

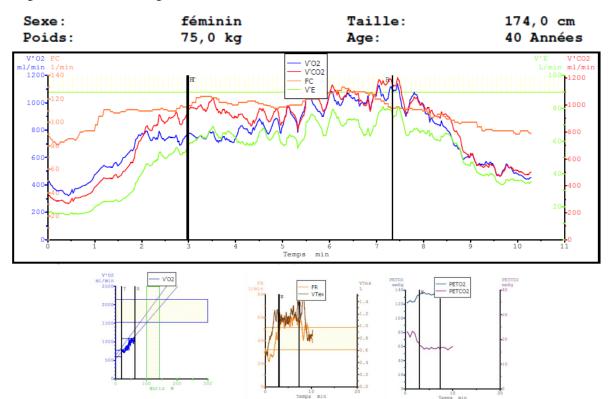
Justine Frija-Masson, Paris

COVID long et mécanique ventilatoire

CONFLITS D'INTERET POUR CETTE PRÉSENTATION

Aucun lien d'intérêt en lien avec la présentation

Demande ventilatoire


- Déterminants de la réponse ventilatoire
 - PaCO2 et point de consigne
 - Production de CO2
 - Espace mort physiologique (VD/VT)

- Pente VE/VCO2
 - Pente chez le sujet sain : 23-25 l/min
 - Intercept 4-5 l/min

Hyperventilation

Contexte: dyspnée avec EFR et ETT normales, depuis 1 an et demi, chez une patiente non tabagique, auparavant sportive. Absence d'exposition professionnelle. Score de Nijmegen à 21 avec alcalose respiratoire à 2 prélèvements artériels.

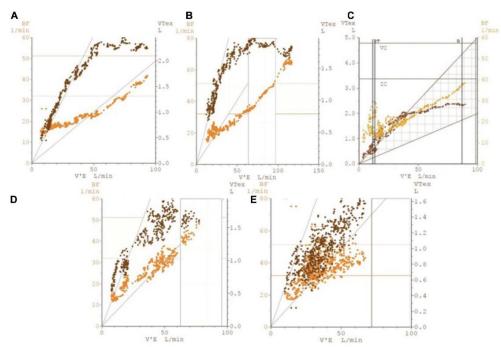
Hyperventilation

		Repos Mesuré	Seuil Mesuré	%VO2Max	%V02Théo	Puissance Maximum		
						Mesuré	Norme	&
Temps	min	02:57				07:18		
Puissance	W	0			0	62	122	51
VO2	ml/min	724			20	1044	1839	57
VO2/kg	ml/min/kg	9.6			20	13.9	24.5	57
VCO2	ml/min	883				1157		
Quotient Resp.		1.22				1.11		
Pente VO2/Wa	ml/min/Watt	0.00				5.17		
Ventilation	L/min	52			15	78	109*	72
Fréq. Resp.	1/min	47			70	57	42	137
Volume Courant-ex	L	1.118				1.376		
Réserve Ventilato	ire %	53			304	28	28	101
VD/VTcalc	%	14			86	16	19	82
VD/VTphys	- %	40			142	33	19	172
Equivalent CO2		53.1				62.4		
Equivalent. 02		64.8				69.1		
Saturation O2	*	100				100		
PaCO2	mmHg	30.00				22.00		
Pa02	mmHg	105.00				131.00		
pH artériel		7.48				7.55		
PAO2 Alvéol.	mmHg	112.03				127.57		
P (a-ET) CO2	mmHg	6.56				5.33		
P (A-a) 02	mmHg	7.03				-3.43		
Lactate	mmol/L	0.00				0.00		
PETCO2	mmHg	23.00				16.92		

SYNDROME D'HYPERVENTILATION

Dysfunctional breathing

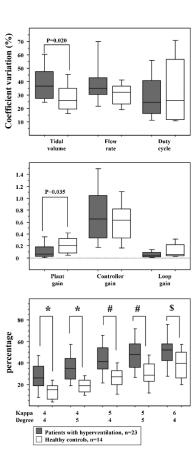
- Syndrome d'hyperventilation
- Soupirs périodiques
- Respiration thoracique dominante
- Expiration abdominale forcée
- Asynchronisme thoraco-abdominal


Syndrome d'hyperventilation

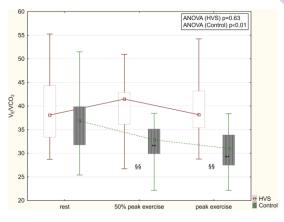
- Symptômes pleiomorphes
 - Dyspnée paroxystique, notamment au repos
 - Baillements, soupirs
 - Dyspnée d'effort, à la parole
 - Respiration superficielle
 - Paresthésies, palpitations
- Evénement déclenchant parfois non retrouvé
- Dépistage : score de Nijmegen
 - Positif si \ge 23/64 (Se 91%, Sp 95%)

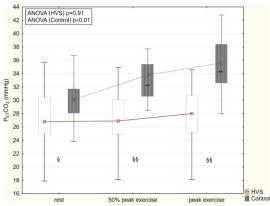
Comportement ventilatoire variable

Ionescu 2021


Examens complémentaires

- Pas de gold standard pour le diagnostic de SHV
 - EFR non systématiques
 - Gaz du sang : peuvent être normaux
 - Test d'hyperventilation : pas de cotation CCAM, peu disponible
 - Epreuve fonctionnelle à l'exercice
- Buts:
 - Eliminer un diagnostic alternatif
 - Embolie pulmonaire
 - Séquelle respiratoire
 - Asthme (formes chroniques ++)
 - Avoir des arguments en faveur d'un SHV


Physiopathologie


- Bokov 2016 : N=23 sujets avec SHV, 14 contrôles
 - Complexité et variabilité respiratoire augmentées
 - Diminution du plant gain
 - Hypocapnie submissive ?
- Jack 2004
 - Hyperventilation de repos (hypocapnie et alcalose)
 - Hyperventilation d'exercice malgré réponse normale à l'hypercapnie hyperoxique
 - Réponse à l'hypoxie isocapnique basse
- Régression pendant le sommeil

EFX dans le diagnostic de SHV

- Pas de cut-off admis
- SHV avec hyperventilation de repos (Kinnula 1993)
 - Equivalent CO2 suit une courbe normale en EFX mais plus élevé à la base
 - Pas forcément d'alcalose de repos
 - Corrélation négative EqCO2 et PaCO2 (r-0,77)
- Souvent atteinte de la FMT
- Recherche de déconditionnement associé
- Formes « graves » ne répondant pas à la kiné ?

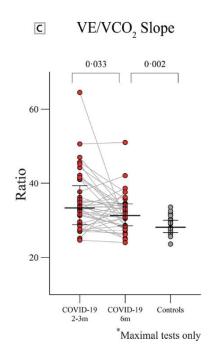
HYPERVENTILATION COVID-19

Hyperventilation post-Covid-19 : prévalence

- Dyspnée post-Covid-19
 - Fréquente
 - Y compris formes bénignes
 - Parfois disproportionnée par rapport aux EFR

Hyperventilation post-Covid-19: prévalence

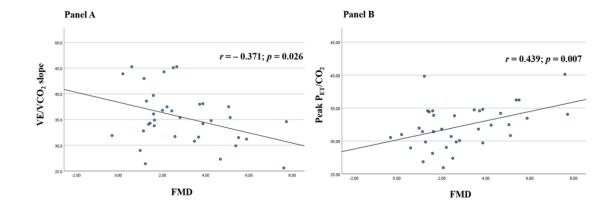
- Baratto 2021 : étude juste avant la sortie d'hospitalisation, n=18
 - VO2pic plus basse (14,8 vs. 22,8)
 - Pente VO2/W plus faible (8,1 vs 10,9)
 - Equivalents plus élevés (VE/VCO2 40 vs 30, pente 32 vs 28)
- Rinaldo 2021 n=75
 - Déconditionnement
 - Pas de différence d'efficience ventilatoire entre patients avec VO2 normale et anormale
- Debaumont : 52% de VO2max < 84%, tendance à la corrélation pente VE/VCO2 et VO2pic (hospi/non hospi)
- Cristafulli 2021 : 29% de patients avec inefficience ventilatoire, EFR et VO2pic normales (n=28)


Hyperventilation post-Covid-19 : prévalence

- Motiejunaite 2021, n=114
 - VO2max < 84% 75%</p>
 - VE/VCO2 > 34 dans ¼ cas
 - Mais surtout du déconditionnement
- Gruenewalt n= 20 non USI
 - Mode ventilatoire anormal n= 7
 - Pas de différence d'efficience ventilatoire

Hyperventilation post-Covid-19: prévalence

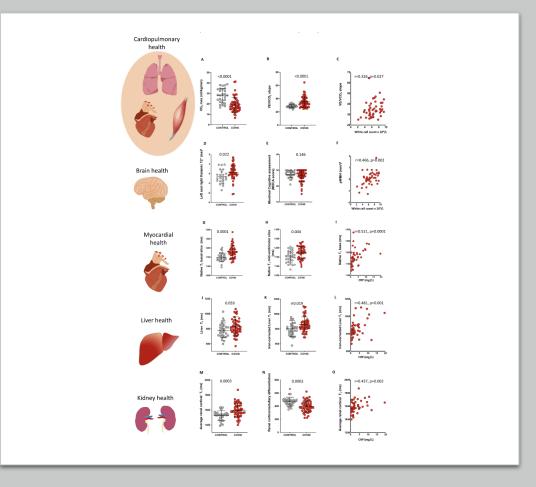
- Clavario 2021, n=200
 - Patients hospitalisés
 - Relation VO2pic et force musculaire uniquement
- Cassar 2021
 - Pente VE/V CO2 anormal à 3 mois, s'améliore à 6 mois (P=0,033). Médiane à 6 mois 31,3 (IQR 28,6- 34,5) versus contrôles 28,2 (IQR 26,7-30,0, P=0,002)
 - Limitation ventilatoire 6% à M3 et 5% à M6, pas de différence avec les contrôles
 - Pas de corrélation avec les symptômes


Hyperventilation post-Covid-19: physiopathologie

- Skjorten 2021, n=156
 - VO2pic plus basse
 - Pas de différence d'équivalents entre USI et non USI
 - Pente VE/VCO2 26.6±4.4 non dyspnéiques vs 28.9±4.5 dyspnéiques, p= 0.004
- Singh 2022 n=10 vs contrôles
 - $-VO_270 \pm 11\%$ pred. vs $131 \pm 45\%$ pred.; P < .0001
 - Extraction O2 altérée
 - Inefficience ventilatoire plus importante (pente VE/VCO_2 35 ± 5 vs 27 ± 5; P = 0.01)
- Motiejunaite 2021 : Pente VE/VCO2 non corrélée à la DLCO

Hyperventilation post-Covid-19: physiopathologie

- Dysfonction du système nerveux autonome (Davido 2020)
 - Lésions endothéliales et microangiopathie (Ackermann, 2020)
 - Conséquence
 normale » de la phase aiguë ? (Miglis 2020)
- Ambrosino 2022 : marqueurs de la dysfonction endothéliale à 2 mois, n=36



Physiopathologie

- Raman 2021 : A 3 mois, patients en USI
 - Pente VE/VCO2 plus élevée (35 vs 32) si anomalies IRM pulmonaires persistantes
 - Pente VE/VCO2

 associée aux
 marqueurs de
 l'inflammation

Conclusion

- Marqueurs de l'inefficience ventilatoire
 - Comportement clinique
 - Pente VE/VCO2
 - Attention aux diagnostics différentiels
- Troubles de la mécanique ventilatoire après Covid-19
 - Fréquence débattue
 - Lésions persistantes sous-jacentes ?
- Adresser au pneumologue si
 - Doute diagnostique
 - Absence de réponse à la rééducation

