

Emerging encephalitis

Nipah, Enterovirus 71, West Nile, and others ...

O. Epaulard

Department of Infectious Diseases Grenoble University Hospital

Unit of Virus - host cell interactions UMI 3265 UJF-EMBL-CNRS

Declaration of interest

• No contradictory interest

Menu

- General considerations
- Flaviviruses West Nile virus
- Henipaviruses
- Enterovirus 71
- HEV

DNA viruses

Poxvirus

250 - 350 nm 130 - 300 kb

Papillomavavirus

55 nm *8 kb*

8

 \mathbf{x}

Astrovirus

28 - 30 nm

8 kb

 \otimes

Calicivirus

35 - 40 nm

8 kb

Herpesvirus 120 - 220 nm 125 - 230 kb

Polyomavirus

45 nm *5 kb*

Flavivirus

40 - 50 nm

10 kb

Adenovirus 60 - 90 nm *35 - 40 kb*

٨

Parvovirus 20 nm *5 kb*

Togavirus 60 - 70 nm 80 - 150 nm 27 - 32 kb

Paramyxovirus

125 -300 nm *10 - 15 kb*

RNA viruses

 \bigotimes

Picornavirus

20 - 30 nm

7-9 kb

Filovirus 1000 x 80 nm 13 kb

42 nm

3 kb

Rhabdovirus

180 x 75 nm 12 kb

Orthomyxovirus 80 - 120 nm *13 kb* Arenavirus 110 - 130 nm 10 - 14 kb

Deltavirus Hepadnavirus 35 nm 1,7 kb

шш

Bunyavirus 90 - 120 nm *10 - 14 kb*

Lentivirus 80 - 100 nm 8 - 10 kb

Reovirus 60 - 80 nm 18 - 30 kb

Deltaretrovirus 80 - 110 nm 9 kb

12 kb

Emerging diseases are mostly ...

- Viral
- RNA
- Zoonotic
- No cross-immunity

Why do infectious diseases emerge ?

- Because they always have
- Huge animal reservoir
- Climate evolution
- Air travel
- Urbanization
- Virus mutation
 - Poor fidelity of polymerases of RNA viruses

Did you mention bats ?

- SARS-co
- MERS-co
- Nipah
- Hendra
- Ebola
- Marburg
- Rabies

RNA viruses ...

Did you mention bats ? Bats Carry Dathogenic Repaidnaviruses antigenically

- SARS-co
- MERS-co
- Nipah
- Hendra
- Ebola
- Marburg
- Rabies

Amplification of Emerging Viruses in a Bat Colony

Jan Felix Drexler,¹ Victor Max Corman,¹ Tom Wegner, Adriana Fumie Tateno, Rodrigo Melim Zerbinati, Florian Gloza-Rausch, Antje Seebens, Marcel A. Müller, and Christian Drosten

Drexler 2013

Did you mention bats ?

Smith 2013

Virus	Drivers	Risk factors/modes of transmission Slaughtering Social/cultural practices Farming of wild animals Laboratory acquired infection		
SARS-CoV	Economic growth Desire for game meat Live wild animal trading in wet markets International travel			
Ebola virus	Desire for game meat (Bush meat) Live wild animal trading Burial practices	Slaughtering/hunters Social/cultural Practices Poor health care practices		
Marburg virus	Infected monkeys used for research Mining Tourism	Laboratory acquired infection Caves (eco-tourism) Mining		
Hendra virus	Population growth/urbanization/ human encroachment/ synanthrophy Climate change Starvation Reproductive stress	Inadequate PPE for veterinarians Intermit contact with horses (cuts, abrasions, respiratory secretions) For example performing necropies		
Nipah virus (Bangladesh)	Date palm juice Cultural tradition	Drinking date palm juice Caring for infected patients		
Nipah virus (Malaysia)	Agricultural intensification (dual land use) Encroachment into forested areas Movement of pigs to grower piggeries within Malaysia Food processing in Singapore Trade Habitat destruction Stress	Piggery workers (aerosols, husbandry practices) Abbatoir workers (slaughtering)		
Reoviruses (Melaka virus and related viruses)	Urbanization Tourism	Close proximity to bats Eco-tourism		
Menangle virus	Agricultural practices (transportation of pigs within farm) Movement of pigs to grower piggeries Close proximity to flying fox colony	Piggery workers (husbandry practices — birthing and necropies without PPE)		
Lyssaviruses for example Rabies, Australian bat lyssavirus (ABLV), European bat lyssaviruses (EBLV) 1 and 2, Lagos bat virus, Duvenhage virus	Urbanization Deforestation Synanthrophy	Bat carers Cohabitation with bats in houses		

Smith 2013

2013 Duvenh

Flaviviruses

Flaviviruses: highly successful

Flaviviruses: highly successful

Dengue

- From 9 to 100 countries concerned
- 2,5 billions of people exposed
- 50 to 100 millions cases a year, increasing
- More explosive outbreaks
- More northern every year
 - Including Europe

Dengue Dengue cases, Madeira weeks 39/12-1/13 Probable and confirmed cases Madeira Cases by week All cases N° of cases 164 252 315 145 173 219 Week

Figure 3 Distribution of cases by week and total of all cases, week 39/12–1/13.

Travel Medicine and Infectious Disease (2013) 11, 274-284

REVIEW

Chikungunya and dengue autochthonous cases in Europe, 2007–2012

Danilo Tomasello*, Patricia Schlagenhauf

	Frejús (France), Sept 2010	2	-	0 (0%)	Frejús (Z cases)	43°25'N, 6°44'E	Ae des albopictus	E1-226A (genotype)
Dengue fever	Nice (France), Sept 2010	2	-	2 (100%)	Nice (2 cases)	43°42'N, 7°16E	Aedes albopictus	DENV-1 (serotype)
	Pelješac (Croatia), Aug–Oct 2010	17° (1°)	-	3 (18%)	Podobuče (11 cases)	42°56′N, 17°17′E	Ae des albopictus Unknown (6 cases)	DENV-1 (serotype)
	Madeira island (Portugal), Oct'12-Jan'13	Not known⁼	2218 (74 [†])	122 ^e (5.8%)	Funchal (all cases)	32°39'N, 16°54'E	Aedes aegypti	DENV-1 (serotype)

TBE

Figure 25. Number of TBE cases (bars) and incidence per 100 000 inhabitants (line) by year, Italy (n=159)

ECDC datas

TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE. Vol. 46. No. 5. September, 1952.

COMMUNICATIONS

ZIKA VIRUS

(I). ISOLATIONS AND SEROLOGICAL SPECIFICITY

BY

G. W. A. DICK,

The National Institute for Medical Research, London

S. F. KITCHEN,

Formerly staff member of the Division of Medicine and Public Health, The Rockefeller Foundation, New York, U.S.A.

AND

A. J. HADDOW,

Formerly staff member of International Health Division, The Rockefeller Foundation, New York, U.S.A.

(From the Virus Research Institute, Entebbe, Uganda.)

2009

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Zika Virus Outbreak on Yap Island, Federated States of Micronesia

Mark R. Duffy, D.V.M., M.P.H., Tai-Ho Chen, M.D., W. Thane Hancock, M.D., M.P.H., Ann M. Powers, Ph.D., Jacob L. Kool, M.D., Ph.D., Robert S. Lanciotti, Ph.D., Moses Pretrick, B.S., Maria Marfel, B.S., Stacey Holzbauer, D.V.M., M.P.H., Christine Dubray, M.D., M.P.H., Laurent Guillaumot, M.S., Anne Griggs, M.P.H., Martin Bel, M.D., Amy J. Lambert, M.S., Janeen Laven, B.S., Olga Kosoy, M.S., Amanda Panella, M.P.H., Brad J. Biggerstaff, Ph.D., Marc Fischer, M.D., M.P.H., and Edward B. Hayes, M.D.

Figure 2. Confirmed and Probable Cases of Zika Virus Disease on Yap among Persons Seeking Health Care, According to Week of Onset of Illness during the Period from April through July 2007.

Zika fever in French Polynesia

INVS datas

• 2 then 8 then finally 59 cases of encephalitis in New York area

- 2 then 8 then finally 59 cases of encephalitis in New York area
- First hypothesis : St Louis encephalitis
 - Because of outdoor activities of all patients
 - Serologic tests consistent
- Concurrent outbreak in crows
 - Including substantial crow death
 - With encephalitis at necropsy

- Final diagnosis of West Nile virus infection
 - In local crows
 - In a chilean flamingoe from a local zoo
- Leading to the identification of the same virus in human cases The New England

Journal of Medicine

Figure 3. Phylogeny of WNV based on gene sequence of the envelope protein as of 1999 [21]

Roehrig 2013

FIG. 1. Worldwide distribution of lineage 1 WNV isolates with known complete genome sequences. The number of isolates from each country is shown in parentheses. Dates of divergence and predicted direction of movement are shown for some isolates.

Figure 9. Total WNV and SLEV disease cases by U.S. state (WNV/SLEV). WNV, 1999-2012 (bold) cases reported to ArboNet. SLEV cases from 1964-2000 are listed [1].

Roehrig 2013

Figure 10. Total WNV disease cases by province, Canada, 1999-2012. Some cases

Figure 3. Map of Average Annual Human Neuroinvasive Disease Incidence in the United States, 1999-2012

Petersen 2013

Figure 4. Cumulative Number of Human West Nile Virus Neuroinvasive Disease Cases by Week of Onset, 1999-2012

Petersen 2013

Meanwhile in Europe...

FIGURE 1

Laboratory-diagnosed (confirmed and probable) cases of West Nile neuroinvasive disease by week^a of symptom onset, Greece, 2010 (n=197), 2011 (n=75), 2012 (n=109)^b

West Nile virus

- First isolated in Uganda, West Nile district, 1937
- Reservoir an amplificating host: birds
 - Mammals (including human) : dead-end
 - Viremia too weak and to short
- Vector: mainly *Culex* mosquitoes

Kramer 2008

Petersen 2013

Petersen 2013

West Nile virus fever

- 25% of infected patient develop symptoms
- In >50% of symptomatic patients :
 - Headache
 - Weakness
 - Rash (morbilliform/maculopapular)
 - Mild fever
 - Myalgia
- Less commonly :
 - Joint pain
 - Eye pain
 - Vomiting/diarrhea
 - lymphadenopathy

West Nile neuroinvasive diseases

- 1/200 infected patients (1/10 symptomatic)
 - 1/50 in patients >65 yo
 - 1/800 in patients 16-24 yo
 - More frequent if cancer, diabetes, hypertension, alcohol abuse, renal disease
- Abrupt onset
- Different forms
 - Meningitis
 - Encephalitis
 - Acute flaccid paralysis

Figure 6. Average annual incidence of West Nile virus human neuroinvasive disease by age group, 1999–2012, as reported to CDC ArboNet.

TABLE 1: Clinical outcomes in different MR imaging patterns of WNV infection

Imaging Finding	Mean Age (y)	Mean Hospitalization (d)	Clinical Outcomes
Normal $(n = 5)$	28.4 (18-43)	6.4 (4–13)	Complete recovery $(n = 4)$, mild residual expressive dysphasia $(n = 1)$
Isolated restricted diffusion $(n = 4)$	75.5 (73-80)	6.5 (4-11)	Complete recovery
FLAIR and T2WI hyperintensity $(n = 3)$	63.7 (46-75)	21.3 (11-27)	Death $(n = 2)$, severe neurologic deficits $(n = 1)$
Meningeal involvement $(n = 2)$	60.5 (60-61)	20 (19-21)	Severe neurologic deficits
Intraspinal abnormalities $(n = 3)$	36.3 (28-46)	26.6 (10-42)	Moderate-to-severe neurologic deficits

Note.-Data in parentheses are ranges.

Petropoulou 2005 - Ali 2005

WNV infection diagnosis

- Plasma serology
- CSF serology
- CSF PCR

West Nile virus infection treatment

- Treatment: only supportive
 - Ribavirin
 - Interferon α -2b
 - Polyclonal γ-globulins
 - Neutralizing specific antibodies
 - Antisens strategies

No effect

- Preventive vaccines:
 - Phases I and II (derived from equine vaccines)
 - No phase III

Canad. M. A. J. May 1, 1959, vol. 80

POWASSAN VIRUS: ISOLATION OF VIRUS FROM A FATAL CASE OF ENCEPHALITIS*

D. M. McLEAN, M.D., and W. L. DONOHUE, M.D., Toronto

- Fatal encephalitis in a 10-y old boy of Powassan, Ontario
- Inoculation to newborn mice: encephalitis in 5d

Powassan virus

- Flavivirus related to TBE complex
- Russia, Canada, USA
 Imported from Russia ? In 1950s
- Zoonosis transmitted by ticks
 - Dermacentor & Ixodes

Powassan Meningoencephalitis, New York, USA

Simon Sung,¹ Alysse G. Wurcel,¹ Susan Whittier, Karen Kulas, Laura D. Kramer, Robin Flam, James Kirkland Roberts, and Simon Tsiouris

Powassan cases in the USA, 2001-2012

CDC datas

Usutu virus

Region (year)	Mammals	Birds ^{ab}
Italy	human ^{a.b.c} horse ^c	Common magpie (Pica pica) Jay (Garrulus glandarius) Common starling (Sturnus vulgaris) Blackbird (Turdus merula)
Austria (2001)	human ^{b.c}	Blackbird (T. merula) Great grey owl (Strix nebulosa) Blue tit (Parus caeruleus) Sparrow (Passer domesticus) Great tit (Parus major) Nut hatch (Sitta europaea) Robin (Erithacus rubecula) Song thrush (Turdus philomelos)
Germany (2011)	human ^e	Black bird (T. merula) Common starling (S. vulgaris) Domestic canary (Serinus canaria domestica) Sparrow (P. domesticus) Great grey owl (S. nebulosa)
Switzerland		Common kingfisher (Alcedo atthis) Sparrow (P. domesticus) Black bird (T. merula) Blue tit (P. caeruleus) Green finch (Carduelis chloris) Robin (Erithacus rubecula) Boreal owl (Aegolius funereus) Great grey owl/Lappland owl (S. nebulosa lapponica) Northern hawk owl (Surnia ulula) Eurasian pygmy owl (Glaucidium passerinum)
Spain		
Hungary Serbia Czech Republic ^e	horse ^{c,d}	Blackbird (T. merula) antibody ^d

Pauli 2014

Usutu virus

Eurosurveillance, Volume 14, Issue 50, 17 December 2009

Rapid communications USUTU VIRUS INFECTION IN A PATIENT WHO UNDERWENT ORTHOTROPIC LIVER TRANSPLANTATION, ITALY, AUGUST-SEPTEMBER 2009

F Cavrini^{1,2}, P Gaibani^{1,2}, G Longo³, A M Pierro¹, G Rossini¹, P Bonilauri⁴, G E Gerunda⁵, F Di Benedetto⁵, A Pasetto⁶, M Girardis⁶, M Dottori⁴, M P Landini¹, V Sambri (vittorio.sambri@unibo.lt)¹

- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies CRREM, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
- 2. These Authors contributed equally to this paper and are listed in alphabetical order
- 3. Oncology and Haematology Unit, Modena University Hospital, Modena, Italy
- 4. Experimental Institute for Animal Health and Protection of Lombardia and Emilia-Romagna, Brescia, Italy
- 5. Liver and Multivisceral Transplant Center, University of Modena and Reggio Emilia, Modena, Italy
- 6. Anaestesiology and Intensive Care Unit 1, Modena University Hospital, Modena, Italy

Other flavivirus encephalitis

Journal of Clinical Virology 55 (2012) 204-208

Toscana meningoencephalitis: A comparison to other viral central nervous system infections

Siraya Jaijakul, Cesar A. Arias, Monir Hossain, Roberto C. Arduino, Susan H. Wootton, Rodrigo Hasbun* University of Texas Health Science Center at Houston, TX, USA

Characteristic	No. (%) of cases Toscana virus infection (n=41)	
Symptoms		
Fever	38/39 (97)	
Headache	36/36 (100)	
Stiff neck	33/38 (87)	
Nausea/vomiting	14/18 (78)	
Photophobia	6/7 (86)	
Malaise	8/13 (62)	
Respiratory symptom	0/1 (0)	
Focal neurological deficit	6/28 (21)	
Seizure	3/25 (12)	
Signs		
Altered mental status ^a	14/34 (41)	
Nuchal rigidity	33/37 (89)	
Rash	4/10 (40)	
Focal neurological deficit ^b	6/17 (35)	
Encephalitis s/s	16/36 (44)	

Short Communication

Genetic characterization of Bagaza virus (BAGV) isolated in India and evidence of anti-BAGV antibodies in sera collected from encephalitis patients

Vijay P. Bondre,¹ Gajanan N. Sapkal,¹ Prasanna N. Yergolkar,² Pradip V. Fulmali,¹ Vasudha Sankararaman,¹ Vijay M. Ayachit,¹ Akhilesh C. Mishra¹ and Milind M. Gore¹

Correspondence Vijay P. Bondre vpbondre@yahoo.com or bondrevp@icmr.org ¹National Institute of Virology, Pashan, Pune 411 021, India ²National Institute of Virology, Bangalore Field Unit, Bangalore, India

 Recently considered to be the same virus that Israel Turkey meningoencephalomyelitis virus

CASE REPORT

Encephalitis Caused by Chikungunya Virus in a Traveler from the Kingdom of Tonga

Joanna Nelson,^a Jesse J. Waggoner,^a Malaya K. Sahoo,^b Philip M. Grant,^a Benjamin A. Pinsky^{a,b}

Nipah (and Hendra) viruses

Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia

THE LANCET • Vol 354 • October 9, 1999

Kaw Bing Chua, Khean Jin Goh, Kum Thong Wong, Adeeba Kamarulzaman, Patrick Seow Koon Tan, Thomas G Ksiazek, Sherif R Zaki, George Paul, Sai Kit Lam, Chong Tin Tan

- 265 cases / Fatality rate 40%
- First supposed to be Japanese EV *but*:
 - More adults than children
 - High attack rate
 - Several cases in the household
- First viral isolate at Kampung Sungai Nipah (march 1999)
- The outbreak was stopped after slaughtering 1.1 M pigs

Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia

THE LANCET • Vol 354 • October 9, 1999

Kaw Bing Chua, Khean Jin Goh, Kum Thong Wong, Adeeba Kamarulzaman, Patrick Seow Koon Tan, Thomas G Ksiazek, Sherif R Zaki, George Paul, Sai Kit Lam, Chong Tin Tan

- 3 pig farmers
- Clinics:
 - Fever, headache, altered consciousness
 - Dysautonomia / brainstem dysfunction
 - Hypotension and death
- Necropsy:
 - Vasculitis-induced thrombosis
 - Viral inclusions in neurons
 - Cross-reactivity to Hendra Virus

Nipah encephalitis virus

- Natural host: pteropus bat
- Tested positive in...
 - Cambodia
 - Thailand
 - Indonesia
 - India
 - Madagascar
 - Ghana

Nipah encephalitis virus

- Natural host: pteropus bat
- Paramyxoviridae

Nipah encephalitis virus

- Natural host: pteropus bat
- Paramyxoviridae
- First documented cases:
 - Pigs in 1996 (retrospectively)
 - Transmission from bats
 - Due to modification/intensification of pig farming
 - Human in 1998
 - Cats, dogs, goats... : dead-end

Kulkarni 2013

Outbreaks in India & Bangladesh: 292 patients, 221 deaths

Year/month	Location	No. cases	No. deaths	Case fatality (%)
Jan-Feb 2001	Siliguri (India)	66	45	68
Apr-May 2001	Meherpur (Bangladesh)	13	9	69
Jan 2003	Naogaon (Bangladesh)	12	8	67
Jan 2004	Rajbari(Bangladesh)	31	23	74
Apr 2004	Faridpur (Bangladesh)	36	27	75
Jan-Mar 2005	Tangail (Bangladesh)	12	11	92
Jan-Feb 2007	Thakurgaon (Bangladesh)	7	3	43
Mar 2007	Kushtia, Pabna, Natore (Bangladesh)	8	5	63
Apr 2007	Naogaon (Bangladesh)	3	1	33
April 2007	Nadia (India)	5	5	101
Feb 2008	Manikgonj (Bangladesh)	4	4	101
Apr 2008	Rajbari and Faridpur (Bangladesh)	7	5	71
Jan 2009	Gaibandha, Rangpur and Nilphamari (Bangladesh)	3	0	0
Jan 2009	Rajbari (Bangladesh)	1	1	101
Feb-Mar 2010	Faridpur, Rajbari,Gopalganj,Madaripur (Bangladesh)	16	14	87.5
Jan-Feb 2011	Lalmohirhat, Dinajpur, Comilla, Nilphamari and Rangpur (Bangladesh)	44	40	91
Feb 2012	Joypurhat, Rajshahi, Natore, Rajbari and Gopalganj (Bangladesh)	12	10	83
Jan-Feb 2013	Gaibandha, Natore, Rajshahi, Naogaon, Rajbari, Pabna, Jhenaidah, Mymensingh (Bangladesh)	12	10	83
Total		292	221	75.7

Table 1 Morbidity and mortality in humans due to NiV, India-Bangladesh [43, 97]

Nipah virus transmission

- Detectable in urine, feces, saliva
- Malaysia, Singapore :
 - pig to human
 - At risk : pig farmers, pig slaughters
- India, Bangladesh :
 - Bats to human
 - Climbing to palm tree
 - Drinking fresh date palm sap
 - Human to human
 - Including to HCW in hospital (Siliguri outbreak)

Siliguri outbreak, India

Figure 2. Sequence of events in the Siliguri (SD) outbreak.

Siliguri outbreak, India

Date of onset

Nipah encephalitis in human

Incubation <2 weeks in >90%
 – 4 days to ? 2 months

• Possible subclinical infection (10-50%) *Chan 2002*

© (Copyright, 2000, by the Massachusetts Medical Societ	У	TABLE T. CLINICAL FEA	IURES
VOLUME 342	April 27, 2000	NUMBER 17	AT PRESENTATION IN PA	TIENTS
			WITH NIPAH VIRUS INFE	CTION.
LINICAL FEATURES (OF NIPAH VIRUS ENCEPHALITIS A IN MALAYSIA	MONG PIG FARMERS		11.1
KHEAN JIN GOH, M. PATRICK SEOW KOON TAN, F. KUM TUONG WONG M.B.C. P.	R.C.P., CHONG TIN TAN, F.R.C.P., M.D., NEE KONG R.C.A., Adeeba Kamarulzaman, F.R.A.C.P., Sazil	S CHEW, M.R.C.P., AH AHMAD SARJI, F.R.C.R., BING CILLIA E.R.C.R. M.D.		No. of
KUM THONG WONG, W.R.C.P	ATH., DASH JUHAN JEET ABDULLAH, F.N.C.N., NAW AND SAI KIT LAM, PH.D., F.R.C.P.	DING CHUA, F.N.C.F., M.D.,	ATURE	PATIENTS (%
		FE	ATORE	(11=94)
		Fe	ever	91 (97)
		H	eadache	61 (65)
		D	izziness	34 (36)
		Ve	omiting	25 (27)
		Re	educed level of consciousness*	20 (21)
		N	onproductive cough	13 (14)
		M	yalgia	11 (12)
		Fo	ocal neurologic signs	10(11)
			Cerebellar signs	3 (3)
			Segmental myoclonus	3 (3)
			Cerebellar signs and segmental myoclonus	2 (2)
			Rotatory nystagmus	1(1)
			Dysphasia	1(1)

Nipah: CSF fluid examination

TABLE 3. Results of Cerebrospinal Fluid Examination in Patients with Nipah Virus Infection.

Examination	No. of Patients	DAY OF	WHITE-CELL COUNT*	Protein*	GLUCOSE*	PRESSURE*	ΡΑΤΙΕΙ	NTS WITH ABNO	rmal Results
							TOTAL	ELEVATED PROTEIN LEVELS ONLY	ELEVATED WHITE-CELL COUNTS AND PROTEIN LEVELS
			cells/mm ³	g/liter	mmol/liter	cm of water		no./total no	o. (%)
First	92	5.2 (2-24)	41.2 (0-842)	0.69(0.12 - 2.15)	3.8 (2.0-5.5)	17.4 (3-58)	69/92 (75)	42/69 (61)	27/69 (39)
Second	31	12.1 (4-38)	59.2 (0-720)	$0.90\;(0.24{-}5.80)$	3.3 (2.0-4.5)	16.1 (8-25)	24/31 (77)	13/24 (54)	11/24 (46)

*Mean values are shown, with the range in parentheses.

• Nipah virus is detectable in CSF by PCR

FACTOR	D ЕАТН (N =30)	SURVIVAL (N=64)	P VALUE
Mean age — yr	40.9	35.2	0.02
Vomiting — no. (%)	12 (40)	13 (20)	0.04
Mean lowest Glasgow Coma scores	6.8	12.8	0.005
Segmental myoclonus — no. (%)	20 (67)	10 (16)	< 0.001
Abnormal doll's-eye reflex — no. (%)	26 (87)	10 (16)	< 0.001
Abnormal pupils — no. (%)	29 (97)	20 (31)	< 0.001
Hypertension — no. (%)	23 (77)	14 (22)	< 0.001
Tachycardia — no. (%)	28 (93)	8 (12)	< 0.001
Absent or reduced reflexes - no. (%)	22 (73)	31 (48)	0.02
Seizures — no. (%)	12 (40)	10 (16)	0.01
Mean aspartate aminotransferase level at admission — U/liter	87	34.4	0.001
Mean alanine aminotransferase level at admission — U/liter	94.2	53.6	0.006
Mean platelet count at admission — per mm ³	151,000	197,000	0.005

TABLE 4. FACTORS ASSOCIATED WITH THE PROGNOSISOF NIPAH VIRUS INFECTION.

Treatment of Acute Nipah 2001 Encephalitis with Ribavirin

Heng-Thay Chong, MRCP,¹ Adeeba Kamarulzaman, FRACP,¹ Chong-Tin Tan, FRCP,¹ Khean-Jin Goh, MRCP,¹ Tarmizi Thayaparan, MRCP,³ Sree Raman Kunjapan, MRCP,³ Nee-Kong Chew, MRCP,¹ Kaw-Bing Chua, FRCP,² Sai-Kit Lam, PhD²

- 140 patients
 - 54 before study, or refused ribavirin
 - Death 54%
 - 86 receiving ribavirin
 - 2g day 1, 3.6g days 2-4, 2.4g days 5-6, 1.2g days 7-10
 - Death 32%

INFECTIOUS DISEASE

2014

Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human Monoclonal Antibody

Thomas W. Geisbert,^{1,2*†} Chad E. Mire,^{1,2*} Joan B. Geisbert,^{1,2} Yee-Peng Chan,³ Krystle N. Agans,^{1,2} Friederike Feldmann,⁴ Karla A. Fenton,^{1,2} Zhongyu Zhu,⁵ Dimiter S. Dimitrov,⁵ Dana P. Scott,⁴ Katharine N. Bossart,⁶ Heinz Feldmann,⁷ Christopher C. Broder^{3†}

- m102.4
- Phase I study to be initiated in Australia

A Morbillivirus That Caused Fatal Disease in Horses and Humans 1995

Keith Murray,* Paul Selleck, Peter Hooper, Alex Hyatt, Allan Gould, Laurie Gleeson, Harvey Westbury, Lester Hiley, Linda Selvey, Barry Rodwell, Peter Ketterer

- First described in Australia, 1994
 - Outbreak in 21 horses, 14 deaths
 - 2 cases in humans, all working with horses;
 one death (pneumonia)
- Mainly respiratory signs

Hendra virus

- Outbreaks in horses
 - 48 described, all in Australia
- Rare cases in human : seven described
 - All with close contact with ill horses
 - 4 deaths (1994, 2008, 2009)
 - 1 with pneumonia, 3 with encephalitis

Nakka 2012

Enterovirus 71

Enteroviruses: previous classification

- Coxsackievirus A (23 serotypes)
- Coxsackievirus B (6 serotypes)
- Polioviruses (3 serotypes)
- Echovirus (68 serotypes)
- Others Human EnteroViruses isolated after 1970 – HEV68

Enterovirus: new classification

	Serotype
A	CV-A2-8, CV-A10, CV-A12, CV-A14, CV-A16, EV71, EV76, EV89-92
В	CV-A9, CV-B1–6, E1–7, E9, E11–21, E24–27, E29–33, EV69, EV73, EV74–75, EV77–88, EV93, EV97, EV98, EV100, EV101, EV106, EV107
С	CV-A1, CV-A11, CV-A13, CV-A17, CV-A19–A22, CV-A24, EV95, EV96, EV99, EV102, EV104, EV105, EV109, PV1–3
D	EV68, EV70, EV94

The Picornaviridae Study Group and the International Committee on Taxonomy of Viruses classified the Enterovirus genus into ten species, which include four human enterovirus species (A–D), three human rhinovirus species (A–C), bovine enterovirus, simian enterovirus A, and porcine enteroviruses (http://www.ncbi.nlm.nih.gov/ICTVdb/ ICTVdB/). CV-A=coxsackievirus A. CV-B=coxsackievirus B. EV=enterovirus. E=echovirus. PV=poliovirus.

Table 1: Human enterovirus serotypes, by species

Solomon 2010

© Richard Hunt

HMFD: skin and mucosa

Ooi 2010

Enterovirus 71

- Isolated in 1969 (1963?)
- HFMD outbreaks (mainly Pacific-Asia area)
- Aseptic meningitis, brainstem encephalitis, acute flaccid paralysis

 Frequently associated with pulmonary oedema and shock THE JOURNAL OF INFECTIOUS DISEASES • VOL. 129, No. 3 • MARCH 1974 © 1974 by the University of Chicago. All rights reserved.

An Apparently New Enterovirus Isolated from Patients with Disease of the Central Nervous System

Nathalie J. Schmidt, Edwin H. Lennette, and Helen H. Ho From the Viral and Rickettsial Disease Laboratory, California State Department of Health, Berkeley, California

				1.041				Neuti	alizing antibody
					e 11 e	Virus isol	ation	Days	
n			0	Date of	Clinical			after	Titer vs.
Pat	ient	Age	Sex	onset	diagnosis	Specimen	HOSt*	onset	BrCr virus
1.	JaFr	9 months	М	9/28/69	Encephalitis	Stool	RhMK	5	128 (100)†
								19	512 (100)
2.	ChDa	5 years	М	8/13/70	Encephalitis	Brain‡	RhMK	ND§	
3.	BrCr	2 months	М	8/15/70	Aseptic meningitis	Stool	RhMK	3	< 8 (3,200)
							HFDK	13	32 (3,200)
4.	JoFa	5 years	М	8/16/70	Meningoencephalitis	Stool	RhMK	2	64 (100)
							HFDK	7	512 (100)
5.	CaWi	37 years	F	9/1/70	Encephalitis	Stool	RhMK	2	< 8 (32)
								19	64 (32)
6.	HeBo	10 years	М	10/22/70	Meningitis	Stool, throat	RhMK	1	< 8 (32)
								14	256 (32)
7.	DaAr	5 years	М	1/20/71	Meningitis	Stool	RhMK	2	1,024 (100)
								20	512 (100)
8.	KeMa	5 years	М	4/25/71	Viral meningitis	Stool	RhMK	2	64 (32)
								16	64 (32)
9.	LeBr	4 years	Μ	5/28/71	Meningitis	Stoo1	AGMK	ND	
10.	GeGr	46 years	М	6/11/71	Coxsackie B(?) influenza(?) myocarditis	Stool	RhMK	ND	
11.	WiTr	2 years	М	7/26/71	Encephalitis	Stool	RhMK	7	128 (32)
12.	DoPr	7 years	F	8/11/71	Encephalitis	Stool	RhMK	2	512 (32)
								28	64 (32)
13.	MiBr	1 year	М	8/15/71	Encephalitis	Stool	RhMK	2	16 (3,200)
		-			-			20	64 (3,200)
14.	LuBl	9 months	Μ	8/22/71	Meningitis	Stool	RhMK	ND	
15.	RoLo	14 years	М	8/31/71	Coxsackie-echo?	Stool#	RhMK	3	≥ 1,024 (100)
		-						16	≥ 1,024 (100)
16.	CaMo	11 years	F	11/8/71	Encephalitis	Stool	RhMK	1	< 8 (1,000)
		-			-			15	32 (1,000)
17.	MaMa	10 years	Μ	7/18/72	Meningitis	Stool	RhMK	10	256 (32)
								25	128 (32)
18.	JeTh	3 years	М	8/22/72	Viral meningitis	Stool	HFDK	7	64 (32)
								27	128 (32)
19.	JeWa	3 weeks	М	10/26/72	Meningitis	Stool]]	RhMK	ND	
20.	MiHe	2 years	М	11/6/72	Aseptic meningitis	Stool	RhMK	3	64 (100)
		-						21	128 (100)

Table 1.	Recovery of BrCr virus and related strains from patients with disease of the	e central nervous system.
		Mantualizing antibada

	Number of EV71 cases reported	Number of fatal cases reported	Main clinical presentations
California, USA, 1969-72 ²	20	1	Encephalitis, meningitis, coxsackievirus-like illness
New York, USA, 1972 ³	11	0	Aseptic meningitis, encephalitis, HFMD (only one case)
Sweden, 1973*	195	0	Aseptic meningitis, HFMD (some cases)
Bulgaria, 1975	705	44	Aseptic meningitis, paralytic disease, including bulbar encephalitis
Japan, 1973, 1977, 1978	1031	Some deaths, exact number unknown	HFMD (in most patients), cerebellar encephalitis, meningitis, acute flaccid paralysis
New York, USA, 1977	12	0	CNS disease, HFMD, acute respiratory illness, acute gastroenteritis
Hungary, 1978 ^a	323 laboratory confirmed	47 (unclear whether all due to EV71)	Meningitis, encephalitis, poliomyelitis, HFMD (only four cases)
Australia, 1986ª	114	0	HFMD (in most cases), meningitis, encephalitis, encephalomyelopathy
Philadelphia, 1987 ³⁰	5	0	Acute flaccid paralysis
USA, 1977-91"	193 laboratory confirmed	Unknown	1985-89: paralysis, meningitis, encephalitis, rash, Guillain-Barré syndrome
Sarawak, Malaysia, 1997"	2628	34	HFMD, aseptic meningitis, acute flaccid paralysis, cardiorespiratory dysfunction
Otsu, Japan, 1997 ¹³	12	0	HFMD, herpangina, meningoencephalitis, encephalitis, meningitis
Taiwan, 1998 ¹⁴	129106	78	Encephalitis, aseptic meningitis, pulmonary oedema or haemorrhage, acute flaccid paralysis, myocarditis
Kenya, 1999 ³⁵	8	0	Dermatitis, mucositis, myositis
Hyogo, Japan, 2000 ¹⁶	60	1	HFMD, aseptic meningitis, cerebellar ataxia, acute flaccid paralysis, brainstem encephalitis
Sarawak, Malaysia, 2000 ^{tr}	169 laboratory confirmed	2	HFMD, aseptic meningitis, acute flaccid paralysis, brainstem encephalitis
Singapore, 2000 ^{ut}	3790	5	HFMD, neurological disease
Korea, 2000 ¹⁹	Unknown	0	Aseptic meningitis, HFMD, herpangina, acute flaccid paralysis
Sarawak, Malaysia, 2003™	107 laboratory confirmed	1	HFMD, aseptic meningitis, acute flaccid paralysis, brainstem encephalitis
Fukushima, Japan, 1983-2003 ²⁰	Unknown	Unknown	Unknown
Denver, USA, 2003 ²¹	8	1	Meningitis, acute flaccid paralysis, fever, cardiopulmonary dysfunction
Southern Vietnam, 2005 ²²	173 laboratory confirmed	3	HFMD, aseptic meningitis, acute flaccid paralysis, brainstem encephalitis
Sarawak, Malaysia, 2006 ²¹	291 laboratory confirmed	6	HFMD, aseptic meningitis, brainstem encephalitis
Denver, USA, 2005 ⁿ	8	0	Meningitis, acute flaccid paralysis, fever, encephalitis
Brunei, 200624	1681	3	HFMD, neurological disease
Shandong, China, 200725	1149	3	HFMD, brainstem encephalitis, aseptic meningitis
Anhui, China, 200826	488 955	128	HFMD, neurogenic pulmonary oedema
IFMD=hand, foot, and mouth disea	ISE.		

Solomon 2010

Regions with reported human enterovirus 71 infection.

The New England Journal of Medicine

© Copyright, 1999, by the Massachusetts Medical Society

VOLUME 341

SEPTEMBER 23, 1999

NUMBER 13

AN EPIDEMIC OF ENTEROVIRUS 71 INFECTION IN TAIWAN

MONTO HO, M.D., ENG-RIN CHEN, DR.MED.SCI., KWO-HSIUNG HSU, M.S., SHIING-JER TWU, M.D., PH.D., KOW-TONG CHEN, M.D., PH.D., SU-FEN TSAI, M.P.H., JEN-REN WANG, PH.D., AND SHIN-RU SHIH, PH.D., FOR THE TAIWAN ENTEROVIRUS EPIDEMIC WORKING GROUP*

Week of Onset

Figure 1. Number of Cases of Hand-Foot-and-Mouth Disease and Herpangina Reported in Taiwan as a Whole and in Each of Its Four Regions by Sentinel Physicians from the Week of March 29, 1998, through the Week of December 27, 1998.

The total number of cases was 129,106.

Figure 2. Number of Cases and Outcome of Severe Hand-Foot-and-Mouth Disease and Herpangina in Taiwan from the Week of February 15, 1998, through the Week of December 20, 1998. A total of 78 patients died, and 327 survived.

TABLE 3. CLINICAL COMPLICATIONS IN 96 PATIENTS WITH SEVERE ENTEROVIRAL INFECTION.

COMPLICATIONS*	No. of Patients (%)	ENTEROVIRUS 71 (N=78)	Coxsackievirus A 16 or A24, Coxsackievirus B5, or Echovirus 6 or 7 (N=9)	OTHER ENTEROVIRUSES (N=9)
			number of isolates	
Encephalitis	39 (41)	30	5	4
Encephalitis and pulmonary edema or hemorrhage	25 (26)	25	0	0
Aseptic meningitis	11 (11)	5	1	5
Pulmonary edema or hem- orrhage	10 (10)	9	1	0
Myocarditis and encephalitis	2 (2)	2	0	0
Myocarditis	1(1)	1	0	0
Acute flaccid paralysis and encephalitis	1 (1)	1	0	0
Acute flaccid paralysis	1 (1)	1	0	0
Other	6 (6)	4	2	0

*The categories of complications are mutually exclusive.

Frequent
Frequent
Frequent
Very frequent
Infrequent
Rare
Frequent
anisms
Infrequent
Rare
Rare
ons.

Enterovirus 71 – associated lung failure

BMC Infectious Diseases

Research article

O Bio Med Central

Open Access

Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak

Mong How Ooi^{*1,2,3}, See Chang Wong¹, Anand Mohan¹, Yuwana Podin², David Perera², Daniella Clear³, Sylvia del Sel³, Chae Hee Chieng¹, Phaik Hooi Tio², Mary Jane Cardosa² and Tom Solomon³

BMC Infectious Diseases

Open Ace

0

BioMed C

Research article

Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak

Mong How Ooi^{*1,2,3}, See Chang Wong¹, Anand Mohan¹, Yuwana Podin², David Perera², Daniella Clear³, Sylvia del Sel³, Chae Hee Chieng¹, Phaik Hooi Tio², Mary Jane Cardosa² and Tom Solomon³

Table 1: Risk factors that were significantly associated with CSF pleocytosis in children with HFMD in the first phase of the study (2000 to 2003).

Risk factors	p value	Odds ratio	95% CI
Total duration of fever \geq 3 days	< 0.0001	6.52	2.83 - 14.99
Peak temperature \geq 38.5°C	0.0192	2.27	1.14 - 4.51
History of lethargy	0.001	3.18	1.60 - 6.35

Note: The Hosmer-Lemeshow statistics indicated a non-significance of lack of fit ($\chi^2 = 2.163$, p = 0.904). CSF: Cerebrospinal fluid HFMD: Hand, foot, and mouth disease

725 children Ooi 2009
Neurological Manifestations of Enterovirus 71 Infection in Children during an Outbreak of Hand, Foot, and Mouth Disease in Western Australia

Peter McMinn,¹ Ivan Stratov,¹ Lakshmi Nagarajan,² and Stephen Davis³

Departments of ¹Microbiology and ²Neurology, Princess Margaret Hospital for Children, Perth, and ³Magnetic Resonance Imaging Unit, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, Australia

Figure 1. MRI of a 9-month-old male infant (patient 2) with enterovirus 71–associated neurological disease. *A*, Axial gradient-echo T₂-weighted MRI done 3 days after the onset of acute transverse myelitis, showing a high signal lesion centered in the dorsal column white matter of the cervical cord. *B*, Midsagittal turbo spin-echo T₂-weighted MRI scan done during the same examination as in *A*, showing a lesion from C2 to T2 (*arrows*) with mild cord expansion.

McMinn 2001 – 9 month-old

McMinn 2001 – 19 month-old

Chen 1999

CSF parameters

Patient	Age	Time of	CSF parameters						
		no. of days from onset of illness	WBC count, cells/mm ³	RBC count, cells/mm ³	Glucose level, mg/dL	Protein level, mg/dL	CSF PCR result		
1	2 years	2	2075	14	56	69	-		
2	5 years	4	76	8	126	56			
3	10 days	1	1	200	68	78	+		
4	6 months	2	228	43	71	52	_		
5	5 years	10	2	1200	94	40			
6	2 months	2	15	5100	57	59	+		
7	3 months	2	6	1700	58	34	+		
8	1 months	2	ND	ND	ND	ND	+		
9	9 years	10	5	1110	60	66	-		
10	3 months	3	406	0	54	91			
11	7 months	8	ND	ND	ND	ND	-		
12	7 weeks	2	240	250	49	107	-		
13	7 weeks	4	205	63	41	65	-		
14	3 months	1	6	288	50	49	+		
15	2 years	2	55	95	68	39	-		
16	2 years	15	11	0	51	44	-		

Perez-Velez 2007

	Specimen											
	CSF		Blood		Throat		Rectal		Nasal wash		Other	
Patient	PCR result	Culture result	PCR result	Culture result	PCR result	Culture result	PCR result	Culture result	PCR result	Culture result	PCR result	Culture result
1	-				+		+					
2	-		-				+			+	+ª	
3	+								***			
4	-		Ind		+	_b	+	+	÷	_b	+c	
5	-		Ind		+	-	+	-		+	-c, +d	
6	+			444								
7	+											
8	+ 0			***	+		+			-		
9	-					+						
10	-						+	+		+	+†	
11	_ ^e	-									+g	+ ^g
12	-											+ ^h
13	-						···				+9	+1
14	+										+	
15	-				+	-	+	+				
16	-				+		-					
All, no. of patients with positive results/no. of patients with sample tested	5/16	0/1	0/3	0/0	6/6	1/4	7/8	3/4	1/1	3/5		

Table 2. Enteroviral PCR and culture results for patients with enterovirus type 71 infection.

Perez-Velez 2007

Enterovirus 71 : antiviral therapy

- Anti-polymerase
 - Ribavirine
 - Active on other RNA viruses but not EV
- Capside binders
 - Pleconaril
 - Inhibits the entry and decoating of enteroviruses
 - ... Not active on EV71
 - Vapendavir (initially developped for rhinovirus)
 - pirodavir
- Protease inhibitor
 - SG85
 - Rupintrivir

Enterovirus 71 : other treatments

• Milrinone

- Inotropic agent
- For neurogenic pulmonary edema

TABLE 3. Clinical Course of Children With Enterovirus 71 Brainstem Encephalitis According to Treatment With Milrinone or Standard Management

Variable	Milrinone Treatment (<i>n</i> = 22)	Standard Management (<i>n</i> = 19)	P
Overall mortality, <i>n</i> (%)	4 (18.2)	11 (57.9)	0.01ª
Enrollment to death (d), median (range)	1.5 (1–4)	1 (0.5–7)	0.43
Mechanical ventilation, n (%)	17 (77.3)	18 (94.7)	0.19

Chi 2013

First Case of Severe Enterovirus 71 Infection in Portugal

Venancio 2013

To the Editors:

n December 2011, a 17-month-old boy was admitted to a pediatric intensive care unit in Lisbon, Portugal, because of rapidly progressive acute flaccid paralysis, rhombencephalitis and coma. He had been diagnosed

Human enterovirus 71 strains in the background population and in hospital patients in Finland

Hanna Honkanen^{a,*}, Sami Oikarinen^a, Outi Pakkanen^b, Tanja Ruokoranta^b, Minna M. Pulkki^b, Olli H. Laitinen^b, Sisko Tauriainen^a, Sanna Korpela^a, Maija Lappalainen^c, Tytti Vuorinen^d, Anna-Maija Haapala^e, Riitta Veijola^f, Olli Simell^g, Jorma Ilonen^{h,i}, Mikael Knip^{j,k,l}, Heikki Hyöty^{a,m}

Seroepidemiology and Molecular Epidemiology of Enterovirus 71 in Russia

Ludmila V. Akhmadishina¹, Tatiana P. Eremeeva¹, Olga E. Trotsenko², Olga E. Ivanova¹, Mikhail I. Mikhailov¹, Alexander N. Lukashev¹*

1 Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia, 2 Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia

New Introductions of Enterovirus 71 Subgenogroup C4 Strains, France, 2012

Isabelle Schuffenecker, Cécile Henquell, Audrey Mirand, Marianne Coste-Burel, Stéphanie Marque-Juillet, Delphine Desbois, Gisèle Lagathu, Laure Bornebusch, Jean-Luc Bailly, and Bruno Lina

In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe.

HEV

Hepatitis E virus

- Discovered 1983 in Afghanistan
 - Nude RNA virus of its own genus
- Probably the most common cause of acute hepatitis in the world
 - But chronic form may develop in immunocompromised hosts
- 4 serotypes
 - 1 & 2 : water-borne infection in developing countries
 - 3 & 4 : zoonotic (pig) reservoir

Figure 3: Source and route of HEV1-4 infection

Hepatitis E virus infection with CNS involvment

- Immunocompromised and immunocompetent patients
- Acute (I.competent) or chronic (I.compromised) infection
- Liver enzymes elevated during acute infection
 Although mild : ALT 300-1000 IU/L

	HEV infection	Nervous system lesions	<u>Plasma</u>			<u>CSF</u>			
Medical status	Phase and genotype		HEV IgG/IgM	HEV RNA	alt, iu/l	HEV RNA	Protein g/L	Leukocytes /mm³	
Not immunocompr.	Acute 3e	PRN	+/+	+	623	Neg	1.27	145	
Not immunocompr.	Acute 3e	neuritis	+/+	+	1160	ND	-		
Not immunocompr.	Acute 3f	PRN	+/+	+	384	Neg	2	14	
Kidney–pancr. Tx recipient	Chronic 3f	PRN	+/+	+	173	Pos	0.71	1	
Kidney Tx Recipient	Chronic 3f	encephali tis	-/+	+	110	Pos	0.8	8	
Kidney Tx Recipient	Chronic 3f	PRN	+/+	+	105	Pos	0.76	7	
HIV positive	Chronic 3f	Ataxia	+/+	+	150	Pos	0.47	1	
Not immunocompr.	Acute 3f	encephali tis	-/+	+	479	Pos	0.56	12	
Not immunocompr.	Acute	radiculitis	+/-	NA	1612	NA	0.68	<5	

Adapted from Kamar 2011 and Deroux 2014

