Emerging multi-resistant pathogens where do they come from ? How to treat the patient ? How to limit the spread ?

Yehuda Carmeli, MD, MPH Division of Epidemiology, Tel Aviv Sourasky Medical Center & The Israeli Center for Infection Control

Emerging MDR Gram negative rods (GNR)

- ESBL producing Enterobacteriaceae
- Carbapenem resistant GNR
 - P. aeruginosa
 - A. baumannii (will not be discussed)
 - Enterobacteriaceae

ESBLs are MDR

Susceptibilities of 1,030 ESBL producing E. coli & Klebsiella spp.

Colodner R. DMID 2007

ESBL producers

- TEM and SHV were seen primarily in *Klebsiella pneumoniae* and were primarily hospital/LTCF acquired
- CTX-M has become the most common and important ESBL
 - Acquired several times during evolution from *Kluivera* spp.
 - seen in all species but most importantly in *E. coli*
 - Acquired in healthcare setting
 - Significant spread in the community
 - Food chain
 - Success of genes (CTX-M 14 and 15) and clones (ST 131)

Meta-synthesis for risk factors for ESBLs in <u>non-hospitalized patients</u>

- 191 articles identified
- 8 met the inclusion criteria, 6 were able to participate
 - 3 tertiary level hospitals (two from Spain [Seville and Barcelona] and one from Israel
 - 1 networks of medical facilities in studies from Canada (Calgary Health Region)
 - France (28 private laboratories)
 - Turkey (15 geographically dispersed medical centers)

Ben Ami R. CID 2009

340 ESBL Isolates:

87% E. coli

269 ESBL identified 65% CTX-M

> Ben-Ami R. CID 2009.

Mortality and delay in effective therapy associated with extended-spectrum β -lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis

Mitchell J. Schwaber^{1*} and Yehuda Carmeli^{1,2}

Mortality pOR=1.85

Delay in effective therapy pOR=5.56

JAC 2007

Mortality among 97 patients with adequate empiric therapy

Tumbarello M. AAC 2007

Preventive measures

- Based on local epidemiology
 - Specific targeted nfections control measures
 - Where in-hospital spread is important and community spread is limited
 - Formulary interventions
 - Primarily cephalosporins and quinolones restriction

Increased Carbapenem consumption

- Likely to occur where ESBL become common
- Leads to fear of emergence and spread of carbapenem resistance
- Carbapenems are very effective agents resistant to hydrolysis by most betalactamases

Determinants of carbapenem Resistance

• An efficient carbapenamase or

Combination of non-efficient beta-lactamase + porin loss +/- efflux

- Carbapenem entry to the cell (porins)
 - P. aeruginosa OprD a specific porin used for influx of basic amino acids
 - Enterobacteriaceae major porins
 - A. baumannii various porins

Carbapenamases producers vs. porin mutants

- Carbapenamases
 - Almost all are plasmid mediated
 - Can be transferred and reach successful clones
 - Do not cause impairment to the bacteria
 - Are associated with outbreaks and clonal/gene spread
- Porin mutants
 - Selected under abx pressure
 - Lead to metabolic impairment
 - When major porin is lost, not associated with outbreaks

Imipenem resistance in *P. aeruginosa* due to OprD loss:

Nikaido H. Semin Cell Develop Biol. 2001;12;215

Correlation between group 2 carbapenem and imipenem resistant *P. aeruginosa*

Lapper PM. AAC 2002

Prevention

- Primarily control group 2 carbapenem use
- In case of evident in-hospital transmission targeted infection control measures

Mechanisms of Carbapenem Resistance in Enterobacteriaceae

- Efficient carbapenamases
 - Metallo-beta-lactamases (Class B)
 - VIM, IMP, NDM
 - Serine carbapenamses (Class 2f)
 - KPC, SME, NMC
- Other beta-lactamases (inefficient carbapenamses)
 + porin loss
 - Certain ESBLs + major porin loss
 - AmpC + major porin loss

Not associated with outbreaks

The Israeli experience with KPCs

- Carbapenem resistance in Enterbacteriaceae almost non-existing before 2006
- We have seen sporadic cases of KPC producing *Enterobacter* (NICU outbreak imported by a mother) and *E. coli* in 2004-2005
- During 2006 large nationwide outbreak of KPC producing *K. pneumoniae*

% non-susceptibly to carbapenems of 1,030 ESBL producing *E. coli & Klebsiella* spp. Collected during 2004 (10 hospitals)

> All detected as ESBL + porin loss, No Carbapenamse, polyclonal

Imipenem Resistant Enterobacter

- Seen for the first time in TASMC in Jan 2004 isolated from the urine of a surgical patient Detiont discharge before result.
 - Patient discharge before result went unnoticed
- No other cases until Jun 2004
- Jun 30, 2004 Outbreak in the NICU, three cases of late neonatal sepsis
 - 3 other carriers
- Traced to a mother which was GI carrier of the strain

Enterobacter KPC

- 2004 no further cases during 6 months
- 2005-2007:
 - 30 new cases, only two small (3 patients) time and space clusters
 - In hospital mortality 33%
 - Typical phenotype quinolone and amikacin S
 - 18 isolates typed
 - 3 PFGE genotypes all produce KPC-2
 - 11 clone A
 - 5 clone B
- Similar plasmid encoding also for qnr B2
- 2 clone C
- Repeated investigation did not identify the source
- No association with carbapenem Rx

Marchaim D AAC 2008 Chmelintzky I. AAC 2009

KPC-2 producing E. coli

Patient	Isolate	Isolation Date	Infection site	LOS prior to IPM-R-E. coli	LOS	antibiotic treatment		Infection/	
						1 m prior to <i>E. coli</i> isolation	After <i>E. coli</i> isolation	n	Outcome
1	157	2/2005	Urine	10 d	14 d	FQ	No treatment	Colonization	Recovere d
2	329	9/2005	Blood	1d *	3 d	No treatment	Empiric iv CRO	Infection	Died
3	339	9/ 2005	Sub- phrenic abscess	30 d	4 m	Broad-spectrum cephalosporins, FQ, metronidazole, VAN, Followed with 14d IPM until 2 w before isolation, and then TZP, AMK	TZP, AMK	Infection	Recovere d
4	360	10/ 2005	Urine	2 d *	18 d	CXM ^a	VAN, AMK, metronidazo le	Colonization	Recovere d

Navon-Venezia S. AAC 2006

IC at Dec 2005 in Tel Aviv

- KPC-2 in *E. coli* and *Enterobacter* spp.
- Mostly sporadic events
- High risk isolates
 - Single patient rooms
 - Contact isolation
 - Isolate on readmission admissions
- Presented to hospital management twice as a major threat
 - Questions regarding detection ability of the clinical micro lab (Vitek II system)

Antimicrobial susceptibility testing of 15 KPC-positive *K. pneumoniae* isolates

		lmipenem results (n = 15)			Meropenem results (n = 15)		
Method (software)	Card/panel	Resistant	Intermediate	Susceptible	Resistant	Intermediate	Susceptible
Broth microdilution	In-house frozen panel	13	2	0	14	1	0
Disk diffusion	BDDS disks	3	11	1	10	5	0
MicroScan (LabPro1.51, Alert 1.50)	Neg combo 32	7	7	1	13	1	1
Phoenix (4.05W/3.81A)	NMIC/ ID- 104	5	8	2	12	1	2
Sensititre AutoReader (3.0.8 SP2)	GN2F	0	2	13	0	3	12
VITEK (R10.01)	Superflex GNS 122 and 127	5	0	10	2	3	10
VITEK 2* (R04.01)	GN07	4	6	5	4	4	5

5 (33%) of 15 KPC-pos *K. pneumoniae* isolates were reported as susceptible to imipenem by VITEK 2

Tenover et al, EID 2006

Molecular epidemiology and emergence of KPC in carbapenemresistant K. pneumoniae

Year/ Month

Leavitt A., AAC, 2007

Israeli epidemic KPC-3 producing Klebsiella

chaiolla provincentas

		T: VIE	ebsiella pheumoniae
	רגישות	MIC	אנטיביוטיקה
	יציב	>=64	Amikacin
	יציב	>=32	Ampicillin
	יציב	>=32	Amp/Sulbactan
	יציב	>=64	Aztreonam
	יציב	>=64	Cefazolin
	יציב	>=64	Cefepime
	יציב	>=64	Ceftazidime
	יציב	>=64	Ceftriaxone
	יציב	>=64	Cefuroxime Axetil.
	יציב	>=64	Cefuroxime Sodium.
	נענר	>=4	Ciprofloxacin
S	רגיש	4	Gentamicin
	יציב	>=128	Piperacillin
	יציב	>=128	Piperacillin/Taz
	יציב	>=16	Tobramycin
	יציב	>=320	Trimeth/Sulfa
	יציב	>=8	Levofloxacin
	יציב	256	Nitrofurantoin
	יציב		Imipenem
R	יציב)	Meropenem

Outcomes

- Crude Mortality
 - Resistant Klebsiella 21 died (44%)
 - Susceptible *Klebsiella* 7 died (13%)
 - No *Klebsiella* 1 died (2%)
- Adjusted impact of CRKP on mortality:
 - Compared with hospital controls OR 5.0 (1.7-14.8), p=0.004
 - Compared with susceptible *Klebsiella* OR 3.9 (1.1-13.6), p=0.03
- Mortality with bacteremia >70%

Schwaber et al, AAC, 2008 Finkelstein, ECCMID 2007

Mid February

- Ministry of health approached to intervene at a national level
- Guidelines were written by IC society and embraced by the ministry of health mandating
 - Isolation
 - Cohorting with dedicated staff and equipment
 - Reporting daily on cases and isolation
 - National task force to control KPCs

Mode of action of the Task force

- Coordinated regional measures
- Collaborative effort of the entire IC community
- Refer to hospital CEO's as responsible for control of CRE
- All formal communications are with the CEO's
- Daily feedbacks for non-adherence
- Visits at all sites (30 per year)

Nationwide emergence of carbapenem-resistant Kpn - Israel

Incidence: 60-100 cases per 1,000 hospital beds/year Total number of cases: ~1000 (per 7 million population) mortality 44%

PFGE of isolates from 8 hospitals and 5 LTCFs:

Navon-Venezia et al, ICAAC, 2007

Dendrogram of the CDC's KPC-producing *K*. *pneumoniae* PFGE database (n = 248)

Predominance of a single clone - ST258

Kitchel et al, AAC, 2009

Compliant hospitals succeed in containing spread; non-compliant hospitals do not

CRE Incidence per 1000 Beds, October 2007 (average prevalence >= 4 CRE carriers)

Not all-or-nothing: greater compliance yields greater containment

Schwaber et al. ICAAC 2008

Effect of nationwide infection control intervention

First-Time CRE Acquisitions in Israeli General Hospitals, Jan. 2005-Jan 2009

Effect of nationwide infection control intervention

First-Time CRE Acquisitions in Israeli General Hospitals, Jan. 2005-Jan 2009

Schwaber M. ICCAC 2009

Summary

- ESBL
 - Come from the community + healthcare spread
 - <u>Serious</u> infections should be treated with carbapenems
 - Prevention: Formulary interventions +/- targeted IC (local epidemiology)
- Porin loss mutants (primarily *P. aeruginosa*)
 - Caused by selective pressure
 - Treatment ?
 - Prevention: primarily abx control
- Carbapenemases
 - Come from other countries (or affected institutions)
 - Treatment?
 - Prevention: early detection and strict infection control measures