76 ml/min.

La température se normalise pendant 4-5 jours, puis remonte un peu à partir du 26/03 (comprise entre 37° 5 et 38° ...38° le 30/03).

La CRP passe de 109 mg/l le 19/03 à 74 le 24/03 puis remonte à 196 mg/l le 01/04. Parallèlement une hyperleucocytose apparait GB = 14000 le 01/04 dont 13000 PNN).

Les hémocultures du 24/03 et 26/03 sont stériles.

L'ECBU du 26/03 est stérile.

L'ETT du 27/03 retrouve la végétation, stable et note une fuite périprothétique de grade 1.

L'ETO du 30/03 indique que la végétation est stable et qu'il existe une fuite péri-prothétique de grade 2-3.

Scanner TAP et PET-Scan ne retrouvent pas de foyer à distance. A noter une fixation nette sur le PET-scan au niveau de la prothèse.

Compte tenu de l'aggravation, il est décidé de réopérer le patient en urgence bioprothèse + remplacement du tube le 01/04.

La culture de valve est + à *S aureus* méti-S...(résultat communiqué à J4-J5 post-op)

L'antibiothérapie post-opératoire est modifiée : arrêt de la gentamicine (dès le 30/03, en fait), remplacement de l'imipénème par amoxicilline-acide clavulanique IV (2 grammes x 3) à partir du 02/04, poursuite de la rifampicine IV.

A partir du 09/04, la cloxacilline IV (3 g X 4) est reprise à la place de l'amoxicilline-acide clavulanique. La rifampicine est maintenue.

L'antibiothérapie est poursuivie jusqu'au 29/05.

L'évolution est favorable sur le plan clinique (T< 37.5°), sur le plan biologique (diminution progressive de la CRP \rightarrow 8 mg/l le 26/05) et sur le plan échographique (ETO du 26/05 : fuite grade1-2, stable par rapport à l'ETO du 16/04 et du 06/05, pas de signes d'endocardite.

Quels sont pour vous les facteurs de risque de mortalité lors de bactériémie à SA

- 1- le niveau de CMI de la vancomycine
- 2- la résistance à la méthicilline
- 3-la bactériurie associée
- 4- la bactériémie persistante > 3 j
- 5- l'existence d'un sepsis à l'entrée
- 6- le lieu d'acquisition de la bactériémie

7- l'âge

Facteurs liés à l'Hôte

Age

6% < 15 ans 57% > 85 ans

↑ de 1.3 / 10 ans

Comorbidités

Alcoolisme
Cirrhose
Insuffisance cardiaque
Insuffisance rénale chronique, hémodialysé
Cancer

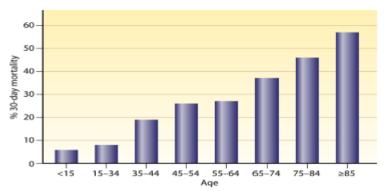


FIG 1 Impact of age on overall 30-day mortality from *Staphylococcus aureus* bacteremia. Percentages of patients who succumbed at 30 days following an episode of *Staphylococcus aureus* bacteremia are stratified by 10-year age groups. (Adapted from reference 155 with permission of Elsevier.)

Statut immunitaire

Risque x 4
Risque x 31 patients VIH CD4 < 100
Pas d'↑ du risque si CD4 > 350

Relation hôte / SA Hétérogénéité des bactériémies à SA Mortalité différente

Diagnosis	In-hospital mortality (%) (reference[s])	28–30-day mortality (%) (reference[s])	Description (reference[s])
Bacteremia without focus	11–45 (14, 161, 167)	21.9–47.5 (120, 206, 296, 301)	14-day mortality rate, 49% (39); independent predictor of mortality relative to other infections in several
Bone and joint infection	0–13.9 (14, 19, 76, 80, 167)	0–29 (120, 296, 301)	studies, with an OR range between 3.88 and 12.3 (15, 39, 206, 301) 14-day mortality rate, 11.7% (296); mortality dependent on site, with higher rates for vertebral osteomyelitis than for nonvertebral infections; independent predictor of reduced mortality relative to other infections in a single study, with an OR of 0.27 (95% CI, 0.08–0.93; P = 0.038) (133)
Prosthetic joint infection CNS infection Deep abscess Intra-abdominal infection	25–56 (14, 126, 223, 228)	8.3 (296) 10.7 (296) 14.6 (296) 25 (120)	Independent predictor of mortality relative to other infections in a single study, with an OR of 12.9 (95% CI. 1.1–152.9; P value not stated) (244)
Intravenous catheter (type not specif or several types) Central venous catheter Hickman catheter Peripheral venous catheter	fied 0-21 (14, 54, 113, 167, 169, 205, 235, 313) 30 (291) 22 (53)	4–32.6 (120, 296, 301) 20.5 (296)	14-day mortality rate, 12% (39); device with a metastatic infection associated with higher mortality rates (296); independent predictor of reduced mortality relative to other infections in a single study, with an OR of 0.47 (95% CI, 0.31–0.71; P <
Hemodialysis catheter Infective endocarditis	22.4–66 (8, 15, 66, 106, 107, 167, 237, 242, 291)	6.8 (296) 25–60 (29, 107, 206, 301)	0.01) (33) IVDU-associated IE mortality rate, 11%; non-IVDU IE mortality rate of 21%, vs 29.4% for health careassociated IE (66); infection-related mortality rate, 22% (68); independent predictor of mortality
			relative to other infections in several studies, with an OR range between 2.8 and 12.1 (77, 168, 237, 296,
Left-sided IE Right-sided IE Prosthetic valve IE	28.6 (197) 5.9 (197) 30.5–50 (66, 242)	23.9 (296) 11.8 (296)	301) Aortic valve IE was an independent predictor of mortality relative to mitral or right-sided IE, with an OR of 1.91 (95% CI, 1.0–3.66; P = 0.05) (197)
Cardiac device infection Pulmonary infection	41.6–62 (14, 79, 167, 200)	36-4 (28) 39-67 (120, 148, 296, 301)	14-day mortality rate, 65% (39); attributable mortality rate, 46.5% (85); independent predictor of mortality relative to other infections in several studies, with an

Skin and soft tissue infection Surgical site infection Urinary tract infection 10–18.6 (14, 167) 0–23 (14, 291) 9.7 (14) 14.8-17 (120, 296, 301)

OR range of between 2.09 and 17.0 (33, 39, 41, 134,

206, 296, 301)

10 (120)

Le lieu d'acquisition de la bactériémie ne semble pas influer sur la mortalité

Communautaire

Nosocomiale

Associée aux soins

Bactériémie persistante

Définition: persistance d'une bactériémie > 3 j d'une antibiothérapie

Fréquence 6 à 38%

Fonction Du site de l'infection

De l'hétéro résistance (VISA)

TTT ATB

Matériel prothétique

Possibilité de drainage

Mortalité ↑ pour MRSA > 3 jours

45,2% vs 9,2%, p=0,002

OR 17,5 95% IC 1,5 à 212 p= 0,024)

Clairance moyenne 7 à 9 j SARM 8.9 j vs SASM 3 j

vancomycine vs βlactamines

Métastases augmente avec la durée de la bactériémie

> 10 jours 45%

Bactériurie

Marqueur de maladie sévère

Cohorte rétrospective de 118 Bactériémies avec ou sans bactériurie

Mortalité

32% vs 14%

Perez-Jorge EV 2010 J Hôp Med (5)

Etude Cas contrôle de 308 Bactériémie dont 68 avec bactériurie 42% SARM

OR 2,87

IC 95% 1,4 à 5,9 p=0,004

Chihara S BMC Infect Dis 2010(10)

Mortalité: R x 2

Présence d'un sepsis sévère ou d'un choc

Quelque soit le score

SOFA APACHE MODS SAPS

Mortalité 38 à 86%

Van Hal SJ Clin Microb Rev 2012:25

	No. of	% of patients with	Mortality rate for patients with shock		
Study and outcome of interest	episodes	sepsis/shock	(%)	Variable, OR (95% CI; P)	Reference
Studies that found severity of illness to be an independent predictor of mortality (multivariate analysis)					
Single-center retrospective Turkish study (1990–1994); infection-related mortality	101 SAB	23.8	41.7	Septic shock, 5.4 (ND; 0.02)	291
Single-center retrospective Spanish study (1991–1998); in-hospital infection-related mortality	908 SAB	9.7	55.7	Shock, 12.6 (7.2–22.2; ND)	275
Single-center prospective Spanish study (1991–2005); 30-day all-cause mortality	414 MRSA-B	20.3	63.1	Shock, 7.38 (4.11–13.3; <0.001)	273
Single-center retrospective Brazilian study (1991–1992); 14-day all-cause mortality	134 SAB	22.1	73.3	Shock, 8.92 (2.9–27.8; ND)	39
Single-center retrospective Belgian study (1992–1998); 30-day in-hospital mortality	85 SAB	62.2	ND	Hemodynamic instability, 1.76 (1.14–2.71; 0.01); APACHE II per point, 1.04 (1.02–1.06; <0.01)	18
Single-center prospective Danish study (1994–1996); 150-day mortality	278 SAB	25	47	Septic shock, 3.7 (1.5–9.1; 0.004)	127
Single-center retrospective U.S. study (1995–1999); 30-day all-cause mortality	293 SAB	31.4	41.3	Modified APS >60, 15.7 (5.8–49.8; <0.001)	206
Single-center retrospective U.S. study (1996–2006); all-cause mortality	489 MRSA-B	Not applicable	Not applicable	SAPS, 1.51 (1.26-1.80; <0.001)	202
Single-center retrospective Taiwan study (1997–2001); 30-day infection-related mortality	162 MRSA-B	13.6	86.4	Septic shock, 9.31 (2.35–36.8; <0.01)	59
Single-center retrospective Australian study (1997–2008); 30-day all-cause mortality	401 MRSA-B	10.5	52.4	APACHE II per point, 1.11 (1.07–1.15; <0.001)	301
Single-center retrospective Swiss study (1998–2002); in-hospital all-cause mortality	308 SAB	10.7	ND	Septic shock, 14.5 (6.2–61.6; <0.01)	131
Single-center retrospective Brazilian study (2000–2001); infection-related mortality	101 SAB	43.5	68.2	Severe sepsis/shock, 6.68 (3.05–15.4; <0.01)	89
Single-center retrospective Chinese study (2001–2007); 90-day all-cause mortality	115 MRSA-B	11.3	ND	Septic shock, 7.92 (3.64–17.20; <0.001)	32
Single-center retrospective Taiwan study (2001–2006); in-hospital infection-related mortality	177 MRSA-B	Not applicable	Not applicable	Pitt bacteremia score per point, 1.33 (1.04–1.69; 0.024)	167
Single-center retrospective Taiwan study (2001–2007); 90-day all-cause mortality	744 SAB	11.3	ND	Septic shock, 7.92 (3.64–17.20; <0.001)	33
Single-center retrospective Belgian study (2002–2004); infection-related in-hospital mortality	154 SAB	21.4	ND	Septic shock, 10.26 (3.65–28.8; <0.001)	168
Single-center retrospective U.S. study (2003–2008); in-hospital mortality	814 SAB	Not applicable	Not applicable	SAPS, 1.04 (1.03–1.05; not stated)	257
Single-center prospective U.S. study (2005–2006), 30-day all-cause mortality	253 SAB	Not applicable	Not applicable	Illness severity index, ^b 2.78 (1.94–3.99; <0.001)	77
Single-center retrospective Taiwanese study (2006–2008); 30-day all-cause mortality	253 MRSA-B	41.9	ND	Septic shock, 8.11 (4.06–16.19; <0.001)	309
Single-center retrospective Taiwanese study (2004–2006); 30-day all-cause mortality	215 SAB	39.9	ND	Shock, 8.11 (4.06–16.09; <0.001)	310
Multicenter retrospective European study (2007); 30-day all-cause mortality	334 SAB	37.7	38.9	Severe sepsis/shock, 2.68 (1.52–4.75; <0.01)	6
Multicenter prospective Australian study (2007–2008); 30-day all-cause mortality	1,865 SAB	10.8	40.3	Sepsis syndrome, 4.01 (2.40–6.87; <0.001)	296
Studies where severity of illness was not an independent predictor of mortality (multivariate analysis)					
Multicenter prospective Australian study (2007–2008); 30-day all-cause mortality	532 SAB	12.6	ND	Sepsis syndrome, not stated	101

Mortality rate

^a Studies employed a multivariate logistic regression model. OR, odds ratio; CI, confidence interval; P, probability; ND, not described; APACHE, acute physiological and chronic health evaluation; APS, acute physiological score (based on APACHE III); SAPS, simplified acute physiological score.

^b The illness severity index is a composite scoring system based on the Charlson comorbidity index and a modified acute physiological score.

Cas clinique 2

Monsieur Alain L, 63 ans, 67 kg, IMC = 26 kg/m², est hospitalisé le 25/03 pour RTUP laser, réalisé le jour même.

Ses antécédents sont une chirurgie pour rupture de la coiffe des rotateurs des 2 épaules il y a plus de 10 ans et un « prostatisme »

Une antibioprophylaxie « flash » par céfazoline est réalisée et une sonde vésicale est mise ne place en post-opératoire.

L'ECBU réalisé le 23/03 montrait des urines stériles.

Le 26/03, apparition de frissons puis hyperthermie à 38° puis 38,4°. Absence de signes de sepsis sévère.

3 Hémocultures et ECBU POSITIFS à E. coli BLSE.

La souche est S à Pipéracilline/tazobactam, aux carbapénèmes, à la cefoxitine, à l'acide nalidixique, à la colistine, à la fosfomycine et aux aminosides

Le 26/03 au soir, une antibiothérapie probabiliste par

Imipénème + amikacine est débutée

Le 27/03, suite à un pic de t° à 42° 3 hémocultures sont réalisées, elles sont toutes « positives » à

E. faecalis,

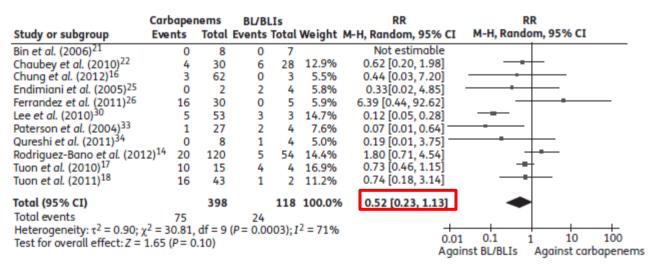
ampi-S, imipénème-S, genta-S, lévoflo-S

Au vu de l'ensemble des résultats bactériologiques, poursuivez-vous l'antibiothérapie par Imipénème et Amikacine ?

Sinon quelle est votre proposition?

Quelle durée de traitement vous parait appropriée ?

Continuez-vous le même traitement pendant toute cette durée ? faites-vous un relais ?


Si le patient avait été porteur de prothèse hanche auriez-vous donné le même traitement ? Pour la même durée ?

Une échographie cardiaque vous parait-elle indiquée ? (ETT ou ETO ?).

Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β -lactamases: a systematic review and meta-analysis

Méta-analyse de 21 études, 1584 patients entre 1996 et 2010

Pas de différence de mortalité toutes causes confondues entre carbapénèmes et BL/IBL (traitement empirique et documenté)

Différence entre carbapénèmes et autres molécules non BL/IBL

BGN

E.Coli Klebsiella		
EBSL -	C3G	ciprofloxacine/Aztreonam
EBSL +	Carbapenem	cipro/ATZ
Enterobacter sp-Serratia m	Carbap	cefepime /cipro
Acinetobacter	Carbap	
Peudomonas aeruginosa	Cefta	
	Carbap Pip/Taz	
	± AminoG	
Stenotrophomonas Maltophilia	TMP-SMZ	Tic/Ac glav
Candida	Echinocandidine	AmphoB lip
	Fluconazole	

Durée de traitement des bactériémies d'origine urinaire

- La durée est celle recommandée pour l'infection urinaire elle-même (ex : 7 jours pour les PNA à entérobactérie S aux quinolones
 - elle ne doit pas être prolongée du fait de la bactériémie
- La durée de traitement en cas d'infection à BLSE n'est pas modifiée

Recos SPILF 2014.

Enterococcus

- Relative résistance aux antibiotiques de paroi cellulaire
- 12% des bactériémies aux USA
- Enterococcus faecium 65-70%
- Enterococcus faecalis 25%
- ERV

Enterococcus faecium 80%

Survient sur terrain fragilisé

mortalité supérieure ERV vs ESV RR:2.5

- Traitement si 2 hémocultures positives ou 1 hémoculture positive si signe de sepsis
- Endocardite chez 3 à 9% des patients bactériémiques

Mortalité des endocardites = 29 à 39% si prothèse valvulaire

Manœuvre sur les voies urinaires = facteur de risque d'endocardite à entérocoque

Stryjewski ME CID 2015

Mohee AR. BJU Intern 2014

	Points	OR (IC 95%)
Nombre d'hémocultures positives <u>></u> 3	5	9,9 (2,2-40,6)
Origine inconnue de la bactériémie	4	7,7 (2,5-23, 8)
ATCD valvulaire	2	3,7 (1,6-8,7)
Auscultation + (souffle)	1	1,8 (0,77-4,3)
Total	12	

NOVA Score [si < 4 => pas d'endocardite => pas d'ETO

Enterococcus faecalis/faecium

Ampi S Ampi 2g/4 h

± aminoG

Ampi R Vanco \pm aminoG LNZ

Dapto

vanco

Ampi, Vanco R Dapto* Quin/dalf si *E.faecium*

LNZ*

Activité Pipéracilline identique à ampicilline, Imipénème activité variable.

Traitement synergique en association

Amoxicilline aminoside

*ceftriaxone

Vancomycine **Aminoside**

Ampicilline Daptomycine

*Fernandez-Hidalgo N CID 2013;56

Ceftriaxone sature les PBPs 2,3,4,5

Chuang YC BMC infect Dis 2014;14

Uniquement sur faecium *

Linezolide°

Quiniupristine-dalfopristine*

Arguments favorables ou défavorables au raccourcissement de la durée De l'antibiothérapie lors des bactériémies

Pas de comorbidités Source contrôlée CMI basse, bactéricidie ATB adapté dés le début Bonne diffusion Pas de matériel étranger Évolution clinique rapide Immunosuppression
Pas de contrôle de la source
BMR ou XDR
Faible bactéricidie
Mauvaise diffusion
Matériel étranger
Evolution lente ou défavorable

Méta analyse essais randomisés comparant durée courte ou longue De l'antibiothérapie

Bactériémie sans source connue

B associée à une pyélonéphrite

B associée à infection intra abdominale

B associée à une pneumonie (pathologie majoritaire dans les essais)

B néonatale

13 études avec bactériémies Évolution connue pour

115 patients

227 patients

Pas d différence significative entre 5-7 jours vs 7-21 jours en terme

guérison clinique survie guérison microbiologique

